城市智能交通系统交通流协同优化与诱导关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着城市化进程的加快和汽车工业的发展,现有城市道路的通行能力与不断增长的交通需求之间的矛盾变得日益尖锐,交通拥挤现象日益突出。通过使用智能交通系统对交通流进行控制和诱导,以缓解交通拥堵,提供畅通和有序的交通环境,是目前各个国家大力发展和应用的重要手段。本文以大规模的城市复杂路网作为研究背景,采用协同控制与学习机制、模糊控制、动态重规划等理论和方法,研究智能交通系统中相序切换、区域负载均衡、交通流全局优化、车载传感网络的信息收集与处理、交通诱导任务的分解与最优路径选择等问题,建立一套全面高效的智能交通系统的信息收集、信号控制和自主诱导的管理和通行机制。主要研究工作如下:
     论文首先针对交通路网的连续车流和离散交通灯信号建立能够描述交通车流量的智能交通模型,然后分析了城市智能交通的控制与诱导的技术难点,针对城市智能交通系统的特点和应用背景给出了城市智能交通系统协同优化的控制与诱导设计方案。在该方案中,车载无线网络节点和道路上安装的感应节点采集车流和路况信息,若干车载无线网络节点经过转发和中继收集实时交通信息,送到交叉路口控制器,然后利用收集的数据提出基于置信水平的自适应粒子滤波算法,对道路交通流量进行预测,并以此为依据进行交通信号的协同控制和自主交通流的协同诱导。
     为了给交通控制和交通诱导提供实时、充分和可靠的动态路况信息和交通车流信息,利用车载无线节点和感应装置构成车载无线传感器网络采集数据,针对车载无线网络的移动特性并考虑节点能耗,提出了基于同心均衡分簇的数据收集算法,以均衡网络负载,减少网络延时,降低节点能耗,提高数据传输的可靠性;针对车载传感器网络的感知特性,在自适应粒子滤波算法的基础上,利用置信区间和估计状态的方差,提出一种基于置信水平的自适应粒子滤波算法,剔除冗余粒子数,实时获得下一时刻的最少粒子数目,从而降低算法实现的复杂度和运算量,对交通流量进行在线实时准确的估计,提高车载传感器网络交通流预测的准确性。
     为平衡大规模城市交通的负载,并达到交通通行性能的全局最优,提出一种具有智能学习能力的交通信号的协同控制策略。首先考虑车流量密度的非连续性,给出城市交通道路的分段仿射车流量优化指标,利用模糊规则进行交通信号的相序切换,然后利用系统辨识得到分段线形参数;再利用相邻交叉路口的流量信息,构造协同控制项,以平衡区域负载;为实现流量的优化,引入模糊Q学习机制,根据交通网络的状态,同时把粒子滤波得到的状态预测值作为学习及时回报,实时调整协同控制增益和本地反馈控制增益,由协同控制得到优化的信号灯控制命令,提高交通控制的实时性,得到全局最优的交通优化指标。具有学习能力的协同控制策略可以通过各个交通控制节点自身的反馈控制行为和邻接交通控制节点之间的协同控制行为达到路网的流量最优。
     为了提高出行效率,论文研究基于自主形式的智能交通诱导,提出一种动态不确定环境下交通诱导分解协调和路径选择的方法。首先引入时序约束的带权与或树对大规模交通诱导任务进行描述,然后将带权与或树修剪转变为AOE网,在AOE网的基础上将复杂交通诱导任务分解,并考虑诱导任务的时序约束,从而增强算法对大规模路网的可扩展性,以保证大规模交通诱导任务执行的一致性和动态实时要求;再提出一种增量动态重规划方法求解诱导问题的最优路径集合,先采用逆向多目标启发式搜索进行全局规划,然后以增量的方式对全局规划所保留的部分信息有效地重用,可快速调整变化位置与目标位置之间新的移动路径。所提出的方法具有较大的可扩展性,并能满足交通诱导的实时性要求。
With the accelerated urbanization and the development of the automobile industry, there is the increasing requirement for the traffic throughout of the urban in contrast to the current urban road capacity. The traffic congestion problem has become serious gradually for many metropolises. Thus it is an important and extensive method in many countries to use the intelligent transport system to control traffic and to induce vehicle flows so that the road congestion may be mitigated and the traffic may be more efficiency. Taking the large-scale urban complex traffic net as research background, the paper adapts the theories and methods such as cooperative control and optimization, fuzzy control and dynamic re-planning to research the critical problems in intelligent transport system such as the signal phase switch, region traffic balance, global traffic optimization, the data acquisition and the data process for vehicle sensor network, the optimal path planning and task decomposition of the traffic guidance and so on. By this research, the paper tries to construct a completed and efficient traffic management and passing mechanism. The main work is as follows:
     The paper firstly constructs the intelligent transport model to analyze the traffic flow of the transport network including continuous vehicle flows and discrete traffic signal. Then the difficulty and problem of the control and guidance in urban intelligent transport system is analyzed based on the characteristics and the application background of urban transport network. To solve these problems, a design framework of cooperative control and guidance is presented. In the design, the vehicle wireless nodes collect the transport information of sensor nodes along the urban roads. Then a new confidence level based adaptive particle filter algorithm is proposed to predict the short-term flow of traffic using the collected data. After it is transferred or relayed by vehicle wireless nodes, which can be used for cooperative traffic signal control and traffic guidance.
     In order to provide the real-time, fully reliable information about dynamic traffic report and vehicle flows for the traffic control, a data collection algorithm based on the concentric trees by using vehicle wireless nodes considering the mobility and the power efficiency. This algorithm can balance the networks load, reduce the power consuming of the nodes and increase the reliability for data transmitting. Then a confidence-level-based new adaptive particle filter (CAPF) algorithm is proposed in this paper to increase the prediction accuracy of traffic flow. In this algorithm the idea of confidence interval is utilized. The least number of particles for the next time instant is estimated according to the confidence level and the variance of the estimated state. CAPF can effectively reduce the computation while ensuring accuracy of online real-time and accurate estimates of traffic flow and improving the accuracy of the traffic flow forecasting.
     The cooperative control strategy with the intelligent learning ability was proposed to induce the urban traffic load and optimize global traffic property. Considering the discontinuity of the vehicle flows density, the paper proposes the affine traffic optimization index for the subsection of the urban traffic road and made the signal phase switch by using fuzzy rules, then obtain the subsection linear parameter. Secondly the traffic information of the adjacent Crossroads was used to construct the cooperative control items and balance the area load. Finally the global optimal traffic index is obtained by introducing the fuzzy Q-learning mechanism to adjust the gains of the cooperative control and the local feedback control in order to achieve optimism of traffic. In this paper, the learning reward is derived from the estimated value of traffic flow. The optimal cooperative control strategy with learning can obtain optimal traffic flow through the feedbacks of the traffic control nodes and the cooperative control acting of the neighbor nodes.
     Apart from research about controlling the urban vehicle flows by using traffic signal, this paper also analyzed an intelligent Traffic stream guidance, discussed the key function of traffic distribution path planning and finally proposed a way to address the traffic guidance decomposition and path selection issue. First, the large-scale traffic stream guidance is described by introducing WAndOrTree. Then the WAndOrTree is turned into AOE network. On the basis of AOE network, the traffic stream guidance is decomposed, considering the timing constraints of the guidance task, which can ensure the consistency of the task execution and meet dynamic real-time requirement for task planning. Furthermore, a group of optimal path set was obtained by using reverse multi-objective search. Then the Traffic stream guidance reused the remaining unchanged planning information with incremental way. By this way, the move path between the current position and destination location can be adjusted faster. The proposed traffic guidance is more scalable for large-scale city with real-time requirement.
引文
[1]Papageorgiou M., Diakaki C., Dinopoulou V.. Review of road traffic control strategies[J]. Proceedings of the IEEE,2003,91(12):2043-2067.
    [2]Li L. J., Li X., Cheng C. J.. Research collaboration and ITS topic evolution:10 years at T-ITS[J]. IEEE Transactions on Intelligent Transportation Systems,2010,11(3): 517-523.
    [3]Chen B., Cheng H. H.. A Review of the Applications of Agent Technology in Traffic and Transportation System[J]s. IEEE Transactions on Intelligent Transportation Systems,2010,11(2):485-497.
    [4]Gokulan B. P., Srinivasan D.. Distributed geometric fuzzy multiagent urban traffic signal control[J]. IEEE Transactions on Intelligent Transportation Systems,2010, 11(3):714-727.
    [5]Kim Y. W., Kato T, Okuma S.. Traffic network control based on hybrid dynamical system modeling and mixed integer nonlinear programming with convexity analysis[J]. IEEE Transactions on Systems, Man and Cybernetics-part A:Systems and Humans,2008,38(2):346-357.
    [6]Gupta P., Purohit G. N., Dadhich A.. Approaches for Intelligent Traffic System:A Survey[J]. International Journal on Computer Science and Engineering,2012,4(09): 1570-1578.
    [7]王正武.高速通道多级协调控制[D].长沙:中南大学,2007.
    [8]Yousef K. M., Al-kariki J. N., Shatnawi A. M.. Intelligent Traffic Light Flow Control System using Wireless Sensor Networks[J]. Journal of Information Science and Engineering,2010,26:753-768.
    [9]Chinyere O. U., Francisca O. O., Amano O. E.. Design and Simulation of Inteeligent Traffic Control System [J]. International Journal of Advances in Engineering & Technology,2011, 1(5):47-57.
    [10]Wang F. Y. Parallel Control and Management for Intelligent Transportation Systems: Concepts, Architectures, and Applications[J]. IEEE Transactions on Intelligent Transportation Systems,2010,11(3):630-638.
    [11]Wei J. H., Wang, Du A. L. N. C. Study of self-organizing control of traffic signals in an urban network based on cellular automata[J]. IEEE Transactions on Vehicular Technology,2005,54(2):744-748.
    [12]Haddad J., Mahalel D., Ioslovich I.. Optimal steady-state control for isolated traffic intersections[J]. IEEE Transactions on Automatic Control,2010,55(11):2612-2617
    [13]Wunderlich R., Liu C. B., Elhanany. I.. A novel signal-scheduling algorithm with quality-of-service provisioning for an isolated intersection[J]. IEEE Transactions on Intelligent Transportation Systems,2008,9(3):536-547.
    [14]Azimirad E., Pariz N., Sistani M. B. N.. A novel fuzzy model and control of single intersection at urban traffic network[J]. IEEE Systems Journal,2010,4(1):107-111.
    [15]过秀城,李岩,杨洁.基于状态空间神经网络和扩展卡尔曼滤波的主动交通感应控制[J].东南大学学报,2010,26(3):466-470.
    [16]Huang Y. S., Su P. J.. Modeling and analysis of traffic light control systems[J]. IET Control Theory and Applications,2009,3(3):340-350.
    [17]Mirchandani P. B., Zou N.. Queuing models for analysis of traffic adaptive signal control[J]. IEEE Transactions on Intelligent Transportation Systems,2007,8(1):559
    [18]Qiao J., Yang N., Gao J.. Two-stage fuzzy logic controller for signalized intersection[J]. IEEE Transactions on Systems, Man and Cybernetics-part A: Systems and Humans,2011,41 (1):178-184.
    [19]温凯歌,曲仕茹,张玉梅.城市单交叉路口信号多相位自适应控制模型[J].系统仿真学报,2009,21(10):3066-3070.
    [20]Chen J., Xu L. H., Yang X. G. A Hierarchy Control Algorithm and its application in Urban Arterial Control Problem[C]. Intelligent Transportation Systems Conference, Seattle, USA,2007:373-378.
    [21]Shen G J., Kong X. J.. Study on Road Network Traffic Coordination Control Technique with Bus Priority [J]. IEEE Transactions on Systems, Man and Cybernetics-part C:Applications and Reviews,2009,39(3):343-351.
    [22]Medina J. C, Hajbabaie A., Benekohal R. R. Arterial traffic control using reinforcement learning agents and information from adjacent intersections in the state and reward structure[C].2010 13th International IEEE Conference on Intelligent Transportation Systems (ITSC), Portugal,2010:525-530.
    [23]Chen S. Y.,Sun J., Yao J.. Development and Simulation Application of a Dynamic Speed Dynamic Signal Strategy for Arterial Traffic Management[C].2011 14th international IEEE Conference on Intelligent Transportation Systems (ITSC), Washington, USA,2011:1349-1354.
    [24]Maher M.. A comparison of the use of the cell transmission and platoon dispersion models in TRANSYT 13[J]. Transportation Planning and Technology,2011,34(1): 71-85.
    [25]Pohlmann T., Friedrich B.. Online control of signalized networks using the cell transmission model[C].2010 13th International IEEE Conference on Intelligent Transportation Systems (ITSC), Portugal,2010:1-6.
    [26]杨兆升,林赐云,龚勃文.结合浮动车技术的SCATS自适应控制策略生成技术[J].吉林大学学报,2010,40(1):35-41.
    [27]赵冬斌,刘德荣,易建强.基于自适应动态规划的城市交通信号优化控制方法综述[J].自动化学报,2009,35(6):676-681.
    [28]沈峰,杨晓光.多目标城市道路交叉路口信号配时优化算法研究[J].同济大学学报(自然科学版),2009,37(7):898-902.
    [29]孙华灿,李旭宏,刘艳忠.容量限制分配的蚁群优化算法[J].东南大学学报(自然科学版),2009,39(1):177-179.
    [30]Balaji P. G, German X., Srinivasan D.. Urban traffic signal control using reinforcement learning agents[J]. IEEE Transactions on Intelligent Transport Systems,2009,4(3):177-188.
    [31]Arel I., Liu C., Urbanik T.. Reinforcement learning-based multi-agent system for network traffic signal control [J]. IEEE Transactions on Intelligent Transport Systems, 2010,4(2):128-135.
    [32]Balaji P. G, Srinivasan D.. Multi-agent system in urban traffic signal control[J]. IEEE Computational Intelligence Magazine,2010,5(4):43-51.
    [33]Murray R. M.. Recent research in cooperative control of multivehicle systems[J]. Journal of Dynamic Systems, Measurement and Control,2007,129(5):571-583.
    [34]Qu Z. H., Wang J., Hull R. A.. Cooperative control of dynamical systems with application to autonomous vehicles[J]. IEEE Transactions on Automatic Control, 2008,53(4):894-911.
    [35]Choy M. C., Srinivasan D., Cheu R. L.. Cooperative, hybrid agent architecture for real-time traffic signal control[J]. IEEE Transactions on Systems, Man and Cybernetics-part A:Systems and Humans,2003,33(5):597-607.
    [36]Heung T. H., Ho T. K., Fung Y. F.. Coordinated Road-Junction Traffic Control by Dynamic Programming[J]. IEEE Transactions on Intelligent Transportation Systems, 2005,6(3):341-350.
    [37]Srinivasan D., Choy M. C.. Cooperative multi-agent system for coordinated traffic signal control[C]. IEEE Proceedings on Intelligent Transport Systems,2006,153(1): 41-50.
    [38]Lee J., Park B.. Development and Evaluation of a Cooperative Vehicle Intersection Control Algorithm under the Connected Vehicles Environment[J]. IEEE Transactions on Intelligent Transportation Systems,2012,13(1):81-90.
    [39]De Souza F. A., Peccin V. B., Camponogara E.. Distributed model predictive control applied to urban traffic networks:Implementation, experimentation, and analysis[C]. 2010 6th IEEE Conference on Automation Science and Engineering, Toronto, Canada,2010:399-405.
    [40]de Oliveira L. B., Camponogara E.. Multi-agent model predictive control of signaling split in urban traffic networks[J]. Transportation Research Part C: Emerging Technologies,2010,18(1):120-139.
    [41]Camponogara E., Scherer H. F.. Distributed Optimization for Model Predictive Control of Linear Dynamic Networks with Control-Input and Output Constraints[J]. IEEE Transactions on Automation Science and Engineering,2011,8(1):233-242.
    [42]Qiao J., Yang N., Gao J.. Two-stage fuzzy logic controller for signalized intersection[C]. IEEE Transactions on Systems, man, and Cybernetics-part A: Systems and Humans, Jan.2011,41(1):178-184.
    [43]Internet ITS consortium, http://www.internetits.org,2006.
    [44]于宏毅.无线移动自组织网[M].北京:人民邮电出版社,2005.
    [45]Jiang D., Delgrossi L.. IEEE 802.11p:Towards an international standard for wireless access in vehicular environments[C]. IEEE Vehicular Technology Conference, VTC Spring 2008:2036-2040.
    [46]Notice of Proposed Rulemaking and order FCC03-324, Federal Communications Commission,2002.
    [47]Yin J. J., ElBatt T, Yeung G. Performance evaluation of safety applications over DSRC vehicular ad hoc networks. Proceedings of the 1st ACM international workshop on Vehicular ad hoc networks,2004:1-9.
    [48]Byun J., Shim W. S., Hong W. K.. WSN-based Intelligent Telematics System[C]. 13th Annual IEEE International Symposium and Workshop on Engineering of Computer Based Systems.2006:2pp-496.
    [49]Sung K. B., Yoo J. J.. Collision Warning System on a Curved Road Using Wireless Sensor Networks[C]. Vehicular Technology Conference,2007:1942-1946.
    [50]Seong-eun Y., PohKit C, Taehong K.. PGS:Parking Guidance System based on wireless sensor network[C]. ZSWPC 2008:218-222.
    [51]Yoo S., Chong P. K., Kim T., Kang J., Kim D.. Dynamic Scheduling Protocol for Highly-Reliable, Real-Time Information Aggregation for Telematics Intersection Safety System (TISS)[J]. Ubiquitous Intelligence and Computing Lecture Notes in Computer Science,2007:163-172.
    [52]Chen W. J., Chen L. F., Chen Z. L.. A real time dynamic traffic control system based on wireless sensor network[C]. The 2005 International Conference Parallel Processing Workshops (ICPPW05), Oslo, Nor2 way,2005.
    [53]Wang Y, Wang C., Tang W, Zhao Q.. A vehicle tracking system based on wireless sensor network[J]. Information and Control,2006,35 (2):169-178 (in Chinese).
    [54]Coleri S., Cheung S. Y., Varaiya P.. Sensor networks for monitoring traffic[C]. Forty Second Annual Conference on Communication, Control, and Computing, Illinois, USA,2004:32-40.
    [55]Ding J., Cheung S. Y, Tan C. W. Signal processing of sensor node data for vehicle detection[C]. The 7th International IEEE Conference on Intelligent Transportation Systems (ITSC), Washington, USA,2004:70-75.
    [56]Gu L., Jia D., Vicaire P.. Lightweight detection and classification for wireless sensor networks in realistic environments[C] The second International Conference on Embedded Networked Sensor Systems (SenSys'05), San Diego, USA,2005: 208-217.
    [57]Li D., Wong K. D.. Detection, Classification, and Track2 ing of Targets[J] IEEE Signal Processing Magazine,2002,19 (2):17-29.
    [58]张豫鹤,黄希,崔莉.面向交通信息采集的无线传感器网络节点[J].计算机研究与发展.2008,45(1):110-118.
    [59]Namboodiri V., Agarwal M., Gao L.. A study on the feasibility of mobile gateways for vehicular ad-hoc networks[C]. Proceedings of the First International Workshop on Vehicular Ad Hoc Networks,2004:66-75.
    [60]FfiBler H., Mauve M., Hartenstein H.. Location based routing for vehicular ad-hoc networks[C]. ACM SIGMOBILE Mobile Computing and Communications Review (MC2R).2003,7(1):47-49.
    {61] Abedi O., Fathy M., Taghiloo J.. Enhancing AODV routing protocol using mobility parameters in VANET Computer Systems and Applications[C]. AICCSA 2008. IEEE/ACS International Conference on March 312008-April 4.2008:229-235.
    [62]Menouar H., Lenardi M, Filali F.. An Intelligent Movement-based Routing for VANETs[C]. ITS World Congress 2006, London, United Kingdom,2006:1-8.
    [63]Menouar H., Lenardi M., Filali F.. Improving Proactive Routing in VANETs with the MOPR Movement Prediction Framework[C]. Telecommunications,2007. ITST'07. 7th International Conference on ITS.2007:1-6.
    [64]Tom K. R... ALI-SCOUT, A universal guidance and information system for road traffic[C]. IEEE London, Eng,1986:22-25.
    [65]Harris S. P., Rabone A. J., Randall D.. A simulation of dynamic Route Guidance systems[J]. Traffic Engineering and Control,1992,33(5):327-329.
    [66]Porter C., Hochmuth J., Nicarico T., Solberg C.. Evaluation of the advance traffic information center[Z].Washington, D.C.,1996:139-148.
    [67]Tamura K., Hirayama M.. Toward realization of VICS-vehicle information and communications system[C]. The IEEE-IEE Proceedings of Vehicle Navigation and Information Systems Conference,1993:72-77.
    [68]Nagaoka K.. Travel time system by using Vehicle Information and Communication System (VICS)[C]. IEEE Conference on Intelligent Transportation Systems, Proceedings(ITSC),1999:816-819.
    [69]Nakahara T., Yumoto N.. Its development and deployment in Japan[C]. IEEE Conference on Intelligent Transportation System,1997:631-636.
    [70]Pang G K. H., Takabashi K., Yokota T. Adaptive route selection for dynamic route guidance system based on fuzzy-neural approaches[C]. IEEE Transactions on Vehicular Technology,1999,6(48):2028-2041.
    [71]Shimoura H., Tenmoku K.. Accuracy of travel time necessary for DRGS andevaluation of measuring algorithm[C]. IEEE Proceedings of Intelligent Vehicles Symposium,1996:111-116.
    [72]Yamamoto T, Liu K., T. Morikawa. Variability of travel time estimates using probevehicle data[C]. Proceedings of the Fourth International Conference on Traffic and Transportation Studies (ICTTS),2006:278-287.
    [73]唐克双,姚恩建.日本ITS开发和运用的实例--名古屋基于浮动车信息的P-DRGS简介[J].城市交通,2006,4(3):74-76.
    [74]Hadj-Alouane A., Hadj-Alouane N., Juma O.. The Ali-Scout Route Guidance Simulation[R]. Michigan University, Intelligent Transportation Systems Research Laboratory,1996.
    [75]Vinger S.. Marriage Made in Michigan:Autoscope and SCATS Together in Fast-trac. Traffic Technology International,1997(11):51-54.
    [76]Koenig S., Likhachev M., Furcy D.. Lifelong planning A*[J]. Artificial Intelligence, 2004,155(1-2):93-146.
    [77]Ma L., Yang J., Zhang M.. A Two-level Path Planning Method for On-road Autonomous Driving[C].2th International Conference on Intelligent System Design and Engineering Application (ISDEA),2012:6-7.
    [78]Xi Y.G., Zhang C.G.. Rolling path planning of mobile robot in a kind of dynamic uncertain environment[J]. Acta Automatica Sinica,2002,28(2):161-175.
    [79]Stewart B.S., White C.C.. Multiobjective A*[J]. Journal of the ACM,1991,38(4): 775-814.
    [80]Dasgupta P., Chakrabarti P.P., DeSakar S.C.. Multiobjective heuristic search:An introduction to intelligent search methods for multicriteria optimization[M]. Morgan Kaufman,1999.
    [81]Xu Y.Y., Yue W.Y.. A Generalized Framework for BDD-based RePlanning A* Search[C].10th ACIS International Conference on Software Engineering,2009: 133-139.
    [82]Harikumar S., Kumar S.. Iterative deepening multiobjective A*[J]. Information Processing Letters,1996,58(1):06-15.
    [83]Refanidis I., Vlahavas I.. Multiobjective heuristic state-space planning[J]. Artificial Intelligence,2003,145(1-2):1-32.
    [84]Lu Y.B., Huo X., Oktay A.. Incremental Multi-Scale Search Algorithm for Dynamic Path Planning With Low Worst-Case Complexity [J]. IEEE Transactions on Systems, Man, and Cybernetics-Part B:Cybernetics,2011,41(6):1556-1569.
    [85]Koenig S., Sun X.X.. Comparing real-time and incremental heuristic search for real-time situated agents[J]. Autonomous Agents and Agent Multi-Agent Systems. 2009,18:313-341.
    [86]Kumar V., Kanal L.N.. Parallel Branch-and-Bound Formulations for AND/OR Tree Search [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1984, 6(6):768-778.
    [87]Yin J.J., Elbatt T., Yeung G.. Performance evaluation of safety applications over DSRC vehicular ad hoc networks[C]. Proceedings of the 1st ACM International Workshop on Vehicular Ad Hoc Networks (VANET'04), Oct 1,2004, Philadelphia, PA, USA. New York NY, USA:ACM,2004:1-9.
    [88]Zhu H.Z., Zhu Y.M., Li M.. Metropolitan-scale traffic perception based on lossy sensory data[C]. Proceedings of 28th IEEE Conference on Computer Communications (INFOCOM'09),2009:19-25.
    [89]Lee U., Zhou B., Gerla M.. Mobeyes:Smart mobs for urban monitoring with a vehicular sensor network[J]. IEEE Wireless Communications,2006,13(5):52-57.
    [90]Kong F., Tan J.D.. A collaboration-based hybrid vehicular sensor network architecture[C]. In proceedings of International Conference on Information and Automation, ICIA 2008, Hunan, China, June,2008:584-589.
    [91]陆化普,殷亚峰.动态系统最优分配模型的研究[J].公路交通科技,1996,13(4):12-19.
    [92]杨超,杨佩昆.均衡网络下交通控制策略的研究[J].中国公路学报,1999,12(3):90-94.
    [93]徐建闽,许伦辉,撒元功.交叉路口有交通信号控制时用户最优动态配流模型[J].控制理论与应用,2000,17(1):117-120.
    [94]陈听.基于协同学的城市交通控制与诱导系统协同的理论与方法研究[D].长春:吉林大学,2006.
    [95]任福田,刘小明,荣建.交通工程学[M].北京:人民交通出版社,2005.
    [96]董超俊,刘智勇,邱祖廉.城市交通控制智能优化配时及仿真[J].系统仿真学报.2005,(2):472-475.
    [97]Payne H. J.. Models of free traffic and control. Mathematical methods of public systems,1971,1(1):51-61.
    [98]Beaumont P., Chaib D.B.. Multiagent Coordination Techniques for Complex Environments:The Case of a Fleet of Combat Ships [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C:Applications and Reviews,2007,37(3): 373-385.
    [99]Hirai H., Miyazaki F.. Dynamic coordination between robots:self-organized timing selection in a juggling-like ball-passing task [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics,2006,36(4):738-754.
    [100]Eriksson J., Girod L., Hull B.. The pothole patrol:Using a mobile sensor network for road surface monitoring[C]. Proceeding of the 6th international conference on Mobile systems(MobiSys'06),2008:29-39.
    [101]Li H. Y., Cai M.Z., Cheng Y.M.. Energy optimization for chain-based data gathering in wireless sensor networks [J]. International Journal of Communication Systems,2007,20(7):857-874.
    [102]李水友,刘智勇.城市交通感应控制综述[J].城市交通,2006,4(6):64-69.
    [103]曾志文,陈志刚,刘安丰.无线传感器网络中基于可调发射功率的能量空洞避免[J].计算机学报,2010,33(1):13-14.
    [104]Kleinrock L., Silvester J.. Optimum Transmission Radii in Packet Radio Networks or Why Six Is A Magic Number. Proceedings of the IEEE National Telecommunications Conference, Birmingham,1978,4:1-4.
    [105]Djuric P. M., Kotecha J. H., Zhang J. Q.. Particle filtering[J]. IEEE Signal Processing Magazine,2003,20(5):19-38.
    [106]Nummiaro K., Koller-Meier E., Van Gool L..An adaptive color-based particle filter[J]. Image and Vision Computing,2003,21(1):99-110.
    [107]Yu W. T., Pent J., Zhang X. Y., Lai X. Z., She J. H.. A Confidence Level Based New Adaptive Particle Filter Algorithm for Nonlinear O bject Tracking Regular Paper, International Symposium on Computational Intellige nce and Industrial Applications,2012,8, Sappora, Japan. (El DOI:10.5772/54047)
    [108]Hoshiya M., Saito E.. Structural identification by extended Kalman filter. Journal of Engineering Mechanics [J],1984,110(12):1757-1770.
    [109]Wan E. A., Van Der Merwe R.. The unscented Kalman filter. Kalman filtering and neural networks[M],2001:221-280.
    [110]Kim Y.W., Kato T., Okuma S.. Traffic Network Control Based on Hybrid Dynamical System Modeling and Mixed Integer Nonlinear Programming With Convexity Analysis. IEEE Transactions On Systems, Man, And Cybernetics-part A: Systems And Humans,2008,38(2):346-357.
    [111]孙燕,陈森发,陈淑燕.基于遗传算法的检测路段选择的优化[J].信息与控制,2002,31(5):420-424.
    [112]Sun Y, Chen S. F., Zhou Z. G.. Using Immune Algorithm to optimize location of traffic counting points[C]. The 2002 International Conference on Control and Automation,2002:145-146.
    [113]韩志新.现代交通管理中控制系统和诱导系统协调理论研究[D].河北工业大学硕士学位论文,2002.
    [114]文孟飞,彭军,朱正发,刘伟荣.交通网络车流量的分布式协同优化方法研究[J].小型微型计算机系统,2012,33(4):852-855.
    [115]沈国江,许卫明.交通干线动态双向绿波带控制技术研究[J].浙江大学学报(工学版),2008,42(9):1625-1630.
    [116]宫照新.基于模糊逻辑的智能交通控制算法的研究[J].科学技术与工程,2009,9(18):5603-5606.
    [117]文孟飞,彭军,朱正发,刘伟荣.交通网络车流量的分布式协同优化方法研[J].小型微型计算机系统,2012,33(4):852-855.
    [118]Qu Z. H.. Cooperative Control of Dynamical Systems[M]. Spinger-Verlag, England, 2009.
    [119]Sutton R. S., Barto A. G. Reinforcement learning:An introduction[M]. Cambridge Univ Press.1998.
    [120]Bazzan A. L.. Opportunities for multiagent systems and multiagent reinforcement learning in traffic control. Autonomous Agents and Multi-Agent Systems,2009, 18(3):342-375.
    [121]Jouffe L.. Fuzzy inference system learning by reinforcement methods[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C:Applications and Reviews, 1998,28 (3):338-355.
    [122]Er M. J., Deng C., Online Tuning of Fuzzy Inference Systems Using Dynamic Fuzzy Q-Learning[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics,2004,34(3):1478-1489.
    [123]Takano F., Maekawa Y., Kasahara H.. Multiple-paths search with concurrent thread scheduling for fast AND/OR tree search[C]. International Conference on Complex, Intelligent and Software Intensive Systems(CISIS),2009:51-58.
    [124]Kumar V., Laveen N.. Parallel branch-and-bound formulations for AND/OR tree search[J]. Pattern Analysis and Machine Intelligence,1984,6(6):768-778.
    [125]谢国琪.基于带权与或树和AOE网的多智能体动态任务规划研究[D].长沙:中南大学,2010.
    [126]严蔚敏,吴伟民.数据结构(C语言版)[M].北京:清华大学出版社,2004:183-185.
    [127]张晓勇.机器人救援仿真系统中规划和自适应协作研究[D].长沙:中南大学,2009.
    [128]文孟飞,彭军,刘伟荣,李冲,张晓勇.一种动态重规划的多目标路径诱导方法研究[J].湖南大学学报(自然科学版),2013,40(5):55-60.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700