铜互联工艺的氮化钽扩散阻挡层研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着集成电路工艺的发展,铜替代铝成为新一代的互连材料。为了防止铜扩散进硅器件中引起器件性能受损以及提高铜与硅、二氧化硅的粘附性,必须在铜互连线外包裹一层扩散阻挡层。
     氮化钽具有电阻率低、熔点高、晶格和晶界扩散的激活能高、界面稳定等一系列优异的性能,是当前制备扩散阻挡层的首选材料。因此对氮化钽薄膜的工艺方法、阻挡效果、失效机制等方面的研究对于提高集成电路的互连可靠性起到十分重要的作用。
     本文采用反应磁控溅射方法在硅衬底上制备氮化钽薄膜、钽薄膜、铜籽晶层,利用掠入射X射线衍射(GIXRD)、原子力显微镜(AFM)、Van derPauw四电极法和表面轮廓仪研究了不同溅射工艺对氮化钽薄膜结构形貌的影响规律以及氮化钽阻挡层在不同温度环境下阻挡性能,并研究了所制备阻挡层的失效机制。
     通过试验研究,本文得到主要结果如下:
     本文所制备的氮化钽薄膜均为面心立方结构;晶体结构随工艺参数的改变发生变化,衍射峰峰强随溅射功率和衬底温度的增加而增强,氮气分压的增加使择优取向向(111)晶面偏移;氮化钽薄膜的表面形貌与溅射功率和氮气分压密切相关,与衬底温度的关系不大,其粗糙度随溅射功率的增加而增大,随氮气分压的增加而减小;氮化钽薄膜的方块电阻随溅射功率的增加逐渐减小,随氮气分压的增加逐渐增大,温度对方块电阻的影响不大;溅射功率和衬底温度的增加均会使薄膜的沉积速率增加,而氮气分压增加时,沉积速率不升反降;对Cu/barrier/Si互联体系真空热处理,钽阻挡层在600℃时失效,Ta-Si界面发生反应形成TaSi2,此温度下氮化钽阻挡层衍射峰的强度有所增强但没有新相产生,依然具有良好的扩散阻挡特性。
     通过选取适当的工艺参数,本文成功制备出具有高温阻挡性能的氮化钽薄膜,且所制备的氮化钽薄膜具有良好的表面形貌和电学性能,满足其作为扩散阻挡层的性能要求。
With the development of integrated circuits (ICs), metal copper has been areplacement for metal aluminum in high density IC manufacture. But Cu is quitemobile in Si and has poor adhesion to Si or SiO2, which could degrade theperformance of copper interconnect. Therefore, a diffusion barrier layer betweencopper interconnect and Si device is necessary.
     Tantalum nitride has a series of outstanding properties, such as low resistivity,high melting point, high activation energy of lattice and grain boundary diffusion,and excellent chemical stability, stable interface, which is the optimal choice ofdiffusion barrier materials. So it is very important for the reliability of copperinterconnect to conduct research on the deposition technology, the stability ofbarrier layer and the failure mechanism.
     In this paper, Tantalum nitride films, Tantalum films, Cu seed layers have beenprepared by reactive magnetron sputtering on Si substrates, and their structure andelectrical properties have been characterized using grazing incidence X-raydiffraction (GIXRD), atomic force microscopy (AFM), Van der Pauw four-probemethod and surface profilometer. The effect of deposition process on structure andsurface morphology of Tantalum nitride films, the diffusion barrier property indifferent high temperature conditions as well as failure mechanism of Cu/barrier/Sifilms were studied.
     The work can be summarized as follows:
     The crystal structure of TaN films which were prepared in this paper is f.c.c.and the crystal structure changed with the different processing parameters. theintensity of diffraction peaks became higher when sputtering power and substratetemperature increased, and (111) orientation became dominant with the nitrogenpartial pressure increased; The surface morphology of Tantalum nitride films had aclose relationship with sputtering power and partial pressure of nitrogen, which it isalmost no influenced by the substrate temperature. From the date, we found that theroughness of films increased with an increase of sputtering power and reduces ofnitrogen differential pressure; TaN films’sheet resistance reduced with an increaseof sputtering power ,but sheet resistance increased when partial pressure of nitrogenincrease, at the same time, temperature had little effect on the sheet resistance; The deposition rate decreased with an increase of nitrogen partial pressure whileincreased with increases of sputtering power and substrate temperature. Thenvacuum thermal annealing was performed on Cu/barrier/Si interconnection systems.At 600℃, Ta barrier failed because the formation of TaSi2 that resulted frominterface reaction at Ta/Si. But under the same temperature, there was no phaseformed in TaN barriers while the intensity of diffraction peaks became higher, andthe diffusion barrier property of TaN films still good.
     TaN films with good diffusion barrier property in high temperature weresuccessfully prepared by reactive magnetron sputtering and meet the requirementsof surface morphology, electrical property for diffusion barrier layer.
引文
1宋登元,宗晓萍,孙荣霞,等.集成电路铜互连线及相关问题的研究.Semiconductor Technology, 2001, 26(2):29-32
    2杨志刚,钟声.化学镀铜在超大规模集成电路中的应用和发展.功能材料,2004,增刊(35)卷:1049-1053
    3 K.L.Ou. Integrity of copper-hafnium nitride and multilayered amorphous-likehafnium nitride metallization under various thickness. MicroelectronicEngineering, 2006, 83(2):318
    4张兆强,郑国祥,黄榕,等.铜互连布线及其镶嵌技术在深亚微米工中的应用.固体电子学研究与进展, 2001, 21(4):407-414
    5 H.C.Chung, C.P.Liu. Effect of crystallinity and preferred orientation of Ta2Nfilms on diffusion barrier properties for copper metallization. Surface andCoatings Technology, 2006, 200(10):3122-3123
    6 C.K.Hu, J. M. E. Harper. Materials Chemistry and Physics, 1998, 52:56
    7刘正.集成电路互联中钽硅氮扩散阻挡层的制备及其阻挡特性研究.中南大学硕士学位论文. 2008:5
    8 Kattelus.H.P, Marc.A.Nicolet. Diffusion phenomena in thin films andmicroelectronic materials. Materials Research Bulletin, 1989, 24(4):432-440
    9 Petra A, Mikko R, Kai A, et al. The growth and diffhsion barrier properties ofatomic layer deposited NbNx thin films. Thin Solid Films, 2005, 491(1-2):235-24110王阳元,黄如,刘晓彦.面向产业需求的世纪微电子技术的发展.物理,2004, 33(6):407-413
    11 M.A.Nicolet. Diffusion barriers in thin films. Thin Solid Films, 1978,Vol.52:415
    12 Kattelus.H.P, Marc.A.N. Diffusion Phenomena in Thin Films andMicroelectronic Materials. Materials Research Bulletin, 1989, 24 (4):517
    13 Marc.A.N. Ternary Amorphous Metallin Thin Films as Diffusion Barriers for CuMetallization. Applied Surface Science, 1995, 91(124):269- 276
    14张万荣,李志国,郭伟玲等.半导体器件欧姆接触中的扩散阻挡层.微电子学与计算机, 1998, Vol.5:53-56
    15 khin M L, Lee Y K, Li S, et al. The impact of layer thickness of IMP-depositedtantalum nitride films on integrity of Cu/TaN /Si02/Si multilayer structure.Materials Science and Engineering B, 2001, 84(3):217-224
    16 M.Vogt et al. Microelec. Eng, 1997, Vol.37/38:181
    17 Y.S.Dlamand, Journal of Electronic Materials, 2001,Vol.30,No.4:336
    18 P.J.Kelly, R.D.Arnell. Magnetron Sputtering: A Review of RecentDevelopments and Applications. Vacuum, 2000, 56,159-172
    19 P.J.Kelly, J.Hisek, Y.Zhou, R.D.Pilkington, et al. Advanced Coatings ThroughPulsed Magnetron Sputtering. Surface Engineering, 2004, 20(3):157-162
    20 K.E.Cooke, J.Hampshire, W.Southall, et al. Industrial Application of Pulsed DCBias Power Supplies in Closed Field Unbalanced Magnetron Sputter Ion Plating.Surface Engineering, 2004, 20(3):189-195
    21 E.S.Thian, J.Huang, S.M.Best, et al. Magnetron Co-Sputtered Silicon-Containing Hydroxyapatite Thin Films an in Vitro Study. Biomaterials,2005,26:2947-2956
    22 H.Biederman. RF Sputtering of Polymers and Its Potential Application. Vacuum,2000,59:594-599
    23 Guangze Tang, Xinxin Ma, Mingren Sun, et al. Mechanical characterization ofUltra-Thin Fluorocarbon Films Deposited by R.F. Magnetron Sputtering.Carbon, 2005,43:345-350
    24 Cheng H E, Lee W J, Hsu M. The effect of deposition temperature on theproperties of TiN diffusion barriers prepared by atomic layer chemical vapordeposition. Thin Solid Films, 2005, 485(1-2): 59-65
    25 Zhang Guo-hai, Xia Yang, Qian He, Gao Wen-fang, Yu Guang-hua, Long Shibing.A Novel Barrier to Copper Metallization by Implanting Nitrogen into SiO2.Chinese Journal Of Semiconductors, 2001,Vol.22,No.3:271-274
    26陈海波.新一代集成电路Cu互连用Ta基扩散阻挡层的制备及特性研究.中南大学硕士学位论文. 2007:9
    27 Elersa K E, Saanilab V, Li W M, et al. Atomic layer deposition of WXN/TiNand WNxCy/TiN nanolaminates. Thin Solid Films, 2003, 434(1-2):94-99
    28 Zeng Y, Russell S W, McKerrow A J, Chen L, Alford T L. Effectiveness of Ti,TiN, Ta, TaN, and WN as barriers for the integration of low-k dielectrichydrogen silsesquioxane.J. Vac. Sci. Technol. B., 2000, 18(1): 221-230
    29 Ezer Y, Harkbonen J, Sokolov V, Saarilahti J, Kaitila J, Kuivalainen P. Diffusionbarrier performance of thin Cr films in the Cu/Cr/Si structure. Mater. Res. Bull.1998, 33(9):1331-1337
    30 Ono H, Nakano T, Ohta T. Diffusion barrier effects of transitionmetals forCu/M/Si multilayers (M=Cr, Ti, Nb, Mo, Ta,W). Appl.Phys. Lett. 1994, 64(12):1511-1513
    31 Takeyama M, Noya A, and Fukuda T. Thermal stability of Cu/W/Si contactsystems using layers of Cu(111) and W(110) preferred orientations. J. Vac. Sci.Technol. A., 1997, 15(2):415-420
    32 Holloway K, Fryer P M. Tantalum as a diffusion barrier between copper andsilicon. Appl. Phys. Lett., 1990, 57(17): 1736-1738
    33 T.Laurila, K.Zeng, J.K.Kivilahti, J.Appl.Phys. 2000, Vol.88:3377
    34 L.Chen, N.Magtoto, B.Ekstrom, J.Kelber, Thin Solid Films. 2000, Vol.376:115
    35白宣羽,汪渊,徐可为,范多旺.集成电路的铜互连布线及其扩散阻挡层的研究进展.真空科学与技术学报, 2004, 24(1):78-94
    36田明波.薄膜技术与薄膜材料.北京:清华大学出版社. 2006:528-529
    37 T. Riekkinen, J. Molarius, T. Laurila, et al. Reactive Sputter Deposition andProperties of TaN Thin Films. Microelectron, 2002, 64: 289-297
    38许俊华,李戈扬,顾明元,等.磁控反应溅射TaN薄膜的结构和性能.功能材料, 2000, 31:306-307
    39 Deok-kee Kim, Heon-Lee, Donghwan Kim, et al. Electrical and mechanicalproperties of tantalum nitride thin films deposited by reactive sputtering.Journal of Crystal Growth, 2005, 283: 405-408
    40 Jem-Kun Chen, Chia-Hao Chan, Shiao-Wei Kuo and Feng-Chih Chang, TaNxthin films as copper barriers sputter-deposited at various NH3-to-Ar flow ratiosMicroelectronic Engineering, 2009, 86(3):414-420
    41 M.H.Tsai, S.C.Sun, C.E.Tsai, et. al. Comparison of diffusion barrier propertiesof chemical vapor deposition TaN and sputtered TaN between Cu and Si. J. Appl.Phys, 1996, 79:6932-6938
    42 Hung-Chin Chung, Chuan-Pu Liu. Effect of crystallinity and preferredorientation of Ta2N films on diffusion barrier properties for coppermetallization. Surface and Coatings Technology, 2006, 200(10):3125-3126
    43 Jung-Dae Kwon, Seong-Jun Jeong, Jae-Wook Kang, Do-Geun Kim, Jong-KukKim, Jong-Joo Rha, Kee-Seok Nam, and Se-hun Kwon. Low Temperature Two-Step Atomic Layer Deposition of Tantalum Nitride for Cu Diffusion Barrier. J.Electrochem. Soc., 2009, 156(11):832-835
    44 K.Lal, P.Ghosh, D.Biswas, et al. A low temperature study of electron transportproperties of tantalum nitride thin films prepared by ion beam assisteddeposition, Solid State Communications, 2004, 131: 479-484
    45 Erwu Niu, Li Li, Guohua Lv, Wenran Feng, Huan Chen, Songhua Fan, SizeYang and Xuanzong Yang. Synthesis and characterization of tantalum nitridefilms prepared by cathodic vacuum arc technique. Applied Surface Science,2007, 253(12):5223-5227
    46 Yi Zhao, Gang Lu. First-principles simulations of copper diffusion in tantalumand tantalum nitride, Phys. Rev. B 79, 2009
    47唐伟忠.薄膜材料制备原理技术及应用.第2版.冶金工业出版社.2005:26~82
    48 M.Yehya, P.J.Kelly. Novel Enhanced Magnetron Sputtering System. SurfaceEngineering, 2004,20(3):177-180
    49 David A.Glocker, Mark M.Romach, Vern W.Lindberg. Recent Developments inInverted Cylindrical Magnetron Sputtering. Surface and Coatings Technology,2001,146~147:457-462
    50 I.De Roeck, G.De Winter, R.Van Paemel, et al. Rotatable Magnetron Sputteringof YBa2Cu3O7-x Thin Films on Single Crystal Substrates. Physica C, 2002, 372-376:1067-1070
    51 Futamata M. A computer-controlled measurement system for electricalconductivity using the van der Pauw method at various temperatures. Measur.Sci. Technol., 1992, 3: 919-921
    52李幼真,周继承,陈海波,等.不同氮流量比制备纳米Ta-N薄膜及其性能.功能材料与器件学报, 2008, Vol.14(42):769-774
    53 Fu T, shen Y G, Zhou Z F, Li K Y. Surface morphology of sputter deposited WSi-N composite coatings characterized by atomic force microscopy. Mater. Sci.Eng. B, 2005, 123(2):158-162
    54 Ruan J L, Huang J L, Chen J S, Li D F. Effects of substrate bias on the reactivesputtered Zr-Al-N diffusion barrier films. Surf. Coat. Technol, 2005,200(5):1652-1658
    55宋双喜,刘玉章,毛大立,等.铜与硅之间W/Mo-N薄膜的扩散阻挡层性能.功能材料与器件学报, 2005, 11(2):197-201
    56 Bai P, Yang G P, Lu T M. Low-resistivity Cu thin-film deposition by self-ionbombardment.APL,1990,56:198-200
    57赵海阔,雒向东,磁控溅射Cu膜的织构与残余应力.半导体技术, 2009,34(2):150-164

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700