系统生物学的两个课题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以生物学为代表的生命科学和以复杂系统和复杂性研究为核心的复杂性科学都是二十一世纪最重要的研究领域,系统生物学则处于这两个学科的重叠区域。一般来说,系统生物学尝试在系统水平上理解生物对象的功能运作,这需要综合使用不同种类的方法以实现不同来源数据的整合,最终达成对生物系统涌现特性的刻画和建模。
     在本论文中,我们选择了两个课题进行研究,一个是时序列基因表达数据上的双聚类算法,另一个是哺乳类动物SCN昼夜节律的达尔文式模型。这两个课题的研究有着不同的学术路径,我们希望由此展示我们对系统生物学研究路径的一些思考。
     第一个课题的背景是基因调控网的推断,它展示了我们对计算系统生物学研究途径的认识。时序列基因表达数据的双聚类是要寻找出在特定时间段内具有表达相关性的基因族。我们受到基于后缀树的双聚类算法启发,首先把基因表达数据表示为加权字符串,然后根据这些加权字符串生成广义加权后缀树,我们发现,这个广义加权后缀树中的内部节点给出了双聚类结果,而这一算法的时间复杂度和空间复杂度都是线性的。另外,我们还将算法推广到更复杂的应用背景下,包括容许错配、容许引入比对得分矩阵等情形,都有很简洁的方案。这一算法较好地解决了时序列基因表达数据的双聚类问题,为后续的数据处理工作提供了良好的基础。
     第二个课题的背景是复杂系统的功能机制,我们猜测达尔文式的机制和过程可能在复杂系统的功能运作中具有相当的普遍性。而我们以哺乳动物SCN昼夜节律为例,具体展示了这一机制和过程如何在生物钟运作中是可能的。昼夜节律现象可能是最普遍的生物现象之一,出现在从生化过程到细胞、到组织、到个体、到种群、到生态群落的不同生物层次上。我们引入经济学中的机制设计框架,论证SCN在运转中可以采用类似于自然选择机制下进化的达尔文式过程来实现SCN的授时功能,特别地,我们在这一框架下给出光线诱导下的相位响应曲线的全新解释。
Life Science and Science of Complexity are both the most important researchareas in the21st century. Systems biology is the intersection of these two areas. Gen-erally speaking, Systems Biology aims at understanding the function of biologicalobjects at systems level, which needs to synthesize different methods to fulfill the in-tegration of data from different sources and finally models emergency phenomenon inbiological system.
     In the thesis, we will study two problems. One is the biclustering algorithmfor time-series gene expression data, the other is the Darwinian modeling circadianrhythm of the mammalian SCN. We will study these two problems with different ap-proaches, aiming at showing our thinking on the study approaches to problems inSystems Biology.
     The research background of the first problem is gene regulatory network infer-ence. Biclustering algorithms of time-series gene expression data try to find out thosegene groups within each group the expression of the genes are correlated within a spe-cific time interval. Inspired by a biclustering algorithm based on suffix tree, we pro-pose a new one. The gene expression data are firstly represented as weighted strings,then transformed into general weighted suffix tree. We find out the inner nodes ofthe given general weighted suffix tree give the bicluster results. Both time complex-ity and space complexity are linear. Furthermore, the algorithm can be generalizedsmoothly to more complex application backgrounds, including mismatch, alignmentscore matrix, etc. The algorithm provides a good solution to the gene expression databiclustering problem and lays a sound foundation for further research.
     The research background of the second problem is the mechanism of functionof complex systems. We conjecture that the Darwinian mechanism and Darwinianprocess are common in complex systems. We take circadian rhythm of mammalian SCN as an example to illustrate how this mechanism and process could play the rolein SCN. Circadian rhythm is perhaps one of the most common biological phenomenonemerging on different biological levels, ranging from biomedical processes to cell,organism, individual, population and ecological system. We introduce the frameworkof mechanism design problem rooted in economics into our model, and demonstrateSCN cells can fulfill their time-telling function by adopting the Darwinian processwhich is similar to the process of Evolution by Natural Selection. In particular, wegive a brand-new explanation of the light-induced Phase Response Curve under thismodel.
引文
[1] W. Zieglga¨nsberger and T.R. To¨lle. The pharmacology of pain signalling. Cur-rent Opinion in Neurobiology,3(4):611–618,1993.
    [2] H. Kitano et al. Foundations of systems biology. MIT press Cambridge, MA,2001.
    [3]洪德元.“系统生物学”岂能用于两个学科?—关于‘systems biology’的汉译问题.科学时报,2004年4月9日.
    [4]王中仁.术语“Biosystematics”和“Complex”的概念和中文译法辩析.植物分类学报Acta Phytotaxonomica Sinica,36(06):569–571,1998.
    [5]葛颂.也谈“Biosystematics”的中文译名以及由此引发的思考.植物分类学报Acta Phytotaxonomica Sinica,37(006):622–627,1999.
    [6]洪德元. Biosystematics,它的内含和中文翻译问题.植物分类学报ActaPhytotaxonomica Sinica,38(5):490–496,2000.
    [7] W.H. Camp and C.L. Gilly. The structure and origin of species. Brittonia,4(3):323–385,1943.
    [8] C. Epling. Taxonomy and genonomy. Science,98(2554):515–516,1943.
    [9] E. SMALL. Systematics of biological systematics (or, taxonomy of taxonomy).Taxon,38(3):335–356,1989.
    [10] P.H. Davis and V.H. Heywood. Principles of angiosperm taxonomy. Oliver&Boyd,1963.
    [11] L.A.S. Johnson. Biosystematics Alive?: A Discussion. Taxon,19(2):152–153,1970.
    [12]吴家睿.论“Systems Biology”的译名问题.科学(上海),57(004):25–27,2005.
    [13]肖培根,贾伟. Systems Biology和Systematic Biology的正确中译名.中国中西医结合杂志,28(004):329–329,2008.
    [14] L. Hood. A personal view of molecular technology and how it has changedbiology. Journal of Proteome Research,1(5):399–409,2002.
    [15] H. Kitano. Systems biology: a brief overview. Science,295(5560):1662,2002.
    [16] John von Neuman. Book review of cybernetics. Physics Today,2(5):33–34,1949.
    [17] Erwin Schro¨dinger. What is life?: With mind and matter and autobiographicalsketches. Cambridge University Press,1992.
    [18] Uwe Sauer, Matthias Heinemann, and Nicola Zamboni. Genetics: Getting closerto the whole picture. Science Signaling,316(5824):550,2007.
    [19] Denis Noble. The music of life: biology beyond the genome. OUP Oxford,2006.
    [20] Michael Baitaluk. System biology of gene regulation. In Biomedical Informatics,pages55–87. Springer,2009.
    [21] Boris N. Kholodenko, Frank J. Bruggeman, and Herbert M. Sauro. Mechanisticand modular approaches to modeling and inference of cellular regulatory net-works. In Systems Biology, pages143–159. Springer,2005.
    [22] H. Kitano. Computational systems biology. Nature,420(6912):206–210,2002.
    [23] Richard Bonneau, Marc T. Facciotti, David J. Reiss, Amy K. Schmid, MinPan, Amardeep Kaur, Vesteinn Thorsson, Paul Shannon, Michael H. Johnson,J. Christopher Bare, et al. A predictive model for transcriptional control of phys-iology in a free living cell. Cell,131(7):1354–1365,2007.
    [24] F.J. Ayala. One hundred fifty years without Darwin are enough! Genome re-search,19(5):693,2009.
    [25] K. Kaneko. Life: an introduction to complex systems biology. Springer Heidel-berg, Germany:,2006.
    [1]吴文俊.数学机械化.科学出版社,2003.
    [2]郭树春.《九章算术》译注.上海古籍出版社,2009.
    [3] Donald E. Knuth. The Art of Computer Programming, Vol.1,3rd Edition, Fun-damental Algorithms. Addison-Wesley, MA,1997.
    [4] Yiannis N. Moschovakis. What is an algorithm. In W. Engquist, B.; Schmid,editor, Mathematics unlimited–2001and beyond, pages919–936. Springer,2001.
    [5] Giorgi Japaridze. In the beginning was game semantics? In Games: UnifyingLogic, Language, and Philosophy, pages249–350. Springer,2009.
    [6]郭书春.关于中国传统数学的“术”. In李文林等, editor,数学与数学机械化, pages441–456.山东教育出版社,2001.
    [7] Alan M. Turing. On computable numbers, with an application to the entschei-dungsproblem. Proceedings of the London mathematical society,42(2):230–265,1936.
    [8] Alan M. Turing. Computing machinery and intelligence. Mind,59(236):433–460,1950.
    [9] Hilary Putnam. Minds and machines. In S. Hook., editor, Dimensions of mind,pages148–180. New York University Press,1960.
    [10] Hilary Putnam. Brains and behavior. Readings in philosophical psychology,1:24–36,1980.
    [11] Konrad Zuse. Rechnender raum. Vieweg,1969.
    [12] Konrad Zuse. Calculating space. Massachusetts Institute of Technology, ProjectMAC,1970.
    [13] David Deutsch. Quantum theory, the church-turing principle and the universalquantum computer. Proceedings of the Royal Society of London. A. Mathemati-cal and Physical Sciences,400(1818):97–117,1985.
    [14] John Archibald Wheeler. It from bit,1994.
    [15] John A. Wheeler. Information, physics, quantum: The search for links. In W.Zurek, editor, Complexity, Entropy, and the Physics of Information. Addison-Wesley, Redwood City, CA,1990.
    [16] Stephen Wolfram. A new kind of science, volume5. Wolfram media Champaign,2002.
    [17] A.M. Turing. The chemical basis of morphogenesis. Philosophical Transactionsof the Royal Society of London. Series B, Biological Sciences,237(641):37,1952.
    [18] P.K. Maini. The impact of Turing’s work on pattern formation in biology. Math-ematics Today,40(4):140–141,2004.
    [19] John von Neumann, Arthur Walter Burks, et al. Theory of self-reproducing au-tomata. University of Illinois press Urbana,1966.
    [20] Robert A. Freitas and Ralph Charles Merkle. Kinematic self-replicating ma-chines. Landes Bioscience/Eurekah. com,2004.
    [21] Martin Gardner. Mathematical games: The fantastic combinations of john con-way’s new solitaire game“life”. Scientific American,223(4):120–123,1970.
    [22] John H. Conway, Richard K. Guy, and R. Berkelamp Elwyn. Winning ways, foryour mathematical plays,1982.
    [23] Stanislaw M. Ulam. A collection of mathematical problems, volume8. Inter-science Publishers New York,1960.
    [24] S.M. Ulam. Adventures of a mathematician. Scribner, New York,1976.
    [25] John von Neumann and Oskar Morgenstern. Theory of Gamesand EconomicBehavior. Princeton University Press,1944.
    [26] Christopher G. Langton. Artificial life: An overview. The MIT Press,1997.
    [27] H. Kitano. Computational systems biology. Nature,420(6912):206–210,2002.
    [28] Matthias Scheutz. Computationalism: New Directions. The MIT Press,2002.
    [29]郦全民.用计算的观点看世界.中山大学出版社,2009.
    [30]李建会.走向计算主义:数字时代人工创造生命的哲学.中国书籍出版社,2004.
    [31]张江李建会.数字创世纪:人工生命的新科学.北京:科学出版社,2006.
    [32] Michael Huerta, Gregory Downing, Florence Haseltine, Belinda Seto, and YuanLiu. Nih working definition of bioinformatics and computational biology. USNational Institute of Health,2000.
    [33] Sebastian Bassi, Virginia Gonza′lez, and Gustavo Parisi. Computational biologyin argentina. PLoS computational biology,3(12):e257,2007.
    [34] Christopher Surridge. Computational biology. Nature: International weeklyjournal of science,420(6912):205,2002.
    [35]徐书华,金力.计算生物学.科学(上海),61(4),2009.
    [36] Richard Bonneau, Marc T. Facciotti, David J. Reiss, Amy K. Schmid, MinPan, Amardeep Kaur, Vesteinn Thorsson, Paul Shannon, Michael H. Johnson,J. Christopher Bare, et al. A predictive model for transcriptional control of phys-iology in a free living cell. Cell,131(7):1354–1365,2007.
    [37] J. Kupiec. A probabilist theory for cell differentiation, embryonic mortality anddna c-value paradox. Specul. Sci. Technol,6:471–478,1983.
    [38] Jean-Jacques Kupiec. A darwinian theory for the origin of cellular differentia-tion. Molecular and General Genetics MGG,255(2):201–208,1997.
    [39] Jean-Pierre Issa. Epigenetic variation and cellular darwinism. Nature Genetics,43(8):724–726,2011.
    [40] Andre Ribeiro, Rui Zhu, and Stuart A. Kauffman. A general modeling strategyfor gene regulatory networks with stochastic dynamics. Journal of Computa-tional Biology,13(9):1630–1639,2006.
    [41] P.C.H. Ma and K.C.C. Chan. Inference of Gene Regulatory Networks from TimeSeries Expression Data: A Data Mining Approach. In Sixth IEEE InternationalConference on Data Mining Workshops,2006. ICDM Workshops2006, pages109–113,2006.
    [42] A. Rao, A.O. Hero III, J. David, and J.D. Engel. Inferring time-varying networktopologies from gene expression data. EURASIP Journal on Bioinformatics andSystems Biology,2007,2007.
    [43] X. Li, S. Rao, W. Jiang, C. Li, Y. Xiao, Z. Guo, Q. Zhang, L. Wang, L. Du, J.Li, et al. Discovery of time-delayed gene regulatory networks based on temporalgene expression profiling. BMC bioinformatics,7(1):26,2006.
    [44] N.M. Luscombe, M.M. Babu, H. Yu, M. Snyder, S.A. Teichmann, and M. Ger-stein. Genomic analysis of regulatory network dynamics reveals large topologicalchanges. Nature,431(7006):308–312,2004.
    [45] S. Zhang, G. Jin, X.S. Zhang, and L. Chen. Discovering functions and re-vealing mechanisms at molecular level from biological networks. Proteomics,7(16):2856–2869,2007.
    [46] T. Zhou, L. Chen, and K. Aihara. Molecular communication through stochasticsynchronization induced by extracellular fluctuations. Physical review letters,95(17):178103,2005.
    [47] S. Kleinberg, K. Casey, and B. Mishra. Systems biology via redescription andontologies: untangling the malaria parasite life cycle. In Proceedings of theLSMS-07: International Conference on Life System Modeling and Simulation,Shanghai, China,14-17September2007. Shanghai University(China), Queen’sUniversity Belfast(UK), Life System Modeling and Simulation Special InterestCommittee of CASS(China),2007.
    [48] P.T. Spellman, G. Sherlock, M.Q. Zhang, V.R. Iyer, K. Anders, M.B. Eisen, P.O.Brown, D. Botstein, and B. Futcher. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridiza-tion. Molecular biology of the cell,9(12):3273,1998.
    [49] S. Tadepalli, N. Ramakrishnan, L.T. Watson, B. Mishra, and R.F. Helm. Simulta-neously segmenting multiple gene expression time courses by analyzing clusterdynamics. In Proceedings of the6th Asia-Pacific Bioinformatics Conference:Kyoto, Japan,14-17January2008, page297. Imperial College Pr,2008.
    [50] S. Aburatani, S. Saito, H. Toh, and K. Horimoto. A graphical chain model forinferring regulatory system networks from gene expression profiles. StatisticalMethodology,3(1):17–28,2006.
    [51] S. Tadepalli, N. Ramakrishnan, L.T. Watson, B. Mishra, and R.F. Helm. Simulta-neously segmenting multiple gene expression time courses by analyzing clusterdynamics. Journal of Bioinformatics and Computational Biology,7(2):339–356,2009.
    [52] Shigeru Saito and Katsuhisa Horimoto. Co-expressed gene assessment basedon the path consistency algorithm: operon detention in escherichia coli. In Sys-tems, Man and Cybernetics,2009. SMC2009. IEEE International Conferenceon, pages4280–4286. IEEE,2009.
    [53] Xiujun Zhang, Xing-Ming Zhao, Kun He, Le Lu, Yongwei Cao, Jingdong Liu,Jin-Kao Hao, Zhi-Ping Liu, and Luonan Chen. Inferring gene regulatory net-works from gene expression data by path consistency algorithm based on condi-tional mutual information. Bioinformatics,28(1):98–104,2012.
    [54] Z.Y. Zhang, K. Horimoto, and Z. Liu. Time Series Segmentation for Gene Regu-latory Process with Time-Window-Extension. In The Second International Sym-posium on Optimization and Systems Biology (OSB’08): Lijiang, China,31Oc-tober2008, pages198–203. Chinese Academy of Sciences, Shanghai University,University of Tokyo,2008.
    [55] Sara C. Madeira and Arlindo L. Oliveira. Biclustering algorithms for biologicaldata analysis: a survey. Computational Biology and Bioinformatics, IEEE/ACMTransactions on,1(1):24–45,2004.
    [1] Sara C. Madeira and Arlindo L. Oliveira. Biclustering algorithms for biologicaldata analysis: a survey. Computational Biology and Bioinformatics, IEEE/ACMTransactions on,1(1):24–45,2004.
    [2] Z.Y. Zhang, K. Horimoto, and Z. Liu. Time Series Segmentation for Gene Regu-latory Process with Time-Window-Extension. In The Second International Sym-posium on Optimization and Systems Biology (OSB’08): Lijiang, China,31Oc-tober2008, pages198–203. Chinese Academy of Sciences, Shanghai University,University of Tokyo,2008.
    [3] D.D. Lee and H.S. Seung. Algorithms for non-negative matrix factorization.Advances in neural information processing systems,13,2001.
    [4] J.P. Brunet, P. Tamayo, T.R. Golub, and J.P. Mesirov. Metagenes and molec-ular pattern discovery using matrix factorization. Proceedings of the NationalAcademy of Sciences of the United States of America,101(12):4164,2004.
    [5] Y. Gong and W. Xu. Machine learning for multimedia content analysis. Springer-Verlag New York Inc,2007.
    [6] S. Tadepalli, N. Ramakrishnan, L.T. Watson, B. Mishra, and R.F. Helm. Simulta-neously segmenting multiple gene expression time courses by analyzing clusterdynamics. In Proceedings of the6th Asia-Pacific Bioinformatics Conference:Kyoto, Japan,14-17January2008, page297. Imperial College Pr,2008.
    [7] N. Perra, V. Zlatic, A. Chessa, C. Conti, D. Donato, and G. Caldarelli.Schro¨edinger-like PageRank equation and localization in the WWW. Arxivpreprint arXiv:0807.4325,2008.
    [8] Boris G. Mirkin. Mathematical classification and clustering, volume11. KluwerAcademic Pub,1996.
    [9] John A. Hartigan. Direct clustering of a data matrix. Journal of the americanstatistical association,67(337):123–129,1972.
    [10] Yizong Cheng and George M. Church. Biclustering of expression data. In Pro-ceedings of the eighth international conference on intelligent systems for molec-ular biology, volume8, pages93–103,2000.
    [11] Rene′Peeters. The maximum edge biclique problem is np-complete. DiscreteApplied Mathematics,131(3):651–654,2003.
    [12] Sara C. Madeira and Arlindo L. Oliveira. A linear time biclustering algorithm fortime series gene expression data. In Algorithms in Bioinformatics, pages39–52.Springer,2005.
    [13] Peter Weiner. Linear pattern matching algorithms. In Switching and AutomataTheory,1973. SWAT’08. IEEE Conference Record of14th Annual Symposiumon, pages1–11. IEEE,1973.
    [14] Edward M. McCreight. A space-economical suffix tree construction algorithm.Journal of the ACM (JACM),23(2):262–272,1976.
    [15] Esko Ukkonen. On-line construction of suffix trees. Algorithmica,14(3):249–260,1995.
    [16] Martin Farach. Optimal suffix tree construction with large alphabets. In Foun-dations of Computer Science,1997. Proceedings.,38th Annual Symposium on,pages137–143. IEEE,1997.
    [17] Qizheng Sheng, Yves Moreau, and Bart de Moor. Biclustering microarray databy gibbs sampling. Bioinformatics,19(suppl2):ii196–ii205,2003.
    [18] T.M. Murali and Simon Kasif. Extracting conserved gene expression motifs fromgene expression data. In Proc. Pacific Symp. Biocomputing, volume3, pages77–88,2003.
    [19] Sara C. Madeira and Arlindo L. Oliveira. A polynomial time biclustering algo-rithm for finding approximate expression patterns in gene expression time series.Algorithms for Molecular Biology,4(1):8,2009.
    [20] Costas S. Iliopoulos, Christos Makris, Yannis Panagis, Katerina Perdikuri, Evan-gelos Theodoridis, and Athanasios Tsakalidis. Computing the repetitions in aweighted sequence using weighted suffix trees. In Proc. of the European Con-ference On Computational Biology,(ECCB2003), pages539–540,2003.
    [21] Laurent Marsan and Marie-France Sagot. Extracting structured motifs using asuffix tree―algorithms and application to promoter consensus identification.In Proceedings of the fourth annual international conference on Computationalmolecular biology, pages210–219. ACM,2000.
    [22] Dana Ron, Yoram Singer, and Naftali Tishby. The power of amnesia: Learningprobabilistic automata with variable memory length. Machine learning,25(2-3):117–149,1996.
    [23] Costas S. Iliopoulos, Christos Makris, Yannis Panagis, Katerina Perdikuri, Evan-gelos Theodoridis, and Athanasios Tsakalidis. Efficient algorithms for handlingmolecular weighted sequences. In Exploring New Frontiers of Theoretical Infor-matics, pages265–278. Springer,2004.
    [24] Costas S. Iliopoulos, Christos Makris, Yannis Panagis, Katerina Perdikuri, Evan-gelos Theodoridis, and Athanasios Tsakalidis. The weighted suffix tree: Anefficient data structure for handling molecular weighted sequences and its appli-cations. Fundamenta Informaticae,71(2):259–277,2006.
    [25] Costas S. Iliopoulos, Katerina Perdikuri, Evangelos Theodoridis, AthanasiosTsakalidis, and Kostas Tsichlas. Motif extraction from weighted sequences. InString Processing and Information Retrieval, pages286–297. Springer,2004.
    [26] Marie-France Sagot. Spelling approximate repeated or common motifs usinga suffix tree. In LATIN’98: Theoretical Informatics, pages374–390. Springer,1998.
    [27] Nadia Pisanti, Alexandra M Carvalho, Laurent Marsan, and Marie-France Sagot.Risotto: Fast extraction of motifs with mismatches. In LATIN2006: TheoreticalInformatics, pages757–768. Springer,2006.
    [1] Ernst Mayr. The Growth of Biological Thought: Diversity, Evolution, and Inher-itance. Belknap Press of Harvard University Press,1982.
    [2] T. Dobzhansky. Nothing in biology makes sense except in the light of evolution.The American Biology Teacher,35(3):125–129,1973.
    [3] Richard Dawkins. The selfish gene. Number199. OUP Oxford,2006.
    [4] Jonathan Wynne-Jones. Charles darwin to receive apology from the church ofengland for rejecting evolution. The London Telegraph. Posted on www. tele-graph. co. uk September,14,2008.
    [5] Carl R. Woese. On the evolution of cells. Proceedings of the National Academyof Sciences,99(13):8742–8747,2002.
    [6] Samuel Butler. Darwin among the machines. June,13(1863):205,1863.
    [7] Abraham Pais. Inward Bound: of Matter and Forces in the Physical World.Oxford University Press, NY.
    [8] Erwin Schro¨dinger. What is life?: With mind and matter and autobiographicalsketches. Cambridge University Press,1992.
    [9] Ilya Prigogine. From being to becoming: time and complexity in the physicalsciences. Freeman&Co., San Francisco,1980.
    [10] Ilya Prigogine and Isabelle Stengers. Order out of chaos: Man’s new dialoguewith nature.1985.
    [11] Edward Wilson. Sociobiology: The New Synthesis. Cambridge: Harvard,1975.
    [12] Ervin Laszlo. Evolution: The Grand Synthesis. Shambala, New Library, Boston,Massachusetts,1987.
    [13] Ervin Laszlo. Evolution: The general theory. Hampton Press Cresskill, NJ,1996.
    [14] Herbert Alexander Simon. The sciences of the artificial. MIT press,1996.
    [15] Gerald M. Edelman. Neural Darwinism: The theory of neuronal group selection.Basic Books New York,1987.
    [16] William H. Calvin. The brain as a darwin machine. Nature,330:33–34,1987.
    [17] Gary Cziko. Without miracles: Universal selection theory and the second Dar-winian revolution. The MIT Press,1997.
    [18] F.J. Ayala. One hundred fifty years without Darwin are enough! Genome re-search,19(5):693,2009.
    [19] A.T. Winfree. Biological rhythms and the behavior of populations of coupledoscillators. Journal of theoretical biology,16(1):15–42,1967.
    [20] T. Pavlidis. Biological oscillators: their mathematical analysis. Academic pressNew York,1973.
    [21] T. Pavlidis. Spatial and temporal organization of populations of interacting oscil-lators. The Molecular Basis of Circadian Rhythms. Berlin, Dahlem Konferenzen,1976.
    [22] R. Wever. A mathematical model for circadian rhythms. Circadian clocks: pro-ceedings, pages47–63,1965.
    [23] R.E. Kronauer, C.A. Czeisler, S.F. Pilato, M.C. Moore-Ede, and E.D. Weitzman.Mathematical model of the human circadian system with two interacting oscilla-tors. American Journal of Physiology-Regulatory, Integrative and ComparativePhysiology,242(1):3–17,1982.
    [24] M.E. Jewett and R.E. Kronauer. Refinement of Limit Cycle Oscillator Model ofthe Effects of Light on the Human Circadian Pacemaker. Journal of theoreticalbiology,192(4):455–465,1998.
    [25] A. Goldbeter. A model for circadian oscillations in the Drosophila period protein(PER). Proceedings: Biological Sciences,261(1362):319–324,1995.
    [26] J.C. Leloup and A. Goldbeter. Modeling the molecular regulatory mechanism ofcircadian rhythms in Drosophila. Bioessays,22(1):84–93,2000.
    [27] S. Daan. Tonic and phasic effects of light in the entrainment of circadian rhythms.New York Academy Sciences Annals,290:51–59,1977.
    [28] R.Y. Moore and V.B. Eichler. Loss of a circadian adrenal corticosterone rhythmfollowing suprachiasmatic lesions in the rat. Brain Research,42(1):201–206,1972.
    [29] F.K. Stephan and I. Zucker. Circadian rhythms in drinking behavior and loco-motor activity of rats are eliminated by hypothalamic lesions. Proceedings ofthe National Academy of Sciences of the United States of America,69(6):1583,1972.
    [30] M.R. Ralph, R.G. Foster, F.C. Davis, and M. Menaker. Transplanted suprachias-matic nucleus determines circadian period. Science,247(4945):975–978,1990.
    [31] J.H. Meijer and W.J. Rietveld. Neurophysiology of the suprachiasmatic circadianpacemaker in rodents. Physiological Reviews,69(3):671,1989.
    [32] S.M. Reppert and D.R. Weaver. MOLECULAR ANALYSIS OF MAMMALIANCIRCADIAN RHYTHMS. Annual Review of Physiology,63(1):647–676,2001.
    [33] R.Y. Moore. Entrainment pathways and the functional organization of the circa-dian system. Progress in brain research,111:103,1996.
    [34] R. Silver, M.T. Romero, H.R. Besmer, R. Leak, J.M. Nunez, and J. LeSauter.Calbindin-D28K cells in the hamster SCN express light-induced Fos. Neurore-port,7(6):1224,1996.
    [35] R.Y. Moore and R. Silver. Suprachiasmatic nucleus organization. CHRONOBI-OLOGY INTERNATIONAL,15(5):475–487,1998.
    [36] R.Y. Moore, J.C. Speh, and R.K. Leak. Suprachiasmatic nucleus organization.Cell and tissue research,309(1):89–98,2002.
    [37] J. LeSauter and R. Silver. Localization of a suprachiasmatic nucleus subregionregulating locomotor rhythmicity. Journal of Neuroscience,19(13):5574,1999.
    [38] D.N. Bryant, J. LeSauter, R. Silver, and M.T. Romero. Retinal innervation ofcalbindin-D28K cells in the hamster suprachiasmatic nucleus: ultrastructuralcharacterization. Journal of biological rhythms,15(2):103,2000.
    [39] T. Hamada, J. LeSauter, J.M. Venuti, and R. Silver. Expression of Period genes:rhythmic and nonrhythmic compartments of the suprachiasmatic nucleus pace-maker. Journal of Neuroscience,21(19):7742,2001.
    [40] E.E. Jobst and C.N. Allen. Calbindin neurons in the hamster suprachiasmaticnucleus do not exhibit a circadian variation in spontaneous firing rate. EuropeanJournal of Neuroscience,16(12):2469–2474,2002.
    [41] M.C. Antle, N.C. Foley, D.K. Foley, and R. Silver. Gates and oscillators II: Zeit-gebers and the network model of the brain clock. Journal of Biological Rhythms,22(1):14,2007.
    [1] Bora Zivkovic. Circadian quackery. Website,2008.
    [2] Se′bastien Clodong, Ulf Du¨hring, Luiza Kronk, Annegret Wilde, Ilka Axmann,Hanspeter Herzel, and Markus Kollmann. Functioning and robustness of a bac-terial circadian clock. Molecular systems biology,3(1),2007.
    [3] Alexandra Pokhilko, Aurora Pin as Ferna′ndez, Kieron D. Edwards, Megan M.Southern, Karen J. Halliday, and Andrew J. Millar. The clock gene circuit inarabidopsis includes a repressilator with additional feedback loops. Molecularsystems biology,8:574,2012.
    [4] Nam P. Suh. Complexity: theory and applications. Oxford University Press onDemand,2005.
    [5] Nancy A. Eckardt. Temperature entrainment of the arabidopsis circadian clock.The Plant Cell Online,17(3):645–647,2005.
    [6] A. Moorwood, J.G. Cuby, P. Biereichel, J. Brynnel, B. Delabre, N. Devillard, A.Van Dijsseldonk, G. Finger, H. Gemperlein, R. Gilmozzi, et al. Isaac sees firstlight at the vlt. The Messenger,94(7),1998.
    [7] A. Goldbeter. A model for circadian oscillations in the Drosophila period protein(PER). Proceedings: Biological Sciences,261(1362):319–324,1995.
    [8] J. de Mairan. Observation botanique. Histoire de l’Acade′mie Royale des Sci-ences(Paris), pages35–36,1729.
    [9] D.E. Somers. The physiology and molecular bases of the plant circadian clock.Plant physiology,121(1):9–20,1999.
    [10] A.P. de Candolle. Physiologie ve′ege′tale. Histoire de l’Acade′mie Royale desSciences(Bechet Jeune,Paris),1832.
    [11] F.K. Stephan and I. Zucker. Circadian rhythms in drinking behavior and loco-motor activity of rats are eliminated by hypothalamic lesions. Proceedings ofthe National Academy of Sciences of the United States of America,69(6):1583,1972.
    [12] J. Aschoff. The phase-angle difference in circadian periodicity. Circadian clocks,pages262–276,1965.
    [13] J.F. Gillooly, J.H. Brown, G.B. West, V.M. Savage, and E.L. Charnov. Effects ofsize and temperature on metabolic rate. Science,293(5538):2248,2001.
    [14] D.E. Somers, A.A. Webb, M. Pearson, and S.A. Kay. The short-period mutant,toc1-1, alters circadian clock regulation of multiple outputs throughout develop-ment in arabidopsis thaliana. Development,125(3):485–494,1998.
    [15] R.Y. Moore. Entrainment pathways and the functional organization of the circa-dian system. Progress in brain research,111:103,1996.
    [16] R. Silver, M.T. Romero, H.R. Besmer, R. Leak, J.M. Nunez, and J. LeSauter.Calbindin-D28K cells in the hamster SCN express light-induced Fos. Neurore-port,7(6):1224,1996.
    [17] R.Y. Moore and R. Silver. Suprachiasmatic nucleus organization. CHRONOBI-OLOGY INTERNATIONAL,15(5):475–487,1998.
    [18] R.Y. Moore, J.C. Speh, and R.K. Leak. Suprachiasmatic nucleus organization.Cell and tissue research,309(1):89–98,2002.
    [19] J. LeSauter and R. Silver. Localization of a suprachiasmatic nucleus subregionregulating locomotor rhythmicity. Journal of Neuroscience,19(13):5574,1999.
    [20] D.N. Bryant, J. LeSauter, R. Silver, and M.T. Romero. Retinal innervation ofcalbindin-D28K cells in the hamster suprachiasmatic nucleus: ultrastructuralcharacterization. Journal of biological rhythms,15(2):103,2000.
    [21] T. Hamada, J. LeSauter, J.M. Venuti, and R. Silver. Expression of Period genes:rhythmic and nonrhythmic compartments of the suprachiasmatic nucleus pace-maker. Journal of Neuroscience,21(19):7742,2001.
    [22] E.E. Jobst and C.N. Allen. Calbindin neurons in the hamster suprachiasmaticnucleus do not exhibit a circadian variation in spontaneous firing rate. EuropeanJournal of Neuroscience,16(12):2469–2474,2002.
    [23] Fred C. Davis and Roger A. Gorski. Development of hamster circadian rhythms:role of the maternal suprachiasmatic nucleus. Journal of Comparative Physiol-ogy A,162(5):601–610,1988.
    [24] M.E. Harrington, T. Rahmani, and C. Allison Lee. Effects of damage to scnneurons and efferent pathways on circadian activity rhythms of hamsters. Brainresearch bulletin,30(5):655–669,1993.
    [25] Benjamin Rusak. The role of the suprachiasmatic nuclei in the generation ofcircadian rhythms in the golden hamster, mesocricetus auratus. Journal of com-parative physiology,118(2):145–164,1977.
    [26] J.E. Quintero, S.J. Kuhlman, and D.G. McMahon. The biological clock nucleus:a multiphasic oscillator network regulated by light. Journal of Neuroscience,23(22):8070,2003.
    [27] S. Yamaguchi, H. Isejima, T. Matsuo, R. Okura, K. Yagita, M. Kobayashi, andH. Okamura. Synchronization of cellular clocks in the suprachiasmatic nucleus.Science,302(5649):1408,2003.
    [28] T. Hamada, M.C. Antle, and R. Silver. Temporal and spatial expression pat-terns of canonical clock genes and clock-controlled genes in the suprachiasmaticnucleus. European Journal of Neuroscience,19(7):1741–1748,2004.
    [29] M.C. Antle, D.K. Foley, N.C. Foley, and R. Silver. Gates and oscillators: anetwork model of the brain clock. Journal of biological rhythms,18(4):339,2003.
    [30] M.C. Antle, N.C. Foley, D.K. Foley, and R. Silver. Gates and oscillators II: Zeit-gebers and the network model of the brain clock. Journal of Biological Rhythms,22(1):14,2007.
    [31] H. Salecker and Eugene P. Wigner. Quantum limitations of the measurement ofspace-time distances. Physical Review,109(2):571,1958.
    [32] Ronald J. Konopka, Colin Pittendrigh, and Dominic Orr. Reciprocal behaviourassociated with altered homeostasis and photosensitivity of drosophila clock mu-tants. Journal of neurogenetics,6(1):1–10,1989.
    [33] I.Z. Kiss, C.G. Rusin, H. Kori, and J.L. Hudson. Engineering complex dynamicalstructures: Sequential patterns and desynchronization. Science,316(5833):1886,2007.
    [34] W.L. Kath and J.M. Ottino. Rhythm engineering. Science,316(5833):1857–1858,2007.
    [35] H. Kori, C.G. Rusin, I.Z. Kiss, and J.L. Hudson. Synchronization engineering:Theoretical framework and application to dynamical clustering. Chaos: An In-terdisciplinary Journal of Nonlinear Science,18:026111,2008.
    [36] N. Barkai and S. Leibler. Biological rhythms: Circadian clocks limited by noise.Nature,403(6767):267–268,2000.
    [37] S.M. Reppert and D.R. Weaver. MOLECULAR ANALYSIS OF MAMMALIANCIRCADIAN RHYTHMS. Annual Review of Physiology,63(1):647–676,2001.
    [38] J.H. Meijer and W.J. Rietveld. Neurophysiology of the suprachiasmatic circadianpacemaker in rodents. Physiological Reviews,69(3):671,1989.
    [39] D.B. Forger and R.E. Kronauer. Reconciling mathematical models of biologi-cal clocks by averaging on approximate manifolds. SIAM Journal on AppliedMathematics,62(4):1281–1296,2002.
    [40] A.T. Winfree. Biological rhythms and the behavior of populations of coupledoscillators. Journal of theoretical biology,16(1):15–42,1967.
    [41] Frank C. Hoppensteadt and Eugene M. Izhikevich. Weakly connected neuralnetworks, volume126. Springer-Verlag New York Incorporated,1997.
    [42] Yoshiki Kuramoto. Chemical oscillations, waves, and turbulence. Courier DoverPublications,2003.
    [43] Noam Nisan, Tim Roughgarden, Eva Tardos, and Vijay V Vazirani. Algorithmicgame theory. Cambridge University Press,2007.
    [44] Noam Nisan and Amir Ronen. Algorithmic mechanism design. In Proceedingsof the thirty-first annual ACM symposium on Theory of computing, pages129–140. ACM,1999.
    [45] Herbert A. Simon. Theories of bounded rationality. Decision and organization,1:161–176,1972.
    [46] Allan Gibbard. Manipulation of voting schemes: a general result. Econometrica:Journal of the Econometric Society, pages587–601,1973.
    [47] Bengt Robert Holmstro¨m. On incentives and control in organizations. StanfordUniversity,1977.
    [48] Partha Dasgupta, Peter Hammond, and Eric Maskin. The implementation ofsocial choice rules: Some general results on incentive compatibility. The Reviewof Economic Studies,46(2):185–216,1979.
    [49] Roger B. Myerson. Incentive compatibility and the bargaining problem. Econo-metrica: journal of the Econometric Society, pages61–73,1979.
    [50] Robert Gibbons. Game theory for applied economists. Princeton UniversityPress,1992.
    [51] Mas Collel, Michael Whinston Andreu, and Jerry Green. Microeconomic theory,1995.
    [52] William Vickrey. Counterspeculation, auctions, and competitive sealed tenders.The Journal of finance,16(1):8–37,1961.
    [53] Theodore Groves. Incentives in teams. Econometrica: Journal of the Economet-ric Society, pages617–631,1973.
    [54] Edward H. Clarke. Multipart pricing of public goods. Public choice,11(1):17–33,1971.
    [55] Michael H. Rothkopf. Thirteen reasons why the vickrey-clarke-groves process isnot practical. Operations Research,55(2):191–197,2007.
    [56] Jerry Green and Jean-Jacques Laffont. Characterization of satisfactory mecha-nisms for the revelation of preferences for public goods. Econometrica: Journalof the Econometric Society, pages427–438,1977.
    [57] Kevin Roberts. The characterization of implementable choice rules. Aggregationand revelation of preferences,12(2):321–348,1979.
    [58] Colin S. Pittendrigh. Temporal organization: reflections of a darwinian clock-watcher. Annual Review of Physiology,55(1):17–54,1993.
    [59] William H. Calvin. How brains think: Evolving intelligence, then and now. BasicBooks (AZ),1996.
    [60] Gerald M. Edelman. Neural Darwinism: The theory of neuronal group selection.Basic Books New York,1987.
    [61] Oliver G. Selfridge. Pandemonium: a paradigm for learning in mechanisation ofthought processes.1958.
    [62] John von Neumann. Probabilistic logics and the synthesis of reliable organismsfrom unreliable components. Automata studies,34:43–98,1956.
    [63] I.G. Malkin. Methods of Poincare and Liapunov in theory of non-linear oscilla-tions. Gostexizdat, Moscow,1949.
    [64] I.G. Malkin. Some problems in nonlinear oscillation theory. Gostexizdat,Moscow,1956.
    [65] H. Kitano. Systems biology: a brief overview. Science,295(5560):1662,2002.
    [66] J.W.S. Pringle. On the parallel between learning and evolution. Behaviour,3:174–215,1951.
    [67] Tsutomu Takeuchi, Takamichi Hinohara, Gen Kurosawa, and Kenko Uchida. Atemperature-compensated model for circadian rhythms that can be entrained bytemperature cycles. Journal of theoretical biology,246(1):195–204,2007.
    [68] Charna Dibner, Ueli Schibler, and Urs Albrecht. The mammalian circadian tim-ing system: organization and coordination of central and peripheral clocks. An-nual review of physiology,72:517–549,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700