游梁式抽油机系统动力学分析及节能控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,伴随着石油能源的不断开采,我国的油田必须借助抽油机开采。在抽油机中,以有杆泵采油装置最为常见,尤其以常规游梁式抽油机的使用最为普遍。游梁式抽油机因其结构简单、耐用、操作方便、维护费用低等明显优势,一直占据着有杆泵采油地面设备的主导地位,但其效率低下、耗能严重、无法克服“大马拉小车”等一系列固有缺点一直制约着石油工业的发,已经不适应当今经济的发展要求。
     油田耗能严重的现状已经引起了国内外的广泛关注。面对当今世界能源紧张的局面,提高油田采油效率,降低采油能耗已经刻不容缓。
     本文一方面重点分析了油井耗能机理,在对常规游梁式抽油机井上系统做了详细的动力学分析的基础上,找到了抽油机耗能机理,并找到了后续设计的液压蓄能节能系统的控制依据;另一方面在对比分析了目前使用较为普遍的抽油机节能措施的基础上,提出了液压蓄能节能系统方案,并对此系统做了详细的设计,提出了系统的控制策略。现分别简要介绍各章节内容如下:
     第1章简要介绍了本论文的课题来源及研究目的意义,同时对抽油机节能方面的国内外研究现状做了简要概括。
     第2章重点对游梁式抽油机井上系统的三大模块原动机、减速器、抽油机主体在SIMULINK环境下做了动力学仿真,并做了相关分析,寻求抽油机耗能机理,为后续节能系统设计提供依据。通过与现场测试数据的对比分析,验证了所建立的游梁式抽油机系统模型的正确性。
     第3章在对比分析了各种抽油机节能措施基础上,重点介绍了液压蓄能节能系统的方案,并对液压系统、机械系统中的重要部件做了介绍,最后,对系统的控制策略提出了自己的看法。
     第4章从电动机负载率的提高、抽油机平衡状况的改善两方面对采用液压蓄能节能系统前后电动机的工作状态进行了分析,优化了游梁式抽油机系统,预计了其节能效果。
     第5章对全文做了总结,并提出了后续研究的工作重点。
At present, accompanied with the continuing exploitation of petroleum energy, Chinese oil fields have to utilize Pumping Units. So far as Pumping Unit is concerned, Rod Pumping Unit, especially Beam Pumping Unit, is the most common device, which covers a wide application range, because of its obvious merits covering simple structure, durable performance, operation convenience as well as low maintenance cost. However, its inherent demerits in eluding low efficiency, high energy waste has constrained the development of the oil industry and no longer met the need of current economical development.
     Serious energy dissipation in oil fields has attracted widespread research interests domestically and abroad. In the face of the world energy crisis, there is no time to wait for increasing the efficiency of oil extraction and decreasing the energy dissipation of Pumping Unit.
     This dissertation, on one hand, has analyzed the energy dissipation mechanism of Pumping Unit, and found the reason for the energy dissipation of Pumping Unit along with the control basis for the following design of Hydraulic Energy-Accumulation System; on the other hand, it has put forward a program on Hydraulic Energy-Accumulation System on the basis of comparative analysis of energy-saving measures which are widely used in Pumping Units now. At the same time, it has made a detailed design of the system, and put forward a control strategy. A brief summary of the chapters are as follows:
     Chapter 1 has briefly introduced the origin of the task and the meaning and proposes of the research. Meanwhile, it has generalized the research state on the aspects of the energy-saving of Pumping Unit domestically and abroad.
     Chapter 2 focuses on the Dynamic Simulation of three main parts of Beam Pumping Unit:Motor, Reducer and Main Body, by the software of SIMULINK and seeks the mechanism of energy dissipation according to relative analysis. The results provide a good basis for the sequential design of Hydraulic Energy-Accumulation System. By comparison with the measured data, it has verified the correctness of Beam Pumping Unit Dynamic Model.
     Chapter 3 firstly presents the scheme of Hydraulic Energy-Accumulation System; secondly, it recommends the paramount components of Hydraulic System and Mechanical System; and eventually it brings forward personal views about control strategy. All of these are based on the comparative analysis of diversified energy-saving measures of Pumping Unit.
     Chapter 4 analyzes the working state of motor whether it adopts Hydraulic Energy-Accumulation System at two aspects:enhancing the Load Rate of motor and improving the Balance state of the Pumping Unit, which improves the performance of the Beam Pumping Unit System, and estimates its energy-saving effect.
     Chapter 5 summarizes the dissertation, and proposes the follow-up research focus.
引文
[1]何耀春,赵洪星.石油工业概论[M].石油工业出版社,2006:78-82.
    [2]张学鲁,季祥云,罗仁全.游梁式抽油机技术与应用[M].石油工业出版社,2001:42-47.
    [3]Terry Bartelt著,姜绍龙,富晓静,张剑,译.工业控制电子学——设备、系统与应用(第2版)[M].清华大学出版社,2005:59-74,533-581.
    [4]朱荣东.游梁抽油机增产节能方式研究[D].西南石油学院硕士学位论文,2005,6.
    [5]吕金萍.有杆抽油机智能优化控制系统[D].西南石油大学硕士学位论文,2007,5.
    [6]张连山.国外抽油机的技术发展[J].石油机械,1999,27(4):54-56.
    [7]张晓玲,于海迎.抽油机的节能技术及其发展趋势[J].石油和化工节能,2007,2:4-6.
    [8]张连山.我国抽油机的发展趋势[J].钻采工艺,1996,19(6):41-47.
    [9]张清林.抽油机的现状、发展方向及其节能技术的探索[J].科技创新导报,2008,2:97.
    [10]DING Bao, TANG Hai-yan and QI Wei-gui. Research on FNN Energy Saving Control for Light Load Oil Well with Intermittent Oil Extraction, IEEE Xplore, Communications, Circuits and Systems Proceedings,2006 International Conference on, Volume 3,25-28 June 2006 Page(s):2034-2037.
    [11]Song Liwei, Li Xiaopeng, Xie Gongcai and Lv Feng. Research of Control System of Linear Electromagnetic Oil-pumping Unit Based on DSP, Electrical Machines and Systems,2005. ICEMS 2005. Proceedings of the Eighth International Conference on, Volume 1,27-29 Sept. 2005 Page(s):726-729 Vol.1.
    [12]Sam G. Gibbs and Duane L. Miller. Inferring Power Consumption and Electrical Performance From Motor Speed in Oil-Well Pumping Units, IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL.33, NO.1, JANUARY-FEBRUARY 1997 Page(s):187-193.
    [13]Suming Xiong, Bingzhong Yang, Guangzheng Ni. Starting Performance Analysis of Three-Phase Capacitor Motor for Beam Pumping Unit, Electrical Machines and Systems, 2008. ICEMS 2008. International Conference on,17-20 Oct.2008 Page(s):3489-3492.
    [14]Fujin Li, Jianguo Shi. Research of Reactive Power Dynamic Compensation Controller for Oil-field Motor Control.Automation. Robotics and Vision,2006. ICARCV'06.9th International Conference on 5-8 Dec.2006 Page(s):1-4.
    [15]Gibbs, S.G.; Miller, D.L.; Inferring power consumption and electrical performance from motor speed in oil-well pumping units. Petroleum and Chemical Industry Conference,1995. Record of Conference Papers, Industry Applications Society 42nd Annual; 11-13 Sept.1995 Page(s):277-283.
    [16]Durham, M.O.; Lockerd, C.R.; Effect of cyclic loading on motor efficiency Industry Applications. IEEE Transactions on Volume 24, Issue 6, Nov.-Dec.1988 Page(s):1153-1159.
    [17]Li Hongsheng; Wang Yu; Ding Yongzhong; Peng Zhongxiao;Implementation of Network-computing and NN based Remote Real-time Oil Well Monitoring System. Neural Networks and Brain,2005. ICNN & B'05. International Conference on Volume 3,13-15 Oct.2005 Page(s):1810-1814.
    [18]Kini, P.G.; Sreedhar, P.N.; Efficient Utilization of Electrical Energy in Pumping Operations Based on Existing Conditions-A Case Study. TENCON 2005 2005 IEEE Region 10.21-24 Nov.2005Page(s):1-4.
    [19]杨耕,罗应立,等.电机与运动控制系统[M].清华大学出版社,2006:128-135.
    [20]高景德,王祥珩,李发海.交流电机及其系统的分析[M].清华大学出版社,1993:53-58.
    [21]施阳,严卫生,李俊,郑会永,等.MATLAB语言精要及动态仿真工具SIMULINK[M].西北工业大学出版社,1997:89-121.
    [22]胡岩,武建文,李德成等.小型电动机现代实用设计技术[M].机械工业出版社,2008:84-89.
    [23]刘洪智,郭东.异行游梁式抽油机[M].石油工业出版社,1997:8-36.
    [24]佘建初,王茵.工程力学[M].科学出版社,2003:8-12.
    [25]何生厚,张琪.石油与天然气工程学——油气开采工程[M].中国石油出版社,2003:145-158.
    [26]王艳艳.节能式游梁抽油机动力学分析[J].油气田地面工程,2007,26:8-9.
    [27]刘明尧,吴修德,汪建华.游梁式抽油机精确动力学分析的新方法[J].石油机械,1997,25:4-7.
    [28]杨秀娟,姜士湖,闫相祯,王焕英.游梁式抽油机模块化设计及仿真[J].油气田地面工程,2004,23:16.
    [29]齐俊林,郭方元,黄伟,孙应民.游梁式抽油机分析方法[J].石油学报.2006,27:116-119.
    [30]栾巍,王艳艳,骆华锋,张兴彦,吕亚平.地面采油设备节能新方法[J].大庆石油学院学报,2004,28:67-68.
    [31]倪国军,高长乐,王志坚.常规游梁式抽油机节能改造[J].新疆石油天然气.2005,6:83-86.
    [32]庞艳华,刘福刚等.游梁式抽油机用电动机的节电措施[J].石油矿场机械.2004,33:79-81.
    [33]钟平等.抽油机井高效节能技术[J].国外油田工程.2000,2:32-35.
    [34]萧南平.节能蓄能器及游梁式抽油机节能动力装置[J].石油机械.1997,25:28-29.
    [35]黄安贻,董起顺.液压传动[M].西南交通大学出版社,2005:49-88.
    [36]周少颖.混合动力电动汽车动力合成与切换装置的速比与动力匹配规律研究[D].武汉理工大学硕士学位论文,2007,5.
    [37]王利花.并联混合动力汽车用行星齿轮机构的研究[D].西安理工大学硕士学位论文,2008,3.
    [38]Jin Qibing, Quan Ling, Yuan Qin; New internal model control method for multivariable coupling system with time delays. Automation and Logistics,2009. ICAL'09. IEEE International Conference on 5-7 Aug.2009 Page(s):1307-1312.
    [39]Sun Yukun, Wang Bo, Ding Shen Ping; Multivariable decoupling control based on fuzzy-neural network ath-order inverse system in fermentation process. Control Conference, 2008. CCC 2008.27th Chinese.16-18 July 2008 Page(s):500-505.
    [40]Baoyong Zhao, Yixin Yin; Application of Neural Network Simple Adaptive Control in Multivariable Coupling System. Intelligent Systems Design and Applications,2006. ISDA'06. Sixth International Conference on Volume 1,16-18 Oct.2006 Page(s):142-146.
    [41]Fadali, M. S.; Continuous Drug Delivery System Design Using Nonlinear Decoupling:A Tutorial. Biomedical Engineering, IEEE Transactions on Volume BME-34, Issue 8, Aug.1987 Page(s):650-653.
    [42]Han Zhi-Gang, Jiang Ai-Ping, Wang Guo-Qiang; Study on control of multivariable coupling systems with model free control method. Control and Decision, v 19, n 10, p 1155-1158.
    [43]Rong, Zhu, Sheng, Mo You, Hua, Zhang Yan; Effective method of stability analysis for nonlinear time-varying coupling system. Advances in Modeling and Analysis C, v 55, n 3-4, p 45-52,2000.
    [44]Nassirharand, Amir; Control system design of multivariable non-linear space robots. Aircraft Engineering and Aerospace Technology, v 80, n 1, p 27-34,2008.
    [45]Craven, Paul J., Sutton, Robert, Burns, Roland S., Dai Yong-Ming. Multivariable intelligent control strategies for an autonomous underwater vehicle. International Journal of Systems Science, v 30, n 9, p 965-980, September 1999.
    [46]张振乾.游梁式抽油机节能装置控制器的设计[D].北京交通大学硕士学位论文,2007,12.
    [47]阎国华,阎恩刚.三相异步电动机经济运行速查表[M].机械工业出版社,1993:63-74.
    [48]方大千等.电动机速查速算手册[M].中国水利水电出版社,2004:12-100.
    [49]史仪凯.异步电机发电原理及其应用[M].西北工业大学出版社,1994:5-17.
    [50]胡述龙,舒干.抽油机工作中电动机发电运行状态分析[J].石油机械.2003,31:12-14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700