缺血预适应、瑞舒伐他汀和通心络减少猪急性心肌缺血再灌注后无再流及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
(一)缺血预适应减少猪心肌缺血后无再流与内源性一氧化氮有关
     【目的】:观察缺血预适应对猪缺血再灌注后无再流、心肌坏死及心肌凋亡的影响,探讨作为内皮功能标志的内源性一氧化氮(NO)在其中的作用。
     【方法】:35只中华小型猪分为假手术组、安慰剂组、一氧化氮合酶抑制剂N-硝基-左旋精氨酸(L-NNA)组、缺血预适应组、缺血预适应联合L-NNA组。开胸冠状动脉结扎1.5小时,松解3小时制备急性心肌梗死再灌注模型。术中监测动脉血压、心室压、心率及冠脉血流量,比色法测定心肌组织一氧化氮合酶(NOS)活性;用面积求积法测定心肌的缺血、坏死及无再流范围;髓过氧化物酶(MPO)法测定心肌MPO活力;病理组织染色计数中性粒细胞浸润程度;免疫印迹法测定心肌内皮型一氧化氮合酶(eNOS)、血管内皮钙粘连素(VE-cadherin)、半胱天冬酶—3(caspase-3)含;TUNEL法检测心肌细胞凋亡发生率;在电镜下观察微血管内皮损伤情况。
     【结果】:L-NNA组、缺血预适应联合L-NNA处理组各有一只动物在再灌注期间因低血压死亡;在缺血前,L-NNA组收缩期动脉血压和心功能指标左室心室内压力变化率峰值(+dp/dt)明显高于安慰剂组(P<0.05);各组血压心率乘积(RPP)及左室舒张末压无明显差异(所有P>0.05);在再灌注期间,安慰剂组心率较假手术组增快(所有P<0.05);再灌注180分钟时RPP和心功能指标在各组间无明显差异(P>0.05)。
     假手术组(0.98±0.20 u/mg)心肌组织cNOS活性明显高于安慰剂组无再流(0.24±0.04 u/mg)和再流区(0.30±0.05 u/mg)心肌,假手术组(0.31±0.06u/mg)iNOS活性明显低于安慰剂组再流区(0.73±0.08 u/mg)和无再流区(0.90±0.14 u/mg)(所有P<0.05);与安慰剂相比,L-NNA处理(0.13±0.04 u/mg)明显降低再流区心肌组织eNOS活性(P<0.05);缺血预适应(0.62±0.07 u/mg,0.55±0.04 u/mg)明显增加再流区和无再流区心肌组织eNOS活性(所有P<0.05);而缺血预适应联合L-NNA处理组eNOS活性(0.42±0.07 u/mg,0.34±0.03 u/mg)与安慰剂组无明显差异;四个缺血模型组间iNOS活性无差异(P>0.05)。
     四个缺血模型组间心肌缺血面积无明显差异(P>0.05);L-NNA组(97±3%,34.5±1.8%)心肌坏死面积、心肌凋亡指数与安慰剂组(90±3%.28.2±2.4%)无明显差异(P>0.05),缺血预适应(78±2%,16.5±0.9%)及联合使用L-NNA(79±2%,18.6±1.7%)明显减少心肌坏死面积和心肌凋亡指数(所有P<0.05),减少了再流区活性caspase-3蛋白含量。
     L-NNA(70±2%)、缺血预适应联合L-NNA(67±1%)组无再流面积与安慰剂组(70±4%)比较无明显差异;缺血预适应组无再流面积56±2%,与以上3组均有明显差异(P<0.05);与安慰剂相比,缺血预适应减少了再流区中性粒细胞浸润程度(MPO活性0.64±0.15 vs.1.77±0.09IU/g,中性粒细胞浸润评分1.14±0.14 vs.2.00±0.31,所有P<0.05),保护了血管内皮结构的完整性(微血管内皮超微结构损伤减轻和无再流区VE-cadherin表达增加)。而缺血预适应联合NOS抑制剂L-NNA组心肌再流区MPO活性(1.63±0.16 IU/g)、中性粒细胞浸润评分(2.00±0.26)与缺血预适应组相比明显降低(P<0.05)。
     【结论】:缺血预适应减少无再流的作用与内源性NO有关,而内源性NO不是缺血预适应减少心肌坏死和凋亡的主要机制。
     (二)瑞舒伐他汀减少猪心肌缺血后无再流和再灌注损伤与内源性一氧化氮有关
     【目的】:观察瑞舒伐他汀预处理对猪缺血再灌注后无再流、心肌坏死及心肌凋亡的影响,探讨作为内皮功能标志的内源性一氧化氮(NO)在其中的作用。
     【方法】:35只中华小型猪随机分为假手术组、安慰剂组、一氧化氮合酶抑制剂N-硝基-左旋精氨酸(L-NNA)处理组、瑞舒伐他汀组、瑞舒伐他汀联合L-NNA组。开胸结扎冠状动脉1.5小时,松解3小时制备急性心肌梗死再灌注模型。术中监测动脉血压、心室压、心率及冠脉血流量,比色法测定心肌组织NOS活性;用面积求积法测定心肌的缺血、坏死及无再流面积;髓过氧化物酶(MPO)法测定心肌MPO活力;病理组织染色计数中性粒细胞浸润程度;免疫印迹法测定心肌内皮型一氧化氮合酶(eNOS)、血管内皮钙粘连素(VE-cadherin)、半胱天冬酶—3(caspase-3)水平;TUNEL法检测心肌细胞凋亡发生率;在电镜下观察微血管内皮损伤情况;监测瑞舒伐他汀血药浓度和血脂水平。
     【结果】:L-NNA组和瑞舒伐他汀联合L-NNA组各有一只动物在再灌注期间死于低血压;缺血前,L-NNA和瑞舒伐他汀联合L-NNA组收缩期动脉血压和心功能指标左心室内压力变化率峰值(+dp/dt)明显高于安慰剂组(P<0.05);各组血压心率乘积(RPP)及左室舒张末压无明显差异(所有P>0.05);在再灌注期间,安慰剂组心率较假手术组增快(所有P<0.05);再灌注180分钟时,RPP和心功能指标在各组间无明显差异(所有P>0.05)。
     假手术组(0.98±0.20 u/mg)心肌组织cNOS活性明显高于安慰剂组无再流(0.24±0.04 u/mg)和再流区(0.30±0.05 u/mg)心肌,假手术组(0.31±0.06u/mg)iNOS活性明显低于安慰剂组再流区(0.73±0.08 u/mg)和无再流区心肌(0.90±0.14 u/mg)(所有P<0.05);与安慰剂相比,L-NNA处理(0.13±0.04 u/mg)明显降低再流区心肌组织eNOS活性(P<0.05),瑞舒伐他汀(0.52±0.04 u/mg)明显增加再流区心肌组织eNOS活性(P<0.05),而瑞舒伐他汀联合L-NNA(0.42±0.06u/mg)虽有增加eNOS活性趋势,但未达统计学差异;四个缺血模型组间iNOS活性、eNOS蛋白含量无差异。
     四个缺血模型组间心肌缺血面积无明显差异(P>0.05);L-NNA组(97±3%,34.5±1.8%)心肌坏死面积、心肌凋亡指数与安慰剂(90±3%,28.2±2.4%)无明显差异(P>0.05);与安慰剂相比,瑞舒伐他汀明显减少心肌坏死面积(79±3%)、再流区心肌凋亡(17.4±1.6%)(所有P<0.05)和活性caspase-3蛋白含量,而联合使用L-NNA组心肌坏死面积(88±1%)和心肌凋亡(26.9±2.3%)与瑞舒伐他汀组相比明显增加(所有P<0.05)。
     L-NNA(70±2%)组无再流面积与安慰剂组(70±4%)比较无明显差异(P>0.05);与安慰剂相比,瑞舒伐他汀减少了无再流面积(54±4%),增加了再灌注180分钟时冠脉血流量,减少再流区中性粒细胞浸润程度(再流区MPO活力是0.69±0.12 vs1.77±0.09IU/g,中性粒细胞浸润评分1.00±0.14 vs 2.00±0.31,所有P<0.05),保护了血管内皮结构的完整性(微血管超微结构损伤减轻和无再流区VE-cadherin表达增加);瑞舒伐他汀联合L-NNA组无再流面积(70±2%)、心肌再流区MPO活力(1.56±0.13 IU/g)、中性粒细胞浸润评分(1.83±0.17)、冠脉血流量等指标与瑞舒伐他汀组相比均有明显差异(所有P<0.05)。
     给药后3 h和4.5 h,瑞舒伐他汀组血药浓度分别为7.53±0.55 ug/L和9.92±1.42 ug/L;瑞舒伐他汀组血浆总胆固醇和低密度脂蛋白浓度分别为1.91±0.06mmol/L和1.11±0.07)mmol/L明显低于安慰剂组2.54±0.17 mmol/L和1.63±0.17mmol/L(P<0.05)。
     【结论】:瑞舒伐他汀减少心肌缺血后无再流和心肌再灌注损伤作用与内源性NO有关。常规剂量的瑞舒伐他汀服用4天就可以明显降低血脂水平。
     (三)通心络减少猪心肌缺血后无再流和再灌注损伤与内源性一氧化氮有关
     【目的】:观察中药方剂通心络对猪缺血再灌注后无再流、心肌坏死及心肌凋亡的影响,探讨作为内皮功能标志的内源性一氧化氮(NO)在其中的作用。
     【方法:35只中华小型猪随机分为假手术组、安慰剂组、一氧化氮合酶抑制剂N-硝基-左旋精氨酸(L-NNA)组、通心络超微粉(0.4g/kg)组和通心络联合L-NNA组。开胸结扎冠状动脉1.5小时,松解3小时制备急性心肌梗死再灌注模型。术中监测动脉血压、心室压、心率及冠脉血流量,比色法测定心肌组织NOS活性;用面秋求积法测定心肌的缺血、坏死及无再流面积;髓过氧化物酶(MPO)法测定心肌MPO活力;病理组织染色计数中性粒细胞浸润程度;免疫印迹法测定心肌内皮型一氧化氮合酶(eNOS)、血管内皮钙粘连素(VE-cadherin)、半胱灭冬酶—3(caspase-3)水平;TUNEL法检测心肌细胞凋亡发生率;在电镜下观察微血管内皮受损伤情况。
     【结果】:L-NNA组一只动物在再灌注期间死于低血压,通心络联合L-NNA组一只动物在缺血期间死于心室颤动;缺血前,L-NNA和通心络联合L-NNA组收缩期动脉血压和左心室内压力变化率峰值(+dp/dt)明显高于安慰剂组(P<0.05),各组血压心率乘积(RPP)及左室舒张末压无明显差异;在缺血后再灌注期间,安慰剂较假手术组心率增快;再灌注180分钟时RPP和心功能指标在各组间无明显差异(所有P>0.05)。
     假手术组(0.98±0.20 u/mg)心肌组织cNOS活性明显高于安慰剂组无再流(0.24±0.04 u/mg)和再流区(0.30±0.05 u/mg)心肌组织,假手术组(0.31±0.06u/mg)iNOS活性明显低于安慰剂组再流区(0.73±0.08 u/mg)和无再流区(0.90±0.14)u/mg)(所有P<0.05);与安慰剂相比,L-NNA处理(0.13±0.04 u/mg)明显降低再流区心肌组织eNOS活性(P<0.05),通心络(0.51±0.07 u/mg)明显增加再流区心肌组织eNOS活性(P<0.05);通心络联合L-NNA处理eNOS活性(0.38±0.05 u/mg)与安慰剂相比无差异;四个缺血模型组间iNOS活性、eNOS蛋白含量无差异。
     四个缺血模型组间心肌缺血面积无明显差异(P>0.05);L-NNA组(97±3%,34.5±1.8%)心肌坏死面积、心肌凋亡指数与安慰剂(90±3%,28.2±2.4%)无明显差异(P>0.05);与安慰剂相比,通心络(78±3%)明显减少心肌坏死面积、心肌凋亡指数(15.5±2.2%)(所有P<0.05)和活性caspase-3蛋白含量;而联合使用L-NNA组心肌坏死面积(95±3%),心肌凋亡凋亡指数(30±0.8%)与通心络组相比有明显差异(所有P<0.05)。
     L-NNA(70±2%)组无再流面积与安慰剂组(70±4%)比较无明显差异;与安慰剂相比,通心络减少了无再流面积(47±5%),增加了再灌注120、180分钟时冠脉血流量,减少中性粒细胞浸润程度(心肌再流区、无再流区MPO活力分别是1.12±0.15 vs 1.77±0.09IU/g和1.30±0.11 vs 2.07±0.17IU/g,再流区中性粒细胞浸润评分0.86±0.26 vs 2.00±0.31,所有P<0.05),保护了血管内皮结构的完整性(微血管内皮超微结构损伤减轻和无再流区VE-cadherin表达增加)。而通心络联合L-NNA组无再流面积(63±3%)、心肌再流区、无再流区MPO活力(分别是1.57±0.05和1.64±0.33 IU/g)、再流区中性粒细胞浸润评分(1.64±0.33),无再流区VE-cadherin、再灌注120和180分钟时冠脉血流量等指标,与通心络组相比有明显差异(所有P<0.05)。
     【结论】:通心络减少心肌缺血再灌注损伤作用与内源性NO有关。
【Objective】To explore whether ischemic preconditioning(IP) can protect myocardium against ischemia/reperfusion injury and to investigate the involvement of endogenous nitric oxide and therefore neutrophil accumulation.
     【Methods】35 open-chest pigs were divided to four groups of sham,placebo,nitric oxide synthase inhibitor NG-nitro-L-Arginine(L-NNA),IP and IP co-administration with L-NNA(10 mg/kg iv).IP was mimiced by three episodes of 5 minutes of ischemia followed by 5 minutes of reperfusion before left anterior descending(LAD) coronary artery ligation for 90 minutes followed by reperfusion for 3 hours.Area of no reflow and necrosis and risk region were determined pathologically by planimetry.The endothelial nitric oxide synthase activity and myeloperoxidase(MPO) activity of the myocardium were measured by colorimetric method.Histologic analysis was performed to determine the degree of neutrophil accumulation.Myocardial endothelial nitric oxide synthase (eNOS) and VE-cadherin were measured by western blotting.The myocardial apoptosis in the reflow region was detected with TUNEL assay and Western blot analysis on caspase-3.
     【Result】2 animals died during procedure and were excluded out from L-NNA and IP co-administration with L-NNA groups respectively.There were significant differences in blood pressure and peak of left ventricular pressure elevation(+dp/dt) in L-NNA and IP co-administration with L-NNA group compared with placebo group.There were no differences in rate pressure product at baseline among all groups.There were no differences in +dp/dt at the end of reperfusion and size of area at risk between four ischemic groups(P>0.05).
     Compared with placebo,L-NNA decreased eNOS activity in reflow area(P<0.05) but did not alter inductible nitric oxide synthase(iNOS) activity and eNOS protein abundance;Compared with placebo,IP increased eNOS activity both in reflow area and no reflow area(all P<0.05).There were no differences in eNOS activity both in reflow and no reflow region between IP co-administrated with L-NNA and placebo group. There were no differences in iNOS activity between four ischemic groups. Both IP and IP co-administrated with L-NNA limited the infarct size from 90±3%of the area at risk in the group of placebo to 78±2%and 79±2%respectively(all P<0.05).IP (16.5±0.9%)and IP co-administrated with L-NNA(18.6±1.7%) decreased myocardial apoptosis index in the reflow region compared with placebo(28.2±2.4%)(all P<0.05). Actived caspase-3 content was also reduced in IP and IP co-administrated with L-NNA groups.Whereas L-NNA treatment had no differences in infarct size,myocardial apoptosis index and actived caspase-3 content compared with placebo(all P>0.05). IP limited the no reflow size from 70±4%of the area at risk in the group of placebo to 56±2%(all P<0.05).IP also attenuated MPO activity and neutrophil accumulation score in the reflow region compared with placebo group(P<0.05 respectively).IP preserved the level of VE-cadherin in risk region when compared with placebo.Whereas L-NNA and IP co-administrated with L-NNA did not alter no-reflow size,MPO activity and neutrophil accumulation score in the reflow region compared with placebo.
     【Conclusions】The no-reflow limitation effect of IP was suggested to be dependent on endogenous NO production and may therefore attained by reducing the neutrophil accumulation and preserving microvascular integrity.Whereas endogenous NO production was not the major mechanism via which IP reduced myocardial necrosis and apoptosis.
     【Objective】To explore whether pre-treatment with rosuvastatin can protects myocardium against ischemia/reperfusion injury and to investigate the involvement of endogenous nitric oxide and therefore neutrophil accumulation.
     【Methods】35 open-chest pigs were divided to four groups of sham,placebo,nitric oxide synthase inhibitor NG-nitro-L-Arginine(L-NNA),rosuvastatin and rosuvastatin co-administration L-NNA(10 mg/kg iv).Rosuvastatin was administrated 4 days before left anterior descending(LAD) coronary artery ligation for 90 minutes followed by reperfusion for 3 hours.The serum total cholesterol and low density lipoprotein were measured before ligation.Area of no reflow and necrosis and risk region were determined pathologically by planimetry.The endothelial nitric oxide synthase activity and myeloperoxidase(MPO) activity of the myocardium was measured by colorimetric method.Histologic analysis was performed to determine the degree of neutrophil accumulation.Myocardial endothelial nitric oxide synthase(eNOS) and VE-cadherin was measured by western blotting.The myocardial apoptosis in the reflow region was detected with TUNEL assay.Caspase-3 in the reflow region was measured by Western blot analysis.
     【Result】2 animals died during procedure and were excluded out from L-NNA and rosuvastatin co-administration with L-NNA groups.There were significant differences in blood pressure and rate of rise of left ventricular pressure(+dp/dt) in L-NNA and rosuvastatin co-administration with L-NNA groups compared with placebo group.There were no differences in rate pressure product at baseline among all groups(P>0.05). There were no differences in +dp/dt at the end of reperfusion and size of area at risk between four ischemic groups(P>0.05).
     Compared with placebo,L-NNA decreased eNOS activity in reflow area(P<0.05) but did not alter iNOS activity and eNOS protein abundance;rosuvastatin increased eNOS activity in reflow area(P<0.05);Rosuvastatin co-administrated with L-NNA had a trend toward increasing eNOS activity in reflow area.There were no differences in inductible NOS activity(P>0.05) and eNOS protein abundance between rosuvastatin,rusuvastatin co-administration with L-NNA and placebo groups.
     Rosuvastatin increased the local LAD blood flow at 180 min of reperfusion and limited the infarct and no reflow size from 90±3%and 70±4%of the area at risk in the group of placebo to 79±3%and 54±4%(all P<0.05).Whereas L-NNA and rosuvastatin co-administrated with L-NNA treatments had no differences in infarct size and no reflow size compared with placebo(all P>0.05).
     Rosuvastatin decreased actived Caspase-3 abundance in the reflow region compared with placebo.Rosuvastatin also decreased myocardial apoptosis index from 28.2±2.4%of placebo to 17.4±1.6%(P<0.05).L-NNA and rosuvastatin co-administrated with L-NNA treatments had no differences in myocardial apoptosis index(P>0.05) and actived caspase-3 content compared with placebo.
     Rosuvastatin attenuated MPO activity and neutrophil accumulation score in the reflow region(0.69±0.12 IU/g,1.00±0.14) when compared with placebo group(1.77±0.09 IU/g, 2.00±0.31)(all P<0.05).Rosuvastatin also preserved the level of VE-cadherin in risk region when compared with placebo.Whereas L-NNA and rosuvastatin co-administrated with L-NNA did not alter MPO activity and neutrophil accumulation score in the reflow region compared with placebo.
     The concentration of rosuvastatin in plasma at 3 and 4.5 hours after the last administration was 7.53±0.55 ug/L and 9.92±1.42 ug/L respectively.The serum total cholesterol and low density lipoprotein were decreased by rosuvastatin compared with placebo(all P<0.05).
     【Conclusions】Pre-treatment with rosuvastatin lowered lipid level and had cardioprotective effect following ischemia and reperfusion.The cardioprotective effect is suggested to be dependent on endogenous NO production and therefore attained by reducing the neutrophil accumulation and preserving microvascular integrity.
     【Objective】To explore whether pre-treatment with traditional Chinese medicine Tongxinluo powder can protect myocardium against ischemia/reperfusion injury and to investigate the involvement of endogenous nitric oxide and therefore neutrophil accumulation.
     【Methods】35 open-chest pigs were divided to four groups of sham,placebo,nitric oxide synthase inhibitor NG-nitro-L-Arginine(L-NNA),Tongxinluo(0.4g/kg) and Tongxinluo co-administration L-NNA(10 mg/kg iv).Tongxinluo was intragastrically administrated 3 hours before left anterior descending(LAD) coronary artery ligation for 90 minutes followed by reperfusion for 3 hours.Area of no reflow and necrosis and risk region were determined pathologically by planimetry.The myeloperoxidase(MPO) activity of the myocardium was measured by colorimetric method and histologic analysis was performed to determine the degree of neutrophil accumulation.Myocardial endothelial nitric oxide synthase(eNOS) and VE-cadherin were measured by western blotting.The myocardial apoptosis in the refiow region was detected with TUNEL assay. Caspase-3 in the reflow region was measured by Western blot analysis.
     【Result】2 animals died during procedure and were excluded out from L-NNA and Tongxinluo co-administration with L-NNA groups.There were significant differences in blood pressure and rate of rise of left ventricular pressure(+dp/dt) in L-NNA and Tongxinluo co-administration with L-NNA groups compared with placebo group.There were no differences in rate pressure product at baseline among all groups(P>0.05). There were no differences in +dp/dt at the end of reperfusion and size of area at risk between four ischemic groups(P>0.05).
     Compared with placebo,L-NNA decreased eNOS activity in reflow area(P<0.05) but did not alter iNOS activity and eNOS protein abundance;Tongxiluo increased eNOS activity in reflow area(P<0.05) but did not alter inductible nitric oxide synthase(iNOS) activity and eNOS protein abundance.There were no differences in eNOS,iNOS activity and eNOS protein abundance between Tongxinluo co-administrated with L-NNA and placebo groups.
     Tongxinluo increased the local LAD blood flow at 120 rain and 180 min of reperfusion and limited the infarct and no reflow size from 90±3%and 70±4%of the area at risk in the group of placebo to 78±3%and 47±5%(all P<0.05).In addition,L-NNA and Tongxinluo co-administrated with L-NNA treatments had significant differences in infarct size and no reflow size compared with Tongxinluo(all P<0.05).
     Tongxinluo decreased actived caspase-3 abundance in the reflow region compared with placebo.Tongxinluo also decreased myocardial apoptosis index from 28.2±2.4%of placebo to 15.5±2.2%(P<0.05).Whereas L-NNA treatment and Tongxinluo co-administrated with L-NNA treatments had no differences in myocardial apoptosis index and actived caspase-3 content compared with placebo(all P>0.05).
     Tongxinluo attenuated MPO activity and neutrophil accumulation score in histologic sections both in the reflow(1.12±0.15 IU/g,0.86±0.26) and MPO activity in no reflow region(1.30±0.11 IU/g) when compared with placebo group(1.77±0.09 IU/g, 2.00±0.31 and 2.07±0.17 IU/g)(all P<0.05).Tongxinluo also preserved the level of VE-cadherin in risk region compared with placebo.Whereas L-NNA and Tongxinluo co-administrated with L-NNA did not alter MPO activity and neutrophil accumulation score in the reflow region compared with placebo.
     【Conclusions】Pre-treatment with Tongxinluo had a cardioprotective effect following ischemia/reperfusion.The cardioprotective effect was suggested to be dependent on endogenous NO production.Reduction of no reflow size may therefore attained by reducing the neutrophil accumulation and preserving microvascular integrity.
引文
1 Gersh BJ.Optimal management of acute myocardial infarction at the dawn of the next millennium.Am Heart J,1999,138:S188-202.
    2 Kloner RA.Does reperfusion injury exist in humans?.J Am Coll Cardiol,1993,21:537-45.
    3 Ito H,Maruyama A,Iwakura K,et al.Clinical implications of the‘no reflow’phenomenon.A predictor of complications and left ventricular remodeling in reperfused anterior wall myocardial infarction.Circulation,1996,93:223-8.
    4 Ito H,Tomooka T,Sakai N,et al.Lack of myocardial perfusion immediately after successful thrombolysis.A predictor of poor recovery of left ventricular function in anterior myocardial infarction.Circulation,1992,85:1699-705.
    5 Reffelmann T,Kloner RA.The“no-reflow”phenomenon:basic science and clinical correlates.Heart,2002,87:162-8.
    6 Jaffe R,Charron T,Puley G,et al.Microvascular obstruction and the no-reflow phenomenon after percutaneous coronary intervention.Circulation,2008,117:3152-6.
    7 Zhao JL,Yang YJ,Chen JL,et al.Nicorandil reduces myocardial no-reflow by protection of endothelial function via the activation of KATP channel.Clin Chim Acta,2006,374:100-5.
    8 Zhao JL,Yang YJ,Cui CJ,et al.Different effects of adenosine and calcium channel blockade on myocardial no-reflow after acute myocardial infarction and reperfusion.Cardiovasc Drugs Ther,2006,20:167-75.
    9 Zhao JL,Yang YJ,Cui CJ,et al.Pretreatment with simvastatin reduces myocardial no-reflow by opening mitochondrial K(ATP) channel.Br J Pharmacol,2006,149:243-9.
    10 Yang YJ,Zhao JL,You SJ,et al.Different effects of tirofiban and aspirin plus clopidogrel on myocardial no-reflow in a mini-swine model of acute myocardial infarction and reperfusion.Heart,2006,92:1131-7.
    11 Moncada S,Palmer RM,Higgs EA.Nitric oxide:physiology,pathophysiology,and pharmacology.Pharmacol Rev,1991,43:109-42.
    12 Wang P,Zweier JL.Measurement of nitric oxide and peroxynitrite generation in the postischemic heart.Evidence for peroxynitrite-mediated reperfusion injury.J Biol Chem,1996,271:29223-30.
    13 Giraldez RR,Panda A,Xia Y,et al.Decreased nitric-oxide synthase activity causes impaired endothelium-dependent relaxation in the postischemic heart.J Biol Chem, 1997,272:21420-6.
    14 Amrani M,Chester AH,Jayakumar J,et al.L-arginine reverses low coronary reflow and enhances postischaemic recovery of cardiac mechanical function.Cardiovasc Res,1995,30:200-4.
    15 Kitakaze M,Node K,Minamino T,et al.Role of nitric oxide in regulation of coronary blood flow during myocardial ischemia in dogs.J Am Coll Cardiol,1996,27:1804-12.
    16 Gauthier TW,Davenpeck KL,Lefer AM.Nitric oxide attenuates leukocyte-endothelial interaction via P-selectin in splanchnic ischemia-reperfusion.Am J Physiol,1994,267:G562-8.
    17 Kubes P,Suzuki M,Granger DN.Nitric oxide:an endogenous modulator of leukocyte adhesion.Proc Natl Acad Sci U S A,1991,88:4651-5.
    18 Lefer DJ,Nakanishi K,Johnston WE,et al.Antineutrophil and myocardial protecting actions of a novel nitric oxide donor after acute myocardial ischemia and reperfusion of dogs.Circulation,1993,88:2337-50.
    19 Chung HT,Pae HO,Choi BM,et al.Nitric oxide as a bioregulator of apoptosis.Biochem Biophys Res Commun,2001,282:1075-9.
    20 Gupta SK,Mohanty I,Talwar KK,et al.Cardioprotection from ischemia and reperfusion injury by Withania somnifera:a hemodynamic,biochemical and histopathological assessment.Mol Cell Biochem,2004,260:39-47.
    21 Sumeray MS,Rees DD,Yellon DM.Infarct size and nitric oxide synthase in murine myocardium.J Mol Cell Cardiol,2000,32:35-42.
    22 Bell RM,Yellon DM.The contribution of endothelial nitric oxide synthase to early ischaemic preconditioning:the lowering of the preconditioning threshold.An investigation in eNOS knockout mice.Cardiovasc Res,2001,52:274-80.
    23 Tiefenbacher CP,Chilian WM,Mitchell M,et al.Restoration of endothelium-dependent vasodilation after reperfusion injury by tetrahydrobiopterin.Circulation,1996,94:1423-9.
    24 Liang F,Gao E,Tao L,et al.Critical timing of L-arginine treatment in post-ischemic myocardial apoptosis-role of NOS isoforms.Cardiovasc Res,2004,62:568-77.
    25 Johnson G 3rd,Tsao PS,Lefer AM.Cardioprotective effects of authentic nitric oxide in myocardial ischemia with reperfusion.Crit Care Med,1991,19:244-52.
    26 Ma XL,Weyrich AS,Lefer DJ,et al.Diminished basal nitric oxide release after myocardial ischemia and reperfusion promotes neutrophil adherence to coronary endothelium.Circ Res,1993,72:403-12.
    27 Wilcox JN,Subramanian RR,Sundell CL,et al.Expression of multiple isoforms of nitric oxide synthase in normal and atherosclerotic vessels.Arterioscler Thromb Vasc Biol,1997,17:2479-88.
    28 Jones SP,Girod WG,Palazzo AJ,et al.Myocardial ischemia-reperfusion injury is exacerbated in absence of endothelial cell nitric oxide synthase.Am J Physiol,1999,276:H1567-73.
    29 Weiland U,Haendeler J,Ihling C,et al.Inhibition of endogenous nitric oxide synthase potentiates ischemia-reperfusion-induced myocardial apoptosis via a caspase-3 dependent pathway.Cardiovasc Res,2000,45:671-8.
    30 Czarnowska E,Kurzelewski M,Beresewicz A,et al.The role of endogenous nitric oxide in inhibition of ischemia/reperfusion-induced cardiomyocyte apoptosis.Folia Histochem Cytobiol,2001,39:179-80.
    31 Pernow J,Uriuda Y,Wang QD,et al.The protective effect of L-arginine on myocardial injury and endothelial function following ischaemia and reperfusion in the pig.Eur Heart J,1994,15:1712-9.
    32 Pabla R,Buda AJ,Flynn DM,et al.Nitric oxide attenuates neutrophil-mediated myocardial contractile dysfunction after ischemia and reperfusion.Circ Res,1996,78:65-72.
    33 Kaeffer N,Richard V,Francois A,et al.Preconditioning prevents chronic reperfusion-induced coronary endothelial dysfunction in rats.Am J Physiol,1996,271:H842-9.
    34 Thourani VH,Nakamura M,Duarte IG,et al.Ischemic preconditioning attenuates postischemic coronary artery endothelial dysfunction in a model of minimally invasive direct coronary artery bypass grafting.J Thorac Cardiovasc Surg,1999,117:383-9.
    35 Yang YJ,Zhao JJ,Meng L.[Effect of tongxinluo ultramicro-pulverization on myocardial post-reperfusion no-reflow in mini-swine model of acute myocardial infarction].Zhongguo Zhong Xi Yi Jie He Za Zhi,2006,26:49-53.
    36 Bulhak AA,Gourine AV,Gonon AT,et al.Oral pre-treatment with rosuvastatin protects porcine myocardium from ischaemia/reperfusion injury via a mechanism related to nitric oxide but not to serum cholesterol level.Acta Physiol Scand,2005,183:151-9.
    37 Jones SP,Gibson MF,Rimmer DM 3rd,et al.Direct vascular and cardioprotective effects of rosuvastatin,a new HMG-CoA reductase inhibitor.J Am Coll Cardiol, 2002,40:1172-8.
    38 Yang YJ,Zhao JL,You SJ,et al.Post-infarction treatment with simvastatin reduces myocardial no-reflow by opening of the KATP channel.Eur J Heart Fail,2007,9:30-6.
    39 Post H,Schulz R,Behrends M,et al.No involvement of endogenous nitric oxide in classical ischemic preconditioning in swine.J Mol Cell Cardiol,2000,32:725-33.
    40 Zhao ZQ,Nakamura M,Wang NP,et al.Reperfusion induces myocardial apoptotic cell death.Cardiovasc Res,2000,45:651-60.
    41 Zhao ZQ,Morris CD,Budde JM,et al.Inhibition of myocardial apoptosis reduces infarct size and improves regional contractile dysfunction during reperfusion.Cardiovasc Res,2003,59:132-42.
    42 Lee TM,Lin MS,Chou TF,et al.Adjunctive 17beta-estradiol administration reduces infarct size by altered expression of canine myocardial connexin43 protein.Cardiovasc Res,2004,63:109-17.
    43 Lee TM,Chou TF.Troglitazone administration limits infarct size by reduced phosphorylation of canine myocardial connexin43 proteins.Am J Physiol Heart Circ Physiol,2003,285:H1650-9.
    44 Murry CE,Jennings RB,Reimer KA.Preconditioning with ischemia:a delay of lethal cell injury in ischemic myocardium.Circulation,1986,74:1124-36.
    45 Wolfe CL,Sievers RE,Visseren FL,et al.Loss of myocardial protection after preconditioning correlates with the time course of glycogen recovery within the preconditioned segment.Circulation,1993,87:881-92.
    46 Sandhu R,Diaz RJ,Mao GD,et al.Ischemic preconditioning:differences in protection and susceptibility to blockade with single-cycle versus multicycle transient ischemia.Circulation,1997,96:984-95.
    47 Schwartz LM,Welch TS,Crago MS.Cardioprotection by multiple preconditioning cycles does not require mitochondrial K(ATP) channels in pigs.Am J Physiol Heart Circ Physiol,2002,283:H1538-44.
    48 Bolli R,Dawn B,Tang XL,et al.The nitric oxide hypothesis of late preconditioning.Basic Res Cardiol,1998,93:325-38.
    49 DeFily DV,Chilian WM.Preconditioning protects coronary arteriolar endothelium from ischemia-reperfusion injury.Am J Physiol,1993,265:H700-6.
    50 Nakamura M,Wang NP,Zhao ZQ,et al.Preconditioning decreases Bax expression,PMN accumulation and apoptosis in reperfused rat heart.Cardiovasc Res,2000,45:661-70.
    51 Piot CA,Padmanaban D,Ursell PC,et al.Ischemic preconditioning decreases apoptosis in rat hearts in vivo.Circulation,1997,96:1598-604.
    52 Reffelmann T,Kloner RA.Is microvascular protection by cariporide and ischemic preconditioning causally linked to myocardial salvage?.Am J Physiol Heart Circ Physiol,2003,284:H1134-41.
    53 Ambrosio G,Weisman HF,Mannisi JA,et al.Progressive impairment of regional myocardial perfusion after initial restoration of postischemic blood flow.Circulation,1989,80:1846-61.
    54 Barrabes JA,Garcia-Dorado D,Gonzalez MA,et al.Regional expansion during myocardial ischemia predicts ventricular fibrillation and coronary reocclusion.Am J Physiol,1998,274:H1767-75.
    55 Furfine ES,Harmon MF,Paith JE,et al.Selective inhibition of constitutive nitric oxide synthase by L-NG-nitroarginine.Biochemistry,1993,32:8512-7.
    56 Garvey EP,Tuttle JV,Covington K,et al.Purification and characterization of the constitutive nitric oxide synthase from human placenta.Arch Biochem Biophys,1994,311:235-41.
    57 Southan GJ,Szabo C.Selective pharmacological inhibition of distinct nitric oxide synthase isoforms.Biochem Pharmacol,1996,51:383-94.
    58 Bolli R,Bhatti ZA,Tang XL,et al.Evidence that late preconditioning against myocardial stunning in conscious rabbits is triggered by the generation of nitric oxide.Circ Res,1997,81:42-52.
    59 Buxton IL,Cheek DJ,Eckman D,et al.NG-nitro L-arginine methyl ester and other alkyl esters of arginine are muscarinic receptor antagonists.Circ Res,1993,72:387-95.
    60 Griffith OW,Kilbourn RG.Nitric oxide synthase inhibitors:amino acids.Methods Enzymol,1996,268:375-92.
    61 Kobara M,Tatsumi T,Takeda M,et al.The dual effects of nitric oxide synthase inhibitors on ischemia-reperfusion injury in rat hearts.Basic Res Cardiol,2003,98:319-28.
    62 Li XS,Uriuda Y,Wang QD,et al.Role of L-arginine in preventing myocardial and endothelial injury following ischaemia/reperfusion in the rat isolated heart.Acta Physiol Scand,1996,156:37-44.
    63 Gonon AT,Widegren U,Bulhak A,et al.Adiponectin protects against myocardial ischaemia-reperfusion injury via AMP-activated protein kinase,Akt,and nitric oxide.Cardiovasc Res,2008,78:116-22.
    64 Qiu Y,Rizvi A,Tang XL,et al.Nitric oxide triggers late preconditioning against myocardial infarction in conscious rabbits.Am J Physiol,1997,273:H2931-6.
    65 Gourine AV,Gonon AT,Pernow J.Involvement of nitric oxide in cardioprotective effect of endothelin receptor antagonist during ischemia-reperfusion.Am J Physiol Heart Circ Physiol,2001,280:H1105-12.
    66 Kloner RA,Ganote CE,Jennings RB.The“no-reflow”phenomenon after temporary coronary occlusion in the dog.J Clin Invest,1974,54:1496-508.
    67 Reffelmann T,Kloner RA.Microvascular reperfusion injury:rapid expansion of anatomic no reflow during reperfusion in the rabbit.Am J Physiol Heart Circ Physiol,2002,283:H1099-107.
    68 Schaper W,Gorge G,Winkler B,et al.The collateral circulation of the heart.Prog Cardiovasc Dis,1988,31:57-77.
    69 Verdouw PD,van den Doel MA,de Zeeuw S,et al.Animal models in the study of myocardial ischaemia and ischaemic syndromes.Cardiovasc Res,1998,39:121-35.
    70 Hanson L.E.Fifty years progress in swine nutrition.J Animal Sci,1958,17:1029-1057.
    71 Kloner RA,Rude RE,Carlson N,et al.Ultrastructural evidence of microvascular damage and myocardial cell injury after coronary artery occlusion:which comes first?.Circulation,1980,62:945-52.
    72 Gottlieb RA,Burleson KO,Kloner RA,et al.Reperfusion injury induces apoptosis in rabbit cardiomyocytes.J Clin Invest,1994,94:1621-8.
    73 Fliss H,Gattinger D.Apoptosis in ischemic and reperfused rat myocardium.Circ Res,1996,79:949-56.
    74 Haunstetter A,Izumo S.Toward antiapoptosis as a new treatment modality.Circ Res,2000,86:371-6.
    75 Salvesen GS,Dixit VM.Caspases:intracellular signaling by proteolysis.Cell,1997,91:443-6.
    76 Patel VC,Yellon DM,Singh KJ,et al.Inhibition of nitric oxide limits infarct size in the in situ rabbit heart.Biochem Biophys Res Commun,1993,194:234-8.
    77 Williams MW,Taft CS,Ramnauth S,et al.Endogenous nitric oxide(NO) protects against ischaemia-reperfusion injury in the rabbit.Cardiovasc Res,1995,30:79-86.
    78 Hoshida S,Yamashita N,Igarashi J,et al.Nitric oxide synthase protects the heart against ischemia-reperfusion injury in rabbits.J Pharmacol Exp Ther,1995,274:413-8.
    79 Wildhirt SM,Suzuki H,Horstman D,et al.Selective modulation of inducible nitric oxide synthase isozyme in myocardial infarction.Circulation,1997,96:1616-23.
    80 Dejana E.Endothelial adherens junctions:implications in the control of vascular permeability and angiogenesis.J Clin Invest,1996,98:1949-53.
    81 Corada M,Mariotti M,Thurston G,et al.Vascular endothelial-cadherin is an important determinant of microvascular integrity in vivo.Proc Natl Acad Sci U S A,1999,96:9815-20.
    82 Mullane KM,Kraemer R,Smith B.Myeloperoxidase activity as a quantitative assessment of neutrophil infiltration into ischemic myocardium.J Pharmacol Methods,1985,14:157-67.
    83 Zhao J,Yang Y,you S,et al.Carvedilol preserves endothelial junctions and reduces myocardial no-reflow after acute myocardial infarction and reperfusion.Int J Cardiol,2007,115:334-41.
    84 Engler RL,Schmid-Schonbein GW,Pavelec RS.Leukocyte capillary plugging in myocardial ischemia and reperfusion in the dog.Am J Pathol,1983,111:98-l 11.
    85 Zhao ZQ,Velez DA,Wang NP,et al.Progressively developed myocardial apoptotic cell death during late phase of reperfusion.Apoptosis,2001,6:279-90.
    86 Vakeva AP,Agah A,Rollins SA,et al.Myocardial infarction and apoptosis after myocardial ischemia and reperfusion:role of the terminal complement components and inhibition by anti-C5 therapy.Circulation,1998,97:2259-67.
    87 Hattori R,Hernandez TE,Zhu L,et al.An essential role of the antioxidant gene Bcl-2 in myocardial adaptation to ischemia:an insight with antisense Bcl-2 therapy.Antioxid Redox Signal,2001,3:403-13.
    88 Hochhauser E,Kivity S,Offen D,et al.Bax ablation protects against myocardial ischemia-reperfusion injury in transgenic mice.Am J Physiol Heart Circ Physiol,2003,284:H2351-9.
    89 Yeh CH,Lin YM,Wu YC,et al.Nitric oxide attenuates cardiomyocytic apoptosis via diminished mitochondrial complex Ⅰ up-regulation from cardiac ischemia-reperfusion injury under cardiopulmonary bypass.J Thorac Cardiovasc Surg,2004,128:180-8.
    90 Dhakshinamoorthy S,Porter AG.Nitric oxide-induced transcriptional up-regulation of protective genes by Nrf2 via the antioxidant response element counteracts apoptosis of neuroblastoma cells.J Biol Chem,2004,279:20096-107.
    91 Ravalli S,Albala A,Ming M,et al.Inducible nitric oxide synthase expression in smooth muscle cells and macrophages of human transplant coronary artery disease.Circulation,1998,97:2338-45.
    92 Boyd CS,Cadenas E.Nitric oxide and cell signaling pathways in mitochondrial-dependent apoptosis.Biol Chem,2002,383:411-23.
    93 Kim PK,Kwon YG,Chung HT,et al.Regulation of caspases by nitric oxide.Ann N Y Acad Sci,2002,962:42-52.
    94 Taimor G,Hofstaetter B,Piper HM.Apoptosis induction by nitric oxide in adult cardiomyocytes via cGMP-signaling and its impairment after simulated ischemia.Cardiovasc Res,2000,45:588-94.
    95 Muscari C,Bonafe' F,Gamberini C,et al.Early preconditioning prevents the loss of endothelial nitric oxide synthase and enhances its activity in the ischemic/reperfused rat heart.Life Sci,2004,74:1127-37.
    96 Zhou X,Zhai X,Ashraf M.Preconditioning of bovine endothelial cells.The protective effect is mediated by an adenosine A2 receptor through a protein kinase C signaling pathway.Circ Res,1996,78:73-81.
    97 Chen ZP,Mitchelhill KI,Michell BJ,et al.AMP-activated protein kinase phosphorylation of endothelial NO synthase.FEBS Lett,1999,443:285-9.
    98 Moncada S,Higgs A.The L-arginine-nitric oxide pathway.N Engl J Med,1993,329:2002-12.
    99 Okruhlicova L,Ravingerova T,Pancza D,et al.Activation of adenylate cyclase system in the preconditioned rat heart.Physiol Res,2000,49:251-9.
    100 Gross SS,Wolin MS.Nitric oxide:pathophysiological mechanisms.Annu Rev Physiol,1995,57:737-69.
    101 Rushmore TH,Morton MR,Pickett CB.The antioxidant responsive element.Activation by oxidative stress and identification of the DNA consensus sequence required for functional activity.J Biol Chem,1991,266:11632-9.
    102 Ping P,Takano H,Zhang J,et al.Isoform-selective activation of protein kinase C by nitric oxide in the heart of conscious rabbits:a signaling mechanism for both nitric oxide-induced and ischemia-induced preconditioning.Circ Res,1999,84:587-604.
    103 Otani H.Ischemic preconditioning:from molecular mechanisms to therapeutic opportunities.Antioxid Redox Signal,2008,10:207-47.
    104 Yang J,Liu X,Bhalla K,et al.Prevention of apoptosis by Bcl-2:release of cytochrome c from mitochondria blocked.Science,1997,275:1129-32.
    105 Kluck RM,Bossy-Wetzel E,Green DR,et al.The release of cytochrome c from mitochondria:a primary site for Bcl-2 regulation of apoptosis.Science,1997,275:1132-6.
    106 Ovize M,Aupetit JF,Rioufol G,et al.Preconditioning reduces infarct size but accelerates time to ventricular fibrillation in ischemic pig heart.Am J Physiol,1995,269:H72-9.
    107 Shattock MJ,Lawson CS,Hearse DJ,et al.Electrophysiological characteristics of repetitive ischemic preconditioning in the pig heart.J Mol Cell Cardiol,1996,28:1339-47.
    108 Grund F,Sommerschild HT,Kirkeboen KA,et al.Proarrhythmic effects of ischemic preconditioning in anesthetized pigs.Basic Res Cardiol,1997,92:417-25.
    109 Recchia FA,McConnell PI,Loke KE,et al.Nitric oxide controls cardiac substrate utilization in the conscious dog.Cardiovasc Res,1999,44:325-32.
    110 Bernstein RD,Ochoa FY,Xu X,et al.Function and production of nitric oxide in the coronary circulation of the conscious dog during exercise.Circ Res,1996,79:840-8.
    111 Wassmann S,Faul A,Hennen B,et al.Rapid effect of 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibition on coronary endothelial function.Circ Res,2003,93:e98-103.
    112 Pasceri V,Cheng JS,Willerson JT,et al.Modulation of C-reactive protein-mediated monocyte chemoattractant protein-1 induction in human endothelial cells by anti-atherosclerosis drugs.Circulation,2001,103:2531-4.
    113 Albert MA,Danielson E,Rifai N,et al.Effect of statin therapy on C-reactive protein levels:the pravastatin inflammation/CRP evaluation(PRINCE):a randomized trial and cohort study.JAMA,2001,286:64-70.
    114 Stoll LL,McCormick ML,Denning GM,et al.Antioxidant effects of statins.Drugs Today(Barc),2004,40:975-90.
    115 Bourcier T,Libby P.HMG CoA reductase inhibitors reduce plasminogen activator inhibitor-1 expression by human vascular smooth muscle and endothelial cells.Arterioscler Thromb Vase Biol,2000,20:556-62.
    116 Chapman MJ,McTaggart F.Optimizing the pharmacology of statins:characteristics of rosuvastatin.Atheroscler Suppl,2002,2:33-6;discussion 36-7.
    117 刘艳红 张梅 刘玲梅 周欣 焦占全 李玉明 庞伟.短期应用辛伐他汀对大鼠缺血再灌注后心肌无复流的影响及其潜在机制.中华心血管病杂志,2008.729.
    118 蒋娟娟,田蕾,黄一玲,等.瑞舒伐他汀钙片中国人体的药动学.中国医院药学杂志,2007,27:1497-1500.
    119 Laufs U,Liao JK.Targeting Rho in cardiovascular disease.Circ Res,2000,87:526-8.
    120 Endres M,Laufs U,Huang Z,et al.Stroke protection by 3-hydroxy-3-methylglutaryl(HMG)-CoA reductase inhibitors mediated by endothelial nitric oxide synthase.Proc Natl Acad Sci U S A,1998,95:8880-5.
    121 Wolfrum S,Grimm M,Heidbreder M,et al.Acute reduction of myocardial infarct size by a hydroxymethyl glutaryl coenzyme A reductase inhibitor is mediated by endothelial nitric oxide synthase.J Cardiovasc Pharmacol,2003,41:474-80.
    122 Sen-Banerjee S,Mir S,Lin Z,et al.Kruppel-like factor 2 as a novel mediator of statin effects in endothelial cells.Circulation,2005,112:720-6.
    123 Dichtl W,Dulak J,Frick M,et al.HMG-CoA reductase inhibitors regulate inflammatory transcription factors in human endothelial and vascular smooth muscle cells.Arterioscler Thromb Vasc Biol,2003,23:58-63.
    124 Laufs U,La Fata V,Plutzky J,et al.Upregulation of endothelial nitric oxide synthase by HMG CoA reductase inhibitors.Circulation,1998,97:1129-35.
    125 Laufs U,Fata VL,Liao JK.Inhibition of 3-hydroxy-3-methylglutaryl(HMG)-CoA reductase blocks hypoxia-mediated down-regulation of endothelial nitric oxide synthase.J Biol Chem,1997,272:31725-9.
    126 Kureishi Y,Luo Z,Shiojima I,et al.The HMG-CoA reductase inhibitor simvastatin activates the protein kinase Akt and promotes angiogenesis in normocholesterolemic animals.Nat Med,2000,6:1004-10.
    127 Weinberg EO,Scherrer-Crosbie M,Picard MH,et al.Rosuvastatin reduces experimental left ventricular infarct size after ischemia-reperfusion injury but not total coronary occlusion.Am J Physiol Heart Circ Physiol,2005,288:H1802-9.
    128 Brouet A,Sonveaux P,Dessy C,et al.Hsp90 and caveolin are key targets for the proangiogenic nitric oxide-mediated effects of statins.Circ Res,2001,89:866-73.
    129 Fleming I,Busse R.Molecular mechanisms involved in the regulation of the endothelial nitric oxide synthase.Am J Physiol Regul Integr Comp Physiol,2003,284:R1-12.
    130 Wolfrum S,Dendorfer A,Rikitake Y,et al.Inhibition of Rho-kinase leads to rapid activation of phosphatidylinositol 3-kinase/protein kinase Akt and cardiovascular protection.Arterioscler Thromb Vasc Biol,2004,24:1842-7.
    131 Hattori Y,Nakanishi N,Kasai K.Statin enhances cytokine-mediated induction of nitric oxide synthesis in vascular smooth muscle cells.Cardiovasc Res,2002,54:649-58.
    132 Stuehr D,Pou S,Rosen GM.Oxygen reduction by nitric-oxide synthases.J Biol Chem,2001,276:14533-6.
    133 Wassmann S,Laufs U,Muller K,et al.Cellular antioxidant effects of atorvastatin in vitro and in vivo.Arterioscler Thromb Vasc Biol,2002,22:300-5.
    134 Wagner AH,Kohler T,Ruckschloss U,et al.Improvement of nitric oxide-dependent vasodilatation by HMG-CoA reductase inhibitors through attenuation of endothelial superoxide anion formation.Arterioscler Thromb Vasc Biol,2000,20:61-9.
    135 Sumi D,Hayashi T,Thakur NK,et al.A HMG-CoA reductase inhibitor possesses a potent anti-atherosclerotic effect other than serum lipid lowering effects--the relevance of endothelial nitric oxide synthase and superoxide anion scavenging action.Atherosclerosis,2001,155:347-57.
    136 Bergmann MW,Rechner C,Freund C,et al.Statins inhibit reoxygenation-induced cardiomyocyte apoptosis:role for glycogen synthase kinase 3beta and transcription factor beta-catenin.J Mol Cell Cardiol,2004,37:681-90.
    137 Tanaka K,Honda M,Takabatake T.Anti-apoptotic effect of atorvastatin,a 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitor,on cardiac myocytes through protein kinase C activation.Clin Exp Pharmacol Physiol,2004,31:360-4.
    138 Ming XF,Barandier C,Viswambharan H,et al.Thrombin stimulates human endothelial arginase enzymatic activity via RhoA/ROCK pathway:implications for atherosclerotic endothelial dysfunction.Circulation,2004,110:3708-14.
    139 Hernandez-Perera O,Perez-Sala D,Soria E,et al.Involvement of Rho GTPases in the transcriptional inhibition of preproendothelin-1 gene expression by simvastatin in vascular endothelial cells.Circ Res,2000,87:616-22.
    140 Yang XP,Liu YH,Shesely EG,et al.Endothelial nitric oxide gene knockout mice:cardiac phenotypes and the effect of angiotensin-converting enzyme inhibitor on myocardial ischemia/reperfusion injury.Hypertension,1999,34:24-30.
    141 Zhao JL,Yang YJ,You SJ,et al.[Effect of tongxinluo on endothelin-1 in the mini-swine model of acute myocardial infarction and reperfusion].Zhongguo Zhong Xi Yi Jie He Za Zhi,2005,25:902-6.
    142 Wang HJ,Huang YW,Sun J.[Effect of tongxinluo capsule on function of vascular endothelium in patients with unstable angina pectoris].Zhongguo Zhong Xi Yi Jie He Za Zhi,2003,23:587-9.
    143 Jia Z,Gu F,Xue Y.[Effect of tongxinluo capsule in treating variant angina pectoris patients and its influence on endothelial function].Zhongguo Zhong Xi Yi Jie He Za Zhi,1999,19:651-2.
    144 Han YL,Cheng C,Tan HM,et al.[Effect of Tongxinluo superfine on experimental anginal model(contraction of collaterals) in rat with endothelial dysfunction].Zhongguo Zhong Yao Za Zhi,2007,32:2404-8,2426.
    145 Gonon AT,Erbas D,Broijersen A,et al.Nitric oxide mediates protective effect of endothelin receptor antagonism during myocardial ischemia and reperfusion.Am J Physiol Heart Circ Physiol,2004,286:H1767-74.
    146 Busse R,Fleming I.Regulation and functional consequences of endothelial nitric oxide formation.Ann Med,1995,27:331-40.
    147 Fleming I,Hecker M,Busse R.Intracellular alkalinization induced by bradykinin sustains activation of the constitutive nitric oxide synthase in endothelial cells.Circ Res,1994,74:1220-6.
    148 Garcia-Cardena G,Fan R,Stern DF,et al.Endothelial nitric oxide synthase is regulated by tyrosine phosphorylation and interacts with caveolin-1.J Biol Chem,1996,271:27237-40.
    149 Fleming I,Fisslthaler B,Dimmeler S,et al.Phosphorylation of Thr(495) regulates Ca(2+)/calmodulin-dependent endothelial nitric oxide synthase activity.Circ Res,2001,88:E68-75.
    150 Dimmeler S,Fleming I,Fisslthaler B,et al.Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation.Nature,1999,399:601-5.
    151 Reynolds JM,McDonagh PF.Early in reperfusion,leukocytes alter perfused coronary capillarity and vascular resistance.Am J Physiol,1989,256:H982-9.
    152 Lindal S,Sorlie D,Jorgensen L.Endothelial cells of the cardiac microvasculature during and after cold cardioplegic ischaemia.Comparison of endothelial and myocyte damage.Scand J Thorac Cardiovasc Surg,1988,22:257-65.
    153 Kubes P,Jutila M,Payne D.Therapeutic potential of inhibiting leukocyte rolling in ischemia/reperfusion.J Clin Invest,1995,95:2510-9.
    154 Lucchesi BR.Modulation of leukocyte-mediated myocardial reperfusion injury.Annu Rev Physiol,1990,52:561-76.
    155 Weiss SJ.Tissue destruction by neutrophils.N Engl J Med,1989,320:365-76.
    156 Duran X,Vilahur G,Badimon L.Exogenous in vivo NO-donor treatment preserves p53 levels and protects vascular cells from apoptosis.Atherosclerosis,2008.
    1 Furchgott RF,Zawadzki JV.The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine.Nature,1980,288(5789):373-6.
    2 Luscher TF.Imbalance of endothelium-derived relaxing and contracting factors.A new concept in hypertension?.Am J Hypertens,1990,3(4):317-30.
    3 Furchgott RF,Vanhoutte PM.Endothelium-derived relaxing and contracting factors.FASEB J,1989,3(9):2007-18.
    4 Moncada S,Palmer RM,Higgs EA.The discovery of nitric oxide as the endogenous nitrovasodilator.Hypertension,1988,12(4):365-72.
    5 McIntyre M,Bohr DF,Dominiczak AF.Endothelial function in hypertension:the role of superoxide anion.Hypertension,1999,34(4 Pt l):539-45.
    6 Alvarez S,Valdez LB,Zaobornyj T,et al.Oxygen dependence of mitochondrial nitric oxide synthase activity.Biochem Biophys Res Commun,2003,305(3):771-5.
    7 Nagase S,Takemura K,Ueda A,et al.A novel nonenzymatic pathway for the generation of nitric oxide by the reaction of hydrogen peroxide and D-or L-arginine.Biochem Biophys Res Commun,1997,233(1):150-3.
    8 Godber BL,Doel JJ,Sapkota GP,et al.Reduction of nitrite to nitric oxide catalyzed by xanthine oxidoreductase.J Biol Chem,2000,275(11):7757-63.
    9 Tiravanti E,Samouilov A,Zweier JL.Nitrosyl-heme complexes are formed in the ischemic heart:evidence of nitrite-derived nitric oxide formation,storage,and signaling in post-ischemic tissues.J Biol Chem,2004,279(12):11065-73.
    10 Kitakaze M,Node K,Takashima S,et al.Role of cellular acidosis in production of nitric oxide in canine ischemic myocardium.J Mol Cell Cardiol,2001,33(9):1727-37.
    11 Huang Z,Shiva S,Kim-Shapiro DB,et al.Enzymatic function of hemoglobin as a nitrite reductase that produces NO under allosteric control.J Clin Invest,2005,115(8):2099-107.
    12 Kozlov AV,Staniek K,Nohl H.Nitrite reductase activity is a novel function of mammalian mitochondria.FEBS Lett,1999,454(1-2):127-30.
    13 Feelisch M,Rassaf T,Mnaimneh S,et al.Concomitant S-,N-,and heme-nitros(yl)ation in biological tissues and fluids:implications for the fate of NO in vivo.FASEB J,2002,16(13):1775-85.
    14 Bryan NS,Rassaf T,Maloney RE,et al.Cellular targets and mechanisms of nitros(yl)ation:an insight into their nature and kinetics in vivo.Proc Natl Acad Sci U S A,2004,101(12):4308-13.
    15 Wilcox JN,Subramanian RR,Sundell CL,et al.Expression of multiple isoforms of nitric oxide synthase in normal and atherosclerotic vessels.Arterioscler Thromb Vasc Biol,1997,17(11):2479-88.
    16 Balligand JL,Cannon PJ.Nitric oxide synthases and cardiac muscle.Autocrine and paracrine influences.Arterioscler Thromb Vasc Biol,1997,17(10):1846-58.
    17 Brahmajothi MV,Campbell DL.Heterogeneous basal expression of nitric oxide synthase and superoxide dismutase isoforms in mammalian heart:implications for mechanisms governing indirect and direct nitric oxide-related effects.Circ Res,1999,85(7):575-87.
    18 Drexler H.Nitric oxide synthases in the failing human heart:a doubled-edged sword?.Circulation,1999,99(23):2972-5.
    19 de Belder AJ,Radomski MW,Why HJ,et al.Nitric oxide synthase activities in human myocardium.Lancet,1993,341(8837):84-5.
    20 Yang X,Chowdhury N,Cai B,et al.Induction of myocardial nitric oxide synthase by cardiac allograft rejection.J Clin Invest,1994,94(2):714-21.
    21 Vodovotz Y,Russell D,Xie QW,et al.Vesicle membrane association of nitric oxide synthase in primary mouse macrophages.J Immunol,1995,154(6):2914-25.
    22 Kojda G,Kottenberg K.Regulation of basal myocardial function by NO.Cardiovasc Res,1999,41(3):514-23.
    23 Luscher TF,Diederich D,Siebenmann R,et al.Difference between endothelium-dependent relaxation in arterial and in venous coronary bypass grafts.N Engl J Med,1988,319(8):462-7.
    24 Addicks K,Bloch W,Feelisch M.Nitric oxide modulates sympathetic neurotransmission at the prejunctional level.Microsc Res Tech,1994,29(2):161-8.
    25 Barouch LA,Harrison RW,Skaf MW,et al.Nitric oxide regulates the heart by spatial confinement of nitric oxide synthase isoforms.Nature,2002,416(6878):337-9.
    26 Ursell PC,Mayes M.Anatomic distribution of nitric oxide synthase in the heart.Int J Cardiol,1995,50(3):217-23.
    27 Martin C,Schuiz R,Post H,et al.Microdialysis-based analysis of interstitial NO in situ:NO synthase-independent NO formation during myocardial ischemia.Cardiovasc Res,2007,74(1):46-55.
    28 Lauer T,Preik M,Rassaf T,et al.Plasma nitrite rather than nitrate reflects regional endothelial nitric oxide synthase activity but lacks intrinsic vasodilator action.Proc Natl Acad Sci U S A,2001,98(22):12814-9.
    29 Becker BF,Kupatt C,Massoudy P,et al.Reactive oxygen species and nitric oxide in myocardial ischemia and reperfusion.Z Kardiol,2000,89 Suppl 9:Ⅸ/88-91.
    30 Pou S,Pou WS,Bredt DS,et al.Generation of superoxide by purified brain nitric oxide synthase.J Biol Chem,1992,267(34):24173-6.
    31 Heinzel B,John M,Klatt P,et al.Ca2+/calmodulin-dependent formation of hydrogen peroxide by brain nitric oxide synthase.Biochem J,1992,281(Pt 3):627-30.
    32 Busse R,Fleming I.Regulation and functional consequences of endothelial nitric oxide formation.Ann Med,1995,27(3):331-40.
    33 Fleming I,Hecker M,Busse R.Intracellular alkalinization induced by bradykinin sustains activation of the constitutive nitric oxide synthase in endothelial cells.Circ Res,1994,74(6):1220-6.
    34 Garcia-Cardena G,Fan R,Stern DF,et al.Endothelial nitric oxide synthase is regulated by tyrosine phosphorylation and interacts with caveolin-1.J Biol Chem,1996,271(44):27237-40.
    35 Fleming I,Fisslthaler B,Dimmeler S,et al.Phosphorylation of Thr(495) regulates Ca(2+)/calmodulin-dependent endothelial nitric oxide synthase activity.Circ Res,2001,88(11):E68-75.
    36 Dimmeler S,Fleming I,Fisslthaler B,et al.Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation.Nature,1999,399(6736):601-5.
    37 Massion PB,Balligand JL.Modulation of cardiac contraction,relaxation and rate by the endothelial nitric oxide synthase(eNOS):lessons from genetically modified mice.J Physiol,2003,546(Pt 1):63-75.
    38 Hurshman AR,Marietta MA.Nitric oxide complexes of inducible nitric oxide synthase:spectral characterization and effect on catalytic activity.Biochemistry,1995,34(16):5627-34.
    39 Abu-Soud HM,Wang J,Rousseau DL,et al.Neuronal nitric oxide synthase self-inactivates by forming a ferrous-nitrosyl complex during aerobic catalysis.J Biol Chem,1995,270(39):22997-3006.
    40 Zhang R,Min W,Sessa WC.Functional analysis of the human endothelial nitric oxide synthase promoter.Spl and GATA factors are necessary for basal transcription in endothelial cells.J Biol Chem,1995,270(25):15320-6.
    41 Ehren I,Hammarstrom M,Adolfsson J,et al.Induction of calcium-dependent nitric oxide synthase by sex hormones in the guinea-pig urinary bladder.Acta Physiol Scand,1995,153(4):393-4.
    42 Balligand JL,Kobzik L,Han X,et al.Nitric oxide-dependent parasympathetic signaling is due to activation of constitutive endothelial(type Ⅲ) nitric oxide synthase in cardiac myocytes.J Biol Chem,1995,270(24):14582-6.
    43 Yoshizumi M,Perrella MA,Burnett JC Jr,et al.Tumor necrosis factor downregulates an endothelial nitric oxide synthase mRNA by shortening its half-life.Circ Res,1993,73(l):205-9.
    44 Belhassen L,Kelly RA,Smith TW,et al.Nitric oxide synthase(NOS3) and contractile responsiveness to adrenergic and cholinergic agonists in the heart.Regulation of NOS3 transcription in vitro and in vivo by cyclic adenosine monophosphate in rat cardiac myocytes.J Clin Invest,1996,97(8):1908-15.
    45 Schulz R,Panas DL,Catena R,et al.The role of nitric oxide in cardiac depression induced by interleukin-1 beta and tumour necrosis factor-alpha.Br J Pharmacol,1995,114(1):27-34.
    46 Radomski MW,Palmer RM,Moncada S.Glucocorticoids inhibit the expression of an inducible,but not the constitutive,nitric oxide synthase in vascular endothelial cells.Proc Natl Acad Sci U S A,1990,87(24):10043-7.
    47 Di Rosa M,Radomski M,Carnuccio R,et al.Glucocorticoids inhibit the induction of nitric oxide synthase in macrophages.Biochem Biophys Res Commun,1990,172(3):1246-52.
    48 Dudek RR,Wildhirt S,Pinto V,et al.Dexamethasone inhibits the expression of an inducible nitric oxide synthase in infarcted rabbit myocardium.Biochem Biophys Res Commun,1994,202(2):1120-6.
    49 Wu CC,Chen SJ,Szabo C,et al.Aminoguanidine attenuates the delayed circulatory failure and improves survival in rodent models of endotoxic shock.Br J Pharmacol,1995,114(8):1666-72.
    50 Ignarro LJ.Biosynthesis and metabolism of endothelium-derived nitric oxide.Annu Rev Pharmacol Toxicol,1990,30:535-60.
    51 Salvemini D,Misko TP,Masferrer JL,et al.Nitric oxide activates cyclooxygenase enzymes.Proc Natl Acad Sci U S A,1993,90(15):7240-4.
    52 Stamler JS.Redox signaling:nitrosylation and related target interactions of nitric oxide.Cell,1994,78(6):931-6.
    53 Pantopoulos K,Hentze MW.Nitric oxide signaling to iron-regulatory protein:direct control of ferritin mRNA translation and transferrin receptor mRNA stability in transfected fibroblasts.Proc Natl Acad Sci U S A,1995,92(5):1267-71.
    54 Brown GC,Cooper CE.Nanomolar concentrations of nitric oxide reversibly inhibit synaptosomal respiration by competing with oxygen at cytochrome oxidase.FEBS Lett,1994,356(2-3):295-8.
    55 Kwon NS,Stuehr DJ,Nathan CF.Inhibition of tumor cell ribonucleotide reductase by macrophage-derived nitric oxide.J Exp Med,1991,174(4):761-7.
    56 Weiss SJ.Tissue destruction by neutrophils.N Engl J Med,1989,320(6):365-76.
    57 Stamler JS,Simon DI,Jaraki O,et al.S-nitrosylation of tissue-type plasminogen activator confers vasodilatory and antiplatelet properties on the enzyme.Proc Natl Acad Sci U S A,1992,89(17):8087-91.
    58 Rassaf T,Preik M,Kleinbongard P,et al.Evidence for in vivo transport of bioactive nitric oxide in human plasma.J Clin Invest,2002,109(9):1241-8.
    59 Bolotina VM,Najibi S,Palacino JJ,et al.Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle.Nature,1994,368(6474):850-3.
    60 Mohr S,Stamler JS,Brune B.Posttranslational modification of glyceraldehyde-3-phosphate dehydrogenase by S-nitrosylation and subsequent NADH attachment.J Biol Chem,1996,271(8):4209-14.
    61 Clancy RM,Leszczynska-Piziak J,Abramson SB.Nitric oxide,an endothelial cell relaxation factor,inhibits neutrophil superoxide anion production via a direct action on the NADPH oxidase.J Clin Invest,1992,90(3):1116-21.
    62 Beckman JS,Beckman TW,Chen J,et al.Apparent hydroxyl radical production by peroxynitrite:implications for endothelial injury from nitric oxide and superoxide.Proc Natl Acad Sci U S A,1990,87(4):1620-4.
    63 Kitakaze M,Node K,Minamino T,et al.Role of nitric oxide in regulation of coronary blood flow during myocardial ischemia in dogs.J Am Coll Cardiol,1996,27(7):1804-12.
    64 Huang PL,Huang Z,Mashimo H,et al.Hypertension in mice lacking the gene for endothelial nitric oxide synthase.Nature,1995,377(6546):239-42.
    65 Moncada S,Radomski MW,Palmer RM.Endothelium-derived relaxing factor.Identification as nitric oxide and role in the control of vascular tone and platelet function.Biochem Pharmacol,1988,37(13):2495-501.
    66 Murad F,Waldman S,Molina C,et al.Regulation and role of guanylate cyclase-cyclic GMP in vascular relaxation.Prog Clin Biol Res,1987,249:65-76.
    67 Gewaltig MT,Kojda G.Vasoprotection by nitric oxide:mechanisms and therapeutic potential.Cardiovasc Res,2002,55(2):250-60.
    68 Pabla R,Buda AJ,Flynn DM,et al.Nitric oxide attenuates neutrophil-mediated myocardial contractile dysfunction after ischemia and reperfusion.Circ Res,1996,78(1):65-72.
    69 Gauthier TW,Davenpeck KL,Lefer AM.Nitric oxide attenuates leukocyte-endothelial interaction via P-selectin in splanchnic ischemia-reperfusion.Am J Physiol,1994,267(4 Pt 1):G562-8.
    70 Kubes P,Suzuki M,Granger DN.Nitric oxide:an endogenous modulator of leukocyte adhesion.Proc Natl Acad Sci U S A,1991,88(11):4651-5.
    71 Lefer DJ,Nakanishi K,Johnston WE,et al.Antineutrophil and myocardial protecting actions of a novel nitric oxide donor after acute myocardial ischemia and reperfusion of dogs.Circulation,1993,88(5 Pt 1):2337-50.
    72 Jones SP,Girod WG,Palazzo AJ,et al.Myocardial ischemia-reperfusion injury is exacerbated in absence of endothelial cell nitric oxide synthase.Am J Physiol,1999,276(5 Pt 2):H1567-73.
    73 Sanz MJ,Hickey MJ,Johnston B,et al.Neuronal nitric oxide synthase(NOS) regulates leukocyte-endothelial cell interactions in endothelial NOS deficient mice.Br J Pharmacol,2001,134(2):305-12.
    74 Lefer DJ,Jones SP,Girod WG,et al.Leukocyte-endothelial cell interactions in nitric oxide synthase-deficient mice.Am J Physiol,1999,276(6 Pt 2):H1943-50.
    75 Garg UC,Hassid A.Nitric oxide-generating vasodilators and 8-bromo-cyclic guanosine monophosphate inhibit mitogenesis and proliferation of cultured rat vascular smooth muscle cells.J Clin Invest,1989,83(5):1774-7.
    76 von der Leyen HE,Gibbons GH,Morishita R,et al.Gene therapy inhibiting neointimal vascular lesion:in vivo transfer of endothelial cell nitric oxide synthase gene.Proc Natl Acad Sci U S A,1995,92(4):1137-41.
    77 Chung HT,Pae HO,Choi BM,et al.Nitric oxide as a bioregulator of apoptosis.Biochem Biophys Res Commun,2001,282(5):1075-9.
    78 Rakhit RD,Marber MS.Nitric oxide:an emerging role in cardioprotection?.Heart,2001,86(4):368-72.
    79 Kaye DM,Wiviott SD,Balligand JL,et al.Frequency-dependent activation of a constitutive nitric oxide synthase and regulation of contractile function in adult rat ventricular myocytes.Circ Res,1996,78(2):217-24.
    80 Minamino T,Kitakaze M,Node K,et al.Inhibition of nitric oxide synthesis increases adenosine production via an extracellular pathway through activation of protein kinase C.Circulation,1997,96(5):1586-92.
    81 Brown GC.Nitric oxide inhibition of cytochrome oxidase and mitochondrial respiration:implications for inflammatory,neurodegenerative and ischaemic pathologies.Mol Cell Biochem,1997,174(1-2):189-92.
    82 Recchia FA,McConnell PI,Loke KE,et al.Nitric oxide controls cardiac substrate utilization in the conscious dog.Cardiovasc Res,1999,44(2):325-32.
    83 Stumpe T,Decking UK,Schrader J.Nitric oxide reduces energy supply by direct action on the respiratory chain in isolated cardiomyocytes.Am J Physiol Heart Circ Physiol,2001,280(5):H2350-6.
    84 Bernstein RD,Ochoa FY,Xu X,et al.Function and production of nitric oxide in the coronary circulation of the conscious dog during exercise.Circ Res,1996,79(4):840-8.
    85 Clementi E,Brown GC,Feelisch M,et al.Persistent inhibition of cell respiration by nitric oxide:crucial role of S-nitrosylation of mitochondrial complex Ⅰ and protective action of glutathione.Proc Natl Acad Sci U S A,1998,95(13):7631-6.
    86 Xie YW,Shen W,Zhao G,et al.Role of endothelium-derived nitric oxide in the modulation of canine myocardial mitochondrial respiration in vitro.Implications for the development of heart failure.Circ Res,1996,79(3):381-7.
    87 Berges A,Van Nassauw L,Bosmans J,et al.Role of nitric oxide and oxidative stress in ischaemic myocardial injury and preconditioning.Acta Cardiol,2003,58(2):119-32.
    88 Ma XL,Weyrich AS,Lefer DJ,et al.Diminished basal nitric oxide release after myocardial ischemia and reperfusion promotes neutrophil adherence to coronary endothelium.Circ Res,1993,72(2):403-12.
    89 Halliwell B.Superoxide,iron,vascular endothelium and reperfusion injury.Free Radic Res Commun,1989,5(6):315-8.
    90 Zweier JL,Samouilov A,Kuppusamy P.Non-enzymatic nitric oxide synthesis in biological systems.Biochim Biophys Acta,1999,1411(2-3):250-62.
    91 Csonka C,Szilvassy Z,Fulop F,et al.Classic preconditioning decreases the harmful accumulation of nitric oxide during ischemia and reperfusion in rat hearts.Circulation,1999,100(22):2260-6.
    92 Wang P,Zweier JL.Measurement of nitric oxide and peroxynitrite generation in the postischemic heart.Evidence for peroxynitrite-mediated reperfusion injury.J Biol Chem,1996,271(46):29223-30.
    93 Giraldez RR,Panda A,Xia Y,et al.Decreased nitric-oxide synthase activity causes impaired endothelium-dependent relaxation in the postischemic heart.J Biol Chem,1997,272(34):21420-6.
    94 Amrani M,Chester AH,Jayakumar J,et al.L-arginine reverses low coronary reflow and enhances postischaemic recovery of cardiac mechanical function.Cardiovasc Res,1995,30(2):200-4.
    95 Sanders DB,Larson DF,Hunter K,et al.Comparison of tumor necrosis factor-alpha effect on the expression of iNOS in macrophage and cardiac myocytes.Perfusion,2001,16(1):67-74.
    96 Wildhirt SM,Weismueller S,Schulze C,et al.Inducible nitric oxide synthase activation after ischemia/reperfusion contributes to myocardial dysfunction and extent of infarct size in rabbits:evidence for a late phase of nitric oxide-mediated reperfusion injury.Cardiovasc Res,1999,43(3):698-711.
    97 Liang F,Gao E,Tao L,et al.Critical timing of L-arginine treatment in post-ischemic myocardial apoptosis-role of NOS isoforms.Cardiovasc Res,2004,62(3):568-77.
    98 Quillen JE,Sellke FW,Brooks LA,et al.Ischemia-reperfusion impairs endothelium-dependent relaxation of coronary microvessels but does not affect large arteries.Circulation,1990,82(2):586-94.
    99 Bolli R,Triana JF,Jeroudi MO.Prolonged impairment of coronary vasodilation after reversible ischemia.Evidence for microvascular“stunning”.Circ Res,1990,67(2):332-43.
    100 Amrani M,Shirvani R,Allen NJ,et al.Enhancement of low coronary reflow improves postischemic myocardial function.J Thorac Cardiovasc Surg,1992,104(5):1375-82.
    101 Pernow J,Uriuda Y,Wang QD,et al.The protective effect of L-arginine on myocardial injury and endothelial function following ischaemia and reperfusion in the pig.Eur Heart J,1994,15(12):1712-9.
    102 Kobara M,Tatsumi T,Takeda M,et al.The dual effects of nitric oxide synthase inhibitors on ischemia-reperfusion injury in rat hearts.Basic Res Cardiol,2003,98(5):319-28.
    103 Nakamura M,Wang NP,Zhao ZQ,et al.Preconditioning decreases Bax expression,PMN accumulation and apoptosis in reperfused rat heart.Cardiovasc Res,2000,45(3):661-70.
    104 Kato K,Yin H,Agata J,et al.Adrenomedullin gene delivery attenuates myocardial infarction and apoptosis after ischemia and reperfusion.Am J Physiol Heart Circ Physiol,2003,285(4):H1506-14.
    105 Zhao ZQ,Velez DA,Wang NP,et al.Progressively developed myocardial apoptotic cell death during late phase of reperfusion.Apoptosis,2001,6(4):279-90.
    106 Papucci L,Schiavone N,Witort E,et al.Coenzyme q10 prevents apoptosis by inhibiting mitochondrial depolarization independently of its free radical scavenging property.J Biol Chem,2003,278(30):28220-8.
    107 Ho WP,Chen TL,Chiu WT,et al.Nitric oxide induces osteoblast apoptosis through a mitochondria-dependent pathway.Ann N Y Acad Sci,2005,1042:460-70.
    108 Yeh CH,Lin YM,Wu YC,et al.Nitric oxide attenuates cardiomyocytic apoptosis via diminished mitochondrial complex I up-regulation from cardiac ischemia-reperfusion injury under cardiopulmonary bypass.J Thorac Cardiovasc Surg,2004,128(2):180-8.
    109 Dhakshinamoorthy S,Porter AG.Nitric oxide-induced transcriptional up-regulation of protective genes by Nrf2 via the antioxidant response element counteracts apoptosis of neuroblastoma cells.J Biol Chem,2004,279(19):20096-107.
    110 Weiland U,Haendeler J,Ihling C,et al.Inhibition of endogenous nitric oxide synthase potentiates ischemia-reperfusion-induced myocardial apoptosis via a caspase-3 dependent pathway.Cardiovasc Res,2000,45(3):671-8.
    111 Czarnowska E,Kurzelewski M,Beresewicz A,et al.The role of endogenous nitric oxide in inhibition of ischemia/reperfusion-induced cardiomyocyte apoptosis.Folia Histochem Cytobiol,2001,39(2):179-80.
    112 Yu SW,Wang H,Poitras MF,et al.Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor.Science, 2002,297(5579):259-63.
    113 Chiarugi A,Moskowitz MA.Cell biology.PARP-1-a perpetrator of apoptotic cell death?.Science,2002,297(5579):200-1.
    114 Ushmorov A,Ratter F,Lehmann V,et al.Nitric-oxide-induced apoptosis in human leukemic lines requires mitochondrial lipid degradation and cytochrome C release.Blood,1999,93(7):2342-52.
    115 Zou MH,Hou XY,Shi CM,et al.Modulation by peroxynitrite of Akt-and AMP-activated kinase-dependent Ser1179 phosphorylation of endothelial nitric oxide synthase.J Biol Chem,2002,277(36):32552-7.
    116 MacMillan-Crow LA,Crow JP,Thompson JA.Peroxynitrite-mediated inactivation of manganese superoxide dismutase involves nitration and oxidation of critical tyrosine residues.Biochemistry,1998,37(6):1613-22.
    117 Oyadomari S,Takeda K,Takiguchi M,et al.Nitric oxide-induced apoptosis in pancreatic beta cells is mediated by the endoplasmic reticulum stress pathway.Proc Natl Acad Sci U S A,2001,98(19):10845-50.
    118 Boyd CS,Cadenas E.Nitric oxide and cell signaling pathways in mitochondrial-dependent apoptosis.Biol Chem,2002,383(3-4):411-23.
    119 Kim PK,Kwon YG,Chung HT,et al.Regulation of caspases by nitric oxide.Ann N Y Acad Sci,2002,962:42-52.
    120 Ishizaki T,Shigemori K,Nakai T,et al.Leukotoxin,9,10-epoxy-12-octadecenoate causes edematous lung injury via activation of vascular nitric oxide synthase.Am J Physiol,1995,269(1 Pt 1):L65-70.
    121 Ishizaki T,Shigemori K,Yamamura Y,et al.Increased nitric oxide biosynthesis in leukotoxin,9,10-epoxy-12-octadecenoate injured lung.Biochem Biophys Res Commun,1995,210(1):133-7.
    122 Kikuchi K,Nagano T,Hayakawa H,et al.Detection of nitric oxide production from a perfused organ by a luminol-H2O2 system.Anal Chem,1993,65(13):1794-9.
    123 Shibuki K.An electrochemical microprobe for detecting nitric oxide release in brain tissue.Neurosci Res,1990,9(1):69-76.
    124 K.Ichimori,H.Ishida,M.Fukahori,H.Nakazawa,and E.Murakami.Practical nitric oxide measurement employing a nitric oxide-selective electrode.Rev.Sci.Instrum.1994,65(8),2714.
    125 Zweier JL,Wang P,Kuppusamy P.Direct measurement of nitric oxide generation in the ischemic heart using electron paramagnetic resonance spectroscopy.J Biol Chem,1995,270(1):304-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700