黄河流域节水农业关键问题的区域特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄河流域对中国农业乃至整个国民经济发展具有举足轻重的作用。然而,由缺水而引起的河流断流、环境退化、水土流失等已给人们的生存环境和区域经济发展带来了严重影响,干旱缺水已成为制约这一区域农业可持续发展的重要限制因子。因此,高效利用水资源,发展现代节水农业,对黄河流域食物安全、生态安全和资源安全都具有重要的战略意义。
     有鉴于此,本博士后工作以黄河流域为研究区域,以地理信息系统(GIS)、小波分析(wavelet analysis)、Surfer技术为手段,揭示黄河流域农业气候资源、土壤墒情的时空演变格局,阐释主要农作物需水与缺水的分布规律,以此为基础构建节水农业区划的指标体系,进行黄河流域节水农业区划及分区发展模式探讨,以期为区域农业水资源高效利用和土壤水分动态监测实施等节水农业关键问题研究提供科学决策依据。取得的主要结论如下:
     ①通过分析过去40年黄河流域的气候变化特征,得出黄河流域多年平均降水量的地区分布既受气侯系统的制约,又受地形等地理环境的影响,造成明显的地区性差异。总的分布趋势是:东南多,西北少,山区降水多于平原,降水量由东南向西北递减:利用1961~2000年月平均降水和年平均降水资料,采用墨西哥帽小波函数,对黄河流域近40年来降水的季节变化和年际变化时间序列进行了小波分析,揭示了黄河流域降水变化的多时间尺度的复杂结构,分析了不同时间尺度下降水序列变化的周期和突变点,并确定了各序列中存在的主要周期。结果表明:黄河流域年降水和各季节降水均存在8~12年左右时间尺度的多少交替,表现出明显的周期特征,其次4~6年左右时间尺度的周期特征也较明显,夏季降水和年降水变化趋势具有较大相似性,不同时间尺度的周期特征之间有不同程度的吻合,说明夏季降水较大程度地控制着年降水。小波分析的时频局部化特性可展现降水时间序列的精细结构,可为分析气候多时间尺度变化特征及短期气候预测等节水关键问题研究提供了一种新途径。
     黄河流域气温总的分布特点是由南向北、由东向西逐渐降低。就年际变化而言,自1960年以来,黄河流域气温呈逐年增长趋势。黄河流域月平均气温,以1月份为最低,以7月份为最高;黄河流域蒸发能力很强,年平均蒸发量为1100mm,且空间分布与降水量相反,由东南向西北递增。
     ②通过黄河流域土壤水分时空演变格局分析表明:黄河流域土壤墒情空间分布格局主要受自然气候特点和人为作用(灌溉)两个方面的影响;黄河流域土壤水分的季节变化可大致分为4个阶段:冬季土壤水分相对稳定阶段(从前一年的11月份末到翌年3月上旬)、春季土壤水分大量蒸发阶段(从3月中旬到6月下旬)、雨季土壤水分恢复阶段(7、8月和9月上旬)、秋季土壤水分缓慢蒸发阶段(从9月中旬到11月下旬)。由于各区域之间土壤、气候条件的差异,各地土壤水分循环4个阶段的划分也不尽相同;黄河流域不同旱作类型区土壤水分动态变化比较结果表明:就季节变化而言,由半干旱偏旱区→半干旱区→半湿润偏旱区→半湿润区土壤水分含量呈逐渐增加的变化趋势,而且高值区一般出现在雨季恢复阶段或春季土壤融冻返浆时期;而低值区均出现在春季大量蒸发阶段或秋季缓慢蒸发阶段;就垂直变化而言,黄河流域不同旱作类型区土壤水分垂直变化的趋势均表现为上层变化幅度较下层大。且由干旱区→半干旱偏旱区→半干旱区→半湿润偏旱区→半湿润区,表层0~5cm→下层50~100cm的变化幅度逐渐减小。同时,土壤含水量从上到下的变化趋势可分为增长型、降低型和波动型三种情况;黄河流域土壤水分垂直变化范围是:活跃变化层大致为0~30cm,缓慢变化层为30~100cm,相对稳定层为>100cm土层:就典型站点不同降水年型土壤水分动态变化规律而言,无论是垂直变化,还是水平变化,典型丰水年土壤含水量的变化幅度均较典型枯水年土壤含水量的变化幅度大。
     ③黄河流域不同类型旱农区的气候水分盈亏和主要作物的降水盈亏研究结果表明:黄河流域气候水分盈亏量在空间上总的变化规律表现为自南向北、自东向西气候水分亏缺量呈逐渐增大趋势,大部分地区全年气候水分亏缺量介于200~600mm之间;就季节分布而言,水分亏缺的主要时期在春季和初夏,亏缺量一般在180~300mm之间;就作物全生育期的需水规律与降水的匹配程度而言,黄河流域冬小麦全生育期需水量大部分地区介于400~700mm之间,空间变化规律与趋势表现为:从东南向西北逐渐增大。而黄河流域冬小麦全生育期多年平均缺水量大部分地区变化在250~500mm之间,且由南向北缺水量有依次递增的趋势,主要反映了冬小麦全生育期降水量与需水量的双重影响;黄河流域夏玉米全生育期多年平均需水量变化在300~500mm之间,整个流域变化范围较小,与冬小麦需水量变化趋势图有很大不同。这与夏玉米生长期短,热量条件差异不大有关。夏玉米全生育期缺水量较多的地区为陕西省关中地区,约为200mm左右,由此向东缺水量值逐渐减少:黄河流域春小麦全生育期多年平均需水量总的变化趋势是从东向西,从南向北逐渐升高,变化在400~700mm之间。多年平均缺水量基本上是从南向北逐渐升高,缺水量变化在200~500mm之间,显然是受降雨与需水两方面的双重影响;黄河流域春玉米全生育期多年平均需水量变化在400~700mm之间。最大值出现在陕西省的榆林、绥德一带,自此向两侧逐渐减少。而春玉米全生育期多年平均缺水量分布则是从南部向北部递增,亏缺量变化在0~400mm之间。
     ④通过遴选指标,采用指数和法、聚类分区法,并参考有关的区划成果,进行黄河流域节水农业分区,结果表明:黄河流域节水农业可分为五个一级区,十八个二级区。其中,五个一级区分别是:干旱极度缺水区、半干旱偏旱重度缺水区、半干旱中度缺水区、半湿润偏旱轻度缺水区和半湿润非缺水区。根据五个一级区,十八个二级区的自然条件与农业生产现状,以提高大气自然降水、地表水、土壤水和地下水等水资源的高效利用为目的,进行了黄河流域节水农业分区发展模式的探讨,从而对实现黄河流域现代节水灌溉农业与现代旱作节水农业的可持续发展具有重要意义。
The Yellow River Basin plays a very important role on Chinese agriculture and the national economic development. However, the river interception, environment degradation, soil erosion, etc, which were caused by lacking water had taken much adverse influence on the people's living environment and regional economic development. Moreover, the situation of water scarcity has seriously restricted agricultural sustainable development in the Yellow River Basin. Therefore, high-efficient water resource utilization and modem water-saving agricultural construction are important stratagems to the food security, ecological security and resource security of the Yellow River Basin.
     In view of this, the Yellow River Basin was selected as the study area in this post-doctor research. The Geographical Information System, wavelet analysis and Surfer method are used to analysis the agricultural climate resource, the spatial and temporal structure of soil moisture and the distribution rule of main crops' water situation in the Yellow River Basin. Based on above mentions, the author constructed the index system to regionalize agricultural types in the Yellow River Basin and put forward the water-saving scheme on agricultural divided area. The results and conclusions of this report will provide scientific basis for other key researches related with water saving agriculture such as agricultural water resource utilization and monitoring of soil moisture, etc. In conclusion, some important results are obtained as follows:
     ①Through analyzing the climatic changes of the Yellow River Basin in the past 40 years, it is showed that the distribution of rainfall in the Yellow River Basin has obviously regional difference, which is influenced not only by the weather system but also by the geographical environment such as topography, etc. The main distribution trend is that there is more in the Southeastern and less in the Northwestern, and the rainfall in mountain areas exceeds the plains; Based on the monthly and annual rainfall data of 1961~2000, the multi-time scales characteristics of seasonal and annual rainfall in the past 40 years in the Yellow River Basin have been analyzed using Mexican Hat wavelet analysis in this report. The periodic oscillation of rainfall variation and the points of abrupt change at different time scales along the time series are discovered and the main periods of every serial are confirmed. The results indicate that there are obvious periodic oscillation of 8-12 years and 4-6 years for the seasonal and annual rainfalls variation. The variation trend of the summer rainfall is similar in some degree with that of the annual rainfall and both of them have the comparable main periods. The localization characteristics of time-frequency for wavelet analysis can demonstrate the detailed structures of rainfall. The wavelet analysis can be an alternative approach to analyze climate multi-time scales characteristics and forecast short-term climate variations.
     The whole distribution trend of the temperature in the Yellow River Basin is that the temperature is reducing gradually from the south to the north and from the east to the west. In respect to annual change, the temperature has an increasing tendency year by year since 1960. Furthermore, the temperature in January is the lowest and July is the highest; the evaporation capacity in the Yellow River Basin is high, the annual average evaporation is about 1100mm, and the spatial distribution is contrary to the distribution of the rainfall, which increases progressively from the Southeastern to the Northwestern.
     ②Through analyzing the spatial and temporal structure of soil moisture in the Yellow River Basin, it is showed that the spatial distribution of soil moisture is mainly influenced by the natural climate characteristics and the anthropogenic influence (such as irrigation). The seasonal variation of soil moisture in the Yellow River Basin can be roughly divided into 4 stages: Relatively stable stage in winter (from last November to the first ten days of March), fast evaporation stage in spring (from midMarch to the last ten days of June), the stage of soil moisture's resuming (July, August and the first ten days of September), the stage of soil moisture's slow evaporation in autumn (from mid-September to the last ten days of November). Because of the regional difference of soil and climatic conditions, the division of 4 stages of soil moisture circulation is not all the same between different areas; the soil moisture dynamics between different dry farming areas in the Yellow River Basin is contrasted in this report. The results indicate that soil moisture increases gradually from dry semi-arid area to semi-arid area, dry semi-humid area and semi-humid area, and the high value district generally appears during soil moisture resuming period in rainy season or soil melting period. While the low value district appears at the stage of fast evaporation in spring or slow evaporation in autumn; in views of vertical changes of soil moisture, it is showed that the variation range of upper lays is larger than that of lower among the different dry farming areas in the Yellow River Basin. Moreover, the variation range from 0~5cm to 50~100cm reduce gradually from dry area, dry semi-arid area, semi-arid area, dry semi-humid area to semi-humid area. The variation tendency of soil moisture from top to bottom can be divided into three kinds situations, such as increasing type, reducing type and fluctuating type; The vertical changing range of soil moisture in the Yellow River Basin can be conclude as: the active changing layer lies in between 0cm and 30cm roughly, while the slow changing layer lies in between 30cm and 100cm, and the relatively stable layer lies in undersurface of 100cm; In respect to the dynamic changes of soil moisture in different precipitation years in typical stations, no matter the vertical change, or the horizontal change, the variation range of soil moisture is larger in typical abundant rainfall year than in typical lacking rainfall year.
     ③Climate water balance in different dry fanning areas and main crops rainfall balance in the Yellow River Basin are analyzed in this report. The results indicate that: climate water in the Yellow River Basin increase gradually from south to north and from west to east in the space, which change between 200mm and 600mm in most areas; In views of the seasonal changes of climate water, water shortage happens in spring and early summer, which is exposed to being between 180mm and 300mm generally.
     As far as the matching degree of the water requirement of main crops with precipitation in the whole growing period, the water requirement of winter wheat in the whole growing period varies from 400mm to 700mm in most areas in the Yellow River Basin, and it increases from the Southeastern to the Northwestern in the space, but the water shortage amount of winter wheat varies from 250mm to 500mm in the whole growing period, and it increases gradually from the south to the north, which reflects the double influences of precipitation and water requirement of winter wheat in the whole growing period; The water requirement of summer maize changes from 300mm to 500mm in the whole growing period in the Yellow River Basin, which has a small change in whole basin relatively and is much different with the water requirement of winter wheat, which was caused mostly by the short growth period and little difference of heat condition for summer maize. Guanzhong area of Shaanxi Province is the place where the summer maize has a big water lack amount in its whole breeding time and which can reach about 200mm and reduces gradually to the east. The water requirement of spring wheat in its whole growing period in the Yellow River Basin varies from 400mm to 700mm and increases gradually from the south to the north and from the west to the east. While its lacked-water amount increases gradually from the south to the north, and normally between 200mm and 500mm, which is mostly influenced by the rainfall and water requirement obviously; the water requirement of spring maize is usually between 400mm and 500mm in the Yellow River Basin. The maximum value appears in Yulin and Suide of Shaanxi Province and reduces gradually from this to both sides. While the water shortage amount of spring maize in its whole growing period varies from 0mm to 400mm which increases gradually from the south to the north.
     ④Based on selecting index and using relevant methods, classification of water-saving agriculture in Yellow River Basin is carried on in this report. The result indicates that the water-saving agriculture in the Yellow River Basin can be zoned into 5 first-class areas and 18 second-class areas. The 5 first-class is that dry and extremely lacked water area, dry semi-arid and severe lacked water area, semi-arid and moderate lacked water area, dry semi-humid and tiny lacked water area and semi-humid and none-lacked water area. Based on the natural conditions and agricultural production status of the 5 first-class areas and the 18 second-class areas, the water-saving agricultural development modes for each are discussed in this report in order to improve the high-efficient utilization of water resources such as natural rainfall, surface water, soil water and groundwater. Therefore, it is very significant to realize sustainable development of the modern water-saving irrigation agriculture and modern drought water-saving agriculture in the Yellow River Basin.
引文
1. A.Henderson-Sellers.Soil moisture:A critical focus for global change studies.Global and Planetary Change,13(1996) 3-9
    2. A.Henderson-Sellers.Soil moisture simulation:Achievements of the RICE and PILPS intercomparison workshop and future directions.Global and Planetary Change,13(1996) 99-115
    3. Andrew W.Western,Gunter Bloschl.On the spatial scaling of soil moisture.Journal of Hydrology,217(1999) 203-224
    4. Chulsang Yoo,Juan B.,Valdes & Gerald R.North.Evaluation of the impact of rainfall on soil moisture variability.Advance in Water Resources,21(1998) 375-384
    5. Clemen,T.,The use of scale information for integrating simulation models into environmental information systems,Ecological Modelling,1998,108:107-113
    6. Dai.X.G,W.P.,Chou.J.R,Multiscale characteristics of the rainy season rainfall and interdecadal decaying of summer monsoon in North China.Chinese Science Bulletin,2003,48(24) :2730-2734
    7. Harald Kaspersen,J.,Krogstad,P.,Wavelet-based method for burst detection,Fluid Dynamics Research,2001,28:223-236
    8. K.J.Tansey,A.C.Millington,A.M.Battikhi,K.H.White.Monitoring soil moisture dynamics using satellite imaging radar in northwestern Jordan.Applied Georaphy,19(1999) 325-344
    9. Matthews K B.Climate soil moisture deficit climate and soil data integration in a GIS.Climate,1994,28:273-283
    10. Meixue Yang,Tandong Yao,xiaohua Gou,Toshio Koike,Yuanqing He.The soil moisture distribution,thawing-freezing processes and their effect on the seasonal transition on the Qinghai-Xizang(Tibetan)plateau.Journal of Asian Earth Sciences,21(2003) 457-465
    11. M.Herbst,B.DiekkRuger.Modeling the spatial variability of soil moisture in a micro-scale catchment and comparison with field data using geostatistics.Physics and Chemistry of the Earth.28(2003) 239-245
    12. Nancy F.Glenn,James R.Carr.The use of geostatistics in relating soil moisture to RADARSAT-1 SAR data obtained over the Great Basin,Nevada,USA.Computers & Geosciences,29(2003) 577-586
    13. Nener,B.D.,Ridsdill-Smith,T.A.,Zeisse,C,Wavelet analysis of low altitude infrared transmission in the coastal environment,Infrared Physics & Technology,1999,40:399-409
    14. OweM. Estimating Surface Soil Moisture from Satellite Microwave Measurement and a Satellite Derived Vegetation Index. Remote Sens Environ, 1988, 24: 331-345
    15. O.Wendroth, W.Pohl, S.Koszinski, H.Rogasik, C.J.Ritsema, D.R.Nielsen. Spatial-temporal patterns and covariance structures of soil water status in two Northeast-German field sites. Journal of Hydrology, 215(1999) 38-58
    16. SeguinB. The Assessment of Regional Crop Water Conditions from eteorological Satellite Thermal Infrared Data. Remote Sens Environ, 1991, 35:141-148
    17. Vassilis Z., Antonopoulos. Simulation of soil moisture dynamics on irrigated cotton in semi-arid climates. Agricultural Water Management. 34(1997)233-246
    18. Walter I A, Allen R G, Elliott R et al. ASCE's standardized reference evapotranspiration equation. In:Evans R L(ed.). Proceedings of the 4th Decennial Symposium, National Irrigation Symposium. Michigan:American Society of Civil Engineers, 2000,1-6
    19. Yang Qiu, Bojie Fu, Jun Wang, Liding Chen. Spatial variability of soil moisture content and its relation to environmental indices in a semi-arid gally catchment of the Loess Plateau, China. Journal of Arid Environments,(2001)49:723-750
    20. Yang Qiu, Bojie Fu, Jun Wang & Liding Chen. Soil moisture variation in relation to topography and land use in a hillslope catchment of the Loess Plateau, China. Journal of Hydrology, 240(2001)243-263
    21.白惠义,张优良,刘景莉等.青海省旱作节水农业的发展现状及对策.青海农技推广,2001,(1):3-5
    22.白世彪,陈晔,王建.等值线绘图软件SURFER 7.0中九种插值法介绍.物探化探计算技术,2002,24(2):157-162
    23.白世彪,王军见,闾国年.Surfer软件在水下地形三维可视化与分析中的应用.海洋测绘,2004,24(5):51-53
    24.北方旱地农业类型分区及其评价课题研究协作组.北方旱地农业类型分区及其评价.中国农业科学院农业自然资源和农业区划研究所内部资料,1986
    25.常庆瑞,孟庆香,刘京等.黄土丘陵沟壑区土地承载力及提高途径探讨.西北农林科技大学学报,2002,30(6):16-20
    26.陈洪松,郝明德,宋孝玉.黄土高原沟壑区农田土壤水分动态变化分析.水土保持研究,2003,10(1):92-94
    27.陈洪松,邵明安.中子仪的标定及其在坡地土壤水分测量中的应用.干旱地区农业研究,2003,21(2):68-76
    28.陈怀亮,毛留喜等.遥感监测土壤水分的理论、方法及研究进展.遥感技术与应用,1999,14(2):55-65
    29.陈晓燕,路桂华,秦福兴等.国外节水研究进展.水科学进展,2002,13(4):526-532
    30.陈玉民,郭国双.中国主要农作物需水量等值线图研究.北京:中国农业科技出版社,1993
    31.程殿龙,马宏志,许晓春.神经网络方法在土壤墒情预测中的应用.中国农村水利水电,2002,(7):6-8
    32.崔读昌.中国农业气候学.杭州:浙江科学技术出版社,1998
    33.崔增团.甘肃节水农业要有新突破.发展,2004,(4):72-73
    34.邓自旺,尤卫红,林振山.小波变换在全球气候多时间尺度变换分析中的应用.南京气象学院学报,1997,20(4):505-510
    35.杜守宇,田恩平.大力推广旱作节水农业技术推动宁南山区农业持续稳定发展.宁夏农林科技,2000,(2):5-9
    36.傅国斌.引黄灌区节水灌溉分区与节水途径初探.地理科学进展,2000,19(2):167-172
    37.顾宇平.黄河流域大型灌区节水改造战略研究.郑州:黄河水利出版社,2002
    38.桂林国.引黄灌区农业节水的技术措施与途径.宁夏农林科技,2003,(5):31-32
    39.过春燕,张邦俊.基于Surer的机场噪声等值线计算机绘制方法.中国环境科学,2003,23(6):631-634
    40.韩湘玲.农业气候学.太原:山西科学技术出版社,1999
    41.何其华,何永华,包维楷.干旱半干旱区山地土壤水分动态变化.山地学报,2003,21(2):149-156
    42.侯宝英.西北地区节水农业发展的关键技术.中国水利,2002,(4):56-58
    43.侯春梅,张志强,刘小伟等.黄河源区生态环境问题与可持续发展对策.中国人口·资源与环境,2001,11(51):51-53
    44.侯江炜.陕西省黄河流域水资源开发利用问题及对策.陕西水利,2002,(2):18-19
    45.侯琼,沈建国.内蒙古主要农田土壤水分变化规律与供水分析.内蒙古水利,2001,(4):19-24
    46.胡恒觉等.黄土高原旱地农业—理论、技术、潜力.北京:中国农业出版社,2002
    47.胡明星.应用Surfer增强ArcView的3维显示.测绘通报,2003,(2):47-49
    48.黄奕龙,陈利顶,傅伯杰等.黄土丘陵小流域地形和土地利用对土壤水分时空格局的影响.第四纪研究,2003,23(3):334-342
    49.贾尚文,黄淑琳,刘翰章等.对于发展武川县旱作农业的几点思考.内蒙古农业科技,1998,214-215
    50.姜联合,王建中,郑元润等.鄂尔多斯高原退化生态系统恢复与区域经济发展.干旱区研究,2004,21(6):144-149
    51.康绍忠.西北地区农业节水与水资源持续利用.北京:中国农业出版社,1999
    52.孔学夫,晋小军.旱地农田土壤水分动态变化规律及其应用.甘肃农业科技, 2001,(1):18-20
    53.匡正,季仲贞,林一骅.华北降水时间序列资料的小波分析.气候与环境研究,2000,5(3):312-317
    54.雷波,姜文来.节水农业综合效益评价研究进展.灌溉排水学报,2004,23(3):65-69
    55.冷石林,韩仕峰等.中国北方旱地作物节水增产理论与技术.北京:中国农业科技出版社,1996
    56.李爱民,郭兰芳,吴红燕.山西省黄河流域地表水水功能区划分及其研究.山西水利科技,2002,(2):29-32
    57.李保国,龚元石,左强等.农田土壤水的动态模型及应用.北京:科学出版社,2000
    58.李翠娥.试论河套灌区节水农业与排水技术的协调发展.内蒙古科技,2003,(1):82-83
    59.李法虎.田间土壤水分监测方法及原理介绍.灌溉排水,1995,14(2):38-41
    60.李海滨,林忠辉,刘苏峡.Kriging方法在区域土壤水分估值中的应用.地理研究,2001,20(4):446-452
    61.李洪建,王孟本,柴宝峰.黄土高原土壤水分变化的时空特征分析.应用生态学报,2003,14(4):515-519
    62.李会安.黄河灌区用水现状、节水潜力和途径.中国农村水利水电,2004,(4):13-15
    63.李建华,冯黎,吴来群.黄河断流的成因分析.西北水电,2004,(3):58-61
    64.李鸣骥.黄河上游地区水资源可持续利用研究.宁夏大学学报,2003,24(2):138-142
    65.李强坤.黄河流域农田灌溉节水措施浅析.节水灌溉,1997,(3):40-42
    66.李庆朝.黄河下游引黄灌区的节水灌溉.山东师范大学学报,2004,19(2):70-72
    67.李新宁,王家林,吴健生等.借鉴GIS基本思想在Sufer中实现复杂地质图件的绘制.物探化探计算技术,2001,23(1):62-67
    68.李星民,李兆元,杨文峰.黄河流域旱涝特征分析.陕西气象,1999,(6):16-19
    69.李雄.利用SURFER软件包绘制气候图.广西气象,1997,18(4):57-58
    70.李应林,高素华,郭建平.我国春玉米水分供需状况分析及改善对策.气象与环境研究,2004,9(2):331-341
    71.李铮.山西旱作节水农业的特点及发展趋势.山西农业科学,2004,32(3):86-90
    72.刘建忠.山西农业节水区划及节水技术应用模式.太原科技.应用研究,2004,(2):88-92
    73.刘景华.山东省农业灌溉现状及节水模式探讨.节水灌溉,2002,(3):37-38
    74.刘晓英,林而达,刘培军.Priest ley2Taylor与Penman法计算参考作物蒸发量的结果比较.农业工程学报,2003,19(1):32-36
    75.刘晓英,林而达.气候变化对华北地区主要作物需水量的影响.水利学报,2004,(2):77-83
    76.刘秀珍,孟明,张静.山西水资源现状与发展节水农业的对策.山西农业大学学报,200l,21(2):191-193
    77.刘巽浩.中国种植制度区划,1986
    78.刘钰,L.S.Pereira,G.L.Teixeira,蔡林根.参照蒸发量的新定义和计算方法对比.水利学报,1997,(6):27-33
    79.刘钰,L.S.Pereira.对FAO推荐的作物系数计算方法的验证.农业工程学报,2000,16(5):26-30
    80.刘志明,张柏等.土壤水分与干旱遥感研究的进展与趋势.地球科学进展,2003,18(4):576-583
    81.刘智荣,张学文.浅析黄河缺水对宁夏灌区的影响.市场经济研究,2003,4:45-46
    82.柳长顺,刘昌明,杨红.海河流域水资源管理分区研究.地理学报,2004,59(3):349-356
    83.罗其友,宫连英,薛志士.节水型农业分区指标系统的初步研究.农业现代化研究,1997,18(1):52-55
    84.罗其友.21世纪节水农业持续推进的战略思考.农业技术经济,1999,(3):5-9
    85.罗生洲.环青海湖地区生态环境问题与对策.青海科技,2004,(3):7-11
    86.马红,宋靖林,冯学明.浅谈黄河水资源管理与保护.中国水利,2003,(6):71-72
    87.马青春,陈希村,李传永.微机绘制等值线图的简易算法.山东水利,2002,(2):49-50
    88.马耀光,张保军,罗志成等.旱地农业节水技术.北京:化学工业出版社,2004
    89.梅旭荣,史长丽.我国农业用水态势与节水高效农业发展战略.梅旭荣,蔡典雄,逄焕成,杨正礼.节水高效农业理论与技术,中国农业科学技术出版社,2004,4:3-9
    90.孟翀,武朝宝,贾云茂等.汾河灌区节水潜力与节水农业研究.山西水利科技,2001,(11):49-51
    91.蒲金涌,蒲永义,姚晓英.陇东南天水市地区土壤水分变化规律研究.甘肃农业,2002,(3):27-28
    92.齐学斌.节水灌溉发展模式分析及有关问题思考.节水灌溉,2002,(6):11-14
    93.钱征寒,倪晋仁.黄河断流及其生态环境影响.刘昌明,陈效国.黄河流域水资源演化规律与可再生性维持机理研究和进展.郑州:黄河水利出版社,2001
    94.曲耀光.甘宁蒙陕农牧交错区的水资源及节水研究.中国沙漠,2004,22(5): 516-519
    95.任鹤麒,金龙.雨后麦田土壤湿度变化的诊断分析.气象科学,1996,16(3):264-271
    96.三味工作室.SPSS V10.0 for Windows实用基础教程.北京:北京希望电子出版社,2001
    97.尚虎君.黄土高原农业水资源有效管理技术研究.西北水资源与水工程,2002,13(4):32-37
    98.邵明辉,李银芳.应用SURFER软件绘制土壤湿度时间等值线图的方法.干旱区研究,1996,13(2):63-68
    99.邵晓梅,严昌荣,徐振剑.土壤水分监测与模拟研究进展.地理科学进展,2004,23(3):58-66
    100.邵治亮.我国发展高效节水农业的可行性途径探讨.中国资源综合利用,2002,(8):18-20
    101.沈强云,田军仓,张富国.引黄灌区发展节水农业的途径及潜力分析.宁夏农林科技,2004,(2):35-38
    102.石辉.黄土高原的水环境与节水农业.天津师大学报,1999,19(3):50-56
    103.石玉林,卢良恕.中国农业需水与节水高效农业建设.北京:中国水利水电出版社,2001
    104.苏萍.农业水资源可持续利用与节水农业.西北水资源与水工程,2000,11(3):11-15
    105.隋洪智,田国良.热惯量方法监测土壤水分.见:田国良主编.黄河流域典型地区遥感动态研究.北京:科学出版社,1990
    106.覃军,张录军,胡江林.武汉近百年来气温变化的多时间尺度分析.气象科学,2001,21(2):206-210
    107.陶毓汾,王立祥,韩仕峰等.中国北方旱农地区水分生产潜力及开发.北京:气象出版社,1993
    108.万惠娥,程积民,雍绍萍.西部旱农区水资源与调控途径.水土保持学报,2000,14(3):75-79
    109.汪梅军.实施节水农业为宁夏经济社会持续发展提供水资源保证.宁夏科技,1999,(1):34-35
    110.王海英,董锁成.黄河沿岸地带水资源短缺的症结与对策探讨.自然资源学报,2002,17(5):590-596
    111.王军,傅伯杰,邱扬,陈利顶.用空间内插法研究黄土丘陵小流域土壤水分时空分布特征.自然科学进展,2002,12(4):430-433
    112.王林生.豫西旱农区水资源的开发与利用.安徽农业科学,2002,30(4):628-630
    113.王玲,徐建华,钱云平.黄河水沙特征研究述评.刘昌明,陈效国.黄河流域水资源演化规律与可再生性维持机理研究和进展.郑州:黄河水利出版社,2001
    114.王龙昌,谢小玉,王立祥等.宁南旱区农田作物生产潜力综合评价及其开发对 策.农业系统科学与综合研究,2004,20(2):85-88
    115.王全祥,雷晓萍,王康宁.宁夏节水农业持续推进战略.宁夏农林科技,2003,(4):58-59
    116.王绍武,龚道溢,叶瑾琳等.1880年以来中国东部四季降水量序列及其变率.地理学报,2000,55(3):281-293
    117.王世民,刘炳瑞,杜晓文.河套地区节水农业发展前景及工程技术措施.农业牧区机械化,2002,(3):16-17
    118.王晓琴.宁南干旱山区的节水灌溉技术.中国农村水利水电,2001,(3):27-29
    119.王晓云,郭文利等.利用“3S”技术进行北京地区土壤水分监测应用技术研究.应用气象学报,2002,13(4):422-429
    120.王燕.安徽节水农业分区初步研究.中国农村水利水电,2001,(7):13-15
    121.王再兴,王立赓,刘海梅.浅析河套灌区农业灌溉应对黄河水资源严重短缺的对策.内蒙古水利,2003,(3):44-46
    122.王政权.地统计学及在生态学中的应用.北京:科学出版社,1999
    123.王志良,邱林,梁川等.基于聚类分析的水资源分区研究.华北水利水电学院学报,2001,22(2):7-10
    124.魏振超,何离庆等.基于GIS的土壤信息系统.重庆大学学报,2003,26(6):39-41
    125.文雅,郭治兴.应用Win-Surfer软件绘制降水等值线图.土壤与环境,2002,11(4):360-362
    126.吴德胜,牛贵峰,贾培质.河套地区发展节水农业的探讨.内蒙古科技与经济,2004,(22):66
    127.吴进贤.中部半干旱地区农田土壤水分动态变化规律.甘肃农业科技,2002,(1):17-18
    128.吴景社,康绍忠,王景雷等.基于主成分分析和模糊聚类方法的全国节水灌溉分区研究.农业工程学报,2004,20(4):64-68
    129.吴丽娜,王红瑞,程晓冰等.黄河流域水资源管理中的问题和对策.资源科学,2003,25(3):56-61
    130.吴绍洪,尹云鹤,郑度等.青藏高原近30年气候变化趋势.地理学报,2005,60(1):3-11
    131.吴湘宏,吴进贤.甘肃省节水农业现状与发展目标及保障措施.甘肃农业科技,2002,(2):3-4
    132.武继承,杨稚娟,郑惠玲.旱地农业高效发展的模式探讨.梅旭荣,蔡典雄,逢焕成,杨正礼.节水高效农业理论与技术,中国农业科学技术出版社,2004,4:141-145
    133.武继承,游保全,汪立刚.我国高效节水型可持续农业发展模式选择.中国人口·资源与环境,2001,11(2):69-72
    134.武继承,张长明等.旱作农区降水高效利用技术研究与应用.梅旭荣,蔡典雄, 逄焕成,杨正礼.节水高效农业理论与技术,中国农业科学技术出版社,2004,4:146-152
    135.伍永秋,刘宝元等.黄土高原土壤水分的自动监测—TDR系统及其应用.水土保持学报,2001,15(2):108-111
    136.信乃诠等.中国北方旱区农业研究.北京:中国农业出版社,2002
    137.熊文兵.用Surfer7.0绘制气象等值线图.广西气象,2003,24(3):43-45
    138.徐征和,员汝安,王继光等.山东省引黄灌区农业节水技术应用研究.灌溉排水,2002,21(2):40-43
    139.许迪,康绍忠.现代节水农业技术研究进展与发展趋势.高技术通讯,2002,(12):103-108
    140.许迪,刘钰.测定和估算田间作物腾发量方法研究综述.灌溉排水,2004,16(4):54-59
    141.许月卿,李双成,蔡运龙.基于小波分析的河北平原降水变化规律研究.中国科学 D辑 地球科学,2004,34(12):1176-1183
    142.薛亮.中国节水农业理论与实践.北京:中国农业出版社,2002
    143.薛志士,宫连英,罗其友等.黄河流域水土资源农业利用研究.北京:中国科学技术出版社,1992
    144.严昌荣,居辉等.中国北方旱地农田水分动态变化特征.农业工程学报,2002,18(3):11-14
    145.杨辉,宋正山.华北地区水资源多时间尺度分析.高原气象,1999,18(4):496-508
    146.杨建平,丁永建,陈仁升等.近40a中国北方降水量与蒸发量变化.干旱区资源与环境,2003,17(2):6-11
    147.杨瑞吉.浅谈陇中黄土丘陵沟壑雨养农区存在的问题及对策.甘肃农业,2004,(1):45-46
    148.杨胜,冯斌.集雨节灌是山旱地区农业生产的重要措施.甘肃农业科技,1998,(5):20-21
    149.杨胜天,刘昌明等.黄河流域土壤水分遥感估算.地理科学进展,2003,22(5):454-462
    150.杨士荣,伏天清,张振国.山西省黄河流域农业节水现状和未来发展对策.水资源保护,2001,(1):11-13
    151.杨晓茹.陕西省农业节水灌溉模式探讨.地下水,2004,26(2):120-122
    152.杨兴国,柯晓新,张旭东等.甘肃河东雨养农业区水分变化规律的研究.应用气象学报,2000,11(2):205-213
    153.杨义财,赵海棠,孙远扩等.黄河水资源可持续利用对策研究.孙广生,孙寿松,陈连军主编.黄河水资源管理研究论文集.郑州:黄河水利出版社,2002,230-233
    154.姚治军,林耀明,高迎春等.华北平原分区适宜性农业节水技术与潜力.自然 资源学报,2000,15(3):259-264
    155.尤卫红,段旭,杞明辉.连续小波变换在云南近百年气温和降水变化分析中的应用.高原气象,1998,18(1):47-54
    156.张超,王会肖.土壤水分研究进展及简要评述.干旱地区农业研究,2003,21(4):117-125
    157.张桂艳,朱全顺.积极调整种植业结构,大力发展黄河三角洲旱作节水农业.中国农业信息,2003,(11):13
    158.张国胜,李林,时兴合等.黄河上游地区气候变化及其对黄河水资源的影响.水科学进展,2000,11(3):277-283
    159.张国胜,李林,徐维新等.青海省东部农业区旱地土壤水分演变特征分析.中国沙漠,2000,20(3):314-316
    160.张国学,马国强,刘宝耀.青海海东地区保水固土的植被建设途径.陕西林业科技,2002,(3):55-57
    161.张会敏,罗玉丽,冯耀华等.黄河流域发展节水型农业的措施探讨.人民黄河,1999,21(3):27-29
    162.张建国,杜玉柱,李俊叶.晋南节水农业潜力分析.运城高等专科学校学报,2001,19(6):69-70
    163.张建国,赵惠军,张若琼.山西省黄河流域的水环境问题.长江职工大学学报,2003,20(4):1-4
    164.张军涛,艾华等.东北农牧交错区水分条件的空间分异及其对土地利用的影响.地理科学进展,2001,20(3):234-239
    165.张立新,耿增超,同延安等.渭北旱塬旱作节水农业示范区建设模式探讨.水土保持研究,2002,9(1):26-29
    166.张升堂,刘音,郭传金.中国农业生产现状及发展节水农业必需性分析.西北水利水电,2002,18(4):51-53
    167.张苏林.发展旱作农业和节水农业是干旱地区农业的出路.国土与自然资源研究,1999,(14):4-7
    168.张希彪.陇东黄土高原农业生态环境恢复与重建策略.农业环境与发展,2003,(3):30-33
    169.张义丰,王又丰,刘录祥等.中国北方旱地农业研究进展与思考.地理研究,2002,21(3):305-312
    170.赵秉栋,赵庆良,焦士兴,赵军凯.黄河流域水资源可持续利用研究.水土保持研究,2003,10(4):102-104
    171.赵聚宝,徐祝龄等.中国北方旱地农田水分开发利用.北京:中国农业出版社,1996
    172.赵聚宝,徐祝龄等.中国北方旱地农田水分平衡.北京:中国农业出版社,2000
    173.中国农业科学院.中国北方旱农区域治理与发展.北京:中国农业科技出版社,1997
    174.钟兆站,赵聚宝,郁小川等.中国北方主要旱地作物需水量的计算与分析.中国农业气象,2000,21(2):1-5
    175.周长进,董锁成,李岱.定西地区主要生态环境问题与对策.干旱区资源与环境,2004,18(6):32-37
    176.朱晓原,张学成.黄河水资源变化研究.郑州:黄河水利出版社,1999
    177.朱燕君,李海萍.黄河断流的气候因子分析.资源科学,2003,25(2):26-31
    178.左爱华,丁亚林,张加强等.从山东黄河水资源开发利用现状谈黄河水资源的管理与保护.孙广生,孙寿松,陈连军主编.黄河水资源管理研究论文集.郑州:黄河水利出版社,2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700