酸性嫩黄G和柠檬黄对血清白蛋白毒性作用机理及相关问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人类社会的发展,人们的生活水平得到了很大的提高,但同时环境污染对人类的生存和发展造成了严重威胁。环境问题虽越来越受到重视,但依然是目前最重要的全球性问题之一。人们通过空气、水、食物等接触到的潜在危险物越来越多。这些潜在的危险物质能通过消化道、呼吸道以及皮肤接触等渠道进入生物体内,通过各种方式与体内的大分子生命物质(如蛋白质、核酸、酶等)直接或间接地发生作用,影响或者破坏了这些分子的生物功能,对各个器官造成不同程度的损伤,从而对机体产生毒性效应,诱发各种疾病。因此,研究这些具有潜在威胁的环境污染物对生物大分子的毒性作用机理是非常必要的,这有助于对这些物质的毒性做出全面的评价,为制订合理的标准来保障人身体健康和安全提供参考和技术支持。
     现在最常用的污染物毒性评价方式主要有动物实验和流行病学调查两种,但却都无法从分子水平上解释污染物的毒性作用机理,不能从根本上阐明毒性效应。为了弥补这一缺点,本论文从分子水平出发,在体外条件下采用光谱学手段探讨了小分子污染物与蛋白质功能大分子的毒性相互作用,有助于增强人们对该类化学污染物在血液传输过程与血清白蛋白结合后对白蛋白毒性作用的认识,为此类污染物的毒性作用的阐明提供了新的视角。
     本论文选用了生物体内最普遍的蛋白质—血清白蛋白(SA)为靶分子,在体外条件下分子水平上,通过荧光光谱、同步荧光光谱、三维荧光光谱、紫外-可见吸收光谱、圆二色性光谱等技术手段研究了其与两种常见的水溶性偶氮染料的毒性作用机理,建立了一种评价污染物生命体毒性的新方法。另外,在实验的进行过程中发现并解决了内滤效应对荧光测定的影响,以及蛋白质特征光谱的解读等相关问题。
     本论文共分六章内容,其中主要实验内容包括四部分:
     第一部分:选用了酸性嫩黄G(AY11)作为研究对象,以牛血清白蛋白(BSA)为靶,利用荧光光谱、紫外可见光谱、圆二色谱等光谱学手段,从分子水平上研究了AY11对蛋白质分子的影响。实验发现,AY11能够与BSA发生中等强度的结合,会与BSA生理过程中与正常结合的内源与外源化合物相竞争,改变了蛋白质的结构,从而影响蛋白分子正常的运输作用,产生毒性作用。另外,通过实验证明了AY本身的吸收对荧光的测定结果影响很小,可以忽略。
     第二部分:选用了柠檬黄(AY23)作为研究对象,选用了两种血清白蛋白(SA)牛血清白蛋白(BSA)和人血清白蛋白(HSA)为靶,利用上一章的荧光光谱、紫外可见光谱、圆二色谱等光谱学手段,并引入了更加直观的三维荧光光谱法,从分子水平上研究了AY23对蛋白分子的毒性作用影响。实验结果表明,柠檬黄对两种蛋白均具有毒性作用,使蛋白的结构均发生了不同程度的改变。
     通过这两部分的研究,发现在光谱法研究蛋白质体系中存在的一系列问题,如荧光测定过程中的内滤效应对测定的影响,以及蛋白质光谱特征解释不够明确或存在偏差。因而在以下两部分部中进行了相关的研究。
     第三部分:由于前两部分都采用了有颜色的偶氮染料作为污染物,而染料本身的颜色,会导致其对特定波长的光有吸收作用,这将有可能会干扰蛋白质荧光光谱的测定。为了确定这种吸收作用会不会对实验产生干扰,以及如何消除这种干扰,本部分进行了一系列的相关实验,确定了在前两部分的实验中这种干扰对实验的影响很小。但是在其他污染物与蛋白的体系研究中发现,这种干扰还是会对实验结果产生比较严重的影响,为此设计了一种装置和配套的方法来消除这种干扰对实验结果的影响,相关成果已经申请专利。
     第四部分:在第二部分的试验中引入了三维荧光光谱技术,但是在图谱的解析过程中发现,现有的理论并不完善,甚至有些还存在偏差。因此,在本部分中,通过三维荧光光谱及紫外可见吸收光谱技术,利用用氨基酸来模拟蛋白质的方法研究了蛋白质的特定光谱,对蛋白质各个特征峰的产生机理做了详细的解释,为以后的分子水平研究提供了详细的参考。
The rapid development of society has not only improved the living standard of humans, but also poses great threat to the human health. In recent years, considerable attention has been paid to the globally environmental pollution. However, humans are still exposed to these persistent pollutants via air, water, foods and other ways, which would transport directly through the digestive tract, respiratory tract and skin contact channels into the biological body and produce the toxicity to humans by the direct or indirect interactions with biological macromolecules in vivo, such as proteins, nucleic acids, and enzymes. Therefore, it is of great importance to research on the potential toxicity of pollutants to the bimolecular, which will help more to complement studies on the environmental risk assessment of pollution, and provide some reference and technical support for the relevant standard of protecting human health and safety.
     There are lots of toxicity evaluations for pollutants, of which the most commonly two are animal experiments and epidemiological investigations, but these methods can not explain the toxicity mechanism from the molecular level. In order to compensate for this, we adopted the spectroscopic techniques to study the toxicity mechanism in vitro from the protein level, which will help to understand and predict the toxicity of the contaminants to the protein in the blood, and it also provide a new perspective to clarify the toxicity of contaminants.
     In this paper, the mechanism interactions of two common soluble azo dyes to serum albumins have been investigated under simulated physiolocigal condition by means of fluorescence, synchronous fluorescence, three-dimensional fluorescence, UV-vis absorption (UV), and circular dichroism (CD). We also designed a device to verify the inner filter effect by experiment and clarified the related issues about the spectral characteristics of proteins from a new perspective.
     The paper is divided into six parts, of which the main experiments consist of four parts:
     Part 1:We studied the effect of acid yellow (AY 11) exposure to the common protein bovine serum albumin (BSA) by several spectroscopic techniques including fluorescence, UV and CD. It was found that AY could interact with BSA moderately by competing with the endogenous and exogenous compounds to the protein binding, and it caused conformational changes of protein, which could affect its activity or even change its physiological function. Besides, AY was proved to have little impact on the fluorescence of BSA by a verification experiment.
     Part 2:We selected two serum albumins (SA), human serum albumin (HSA) and BSA, as the targets to evaluate the toxic effects of tartrazine (AY23) by means of the above techniques and a more intuitive three-dimensional fluorescence spectroscopy from the protein level. And the results confirmed that AY23 indeed impact the conformation of both HSA and BSA.
     A series of problems in the protein study were founded from these above parts, such as the inner filter effect to the fluorescence, and the unclearly explanation or deviation on the protein spectral characteristics. Therefore, these problems were studied in the next two sections.
     Part 3:With their own colors, the dyes will cause the light absorption among the specific wavelengths, which may possible interfere with the protein fluorescence spectra. To determine the impact of dyes absorption, a series of experiments were made and the results proved that there was little effect on the fluorescence spectra because of the absorption. However, in other systems, the absorption has serious effects on the results of the protein fluorescence. Thus we designed a device to eliminate the impact of absorption, and the relevant results have been patented.
     Part 4:The adoption of three-dimensional fluorescence spectroscopy in the second part revealed that some protein spectral characteristics were not explained perfectly and some deviations were founded in the explanation. As a result, in this section, we simulated the protein with the twenty amino acids to obtain the specific protein spectra by means of the three-dimensional fluorescence spectroscopy and UV methods. The improvement of the protein spectra explanation will provide a detailed reference to the future molecular study.
引文
[1]M. Gulden, S. Morchel, S. Tahan, et al., Impact of protein binding on the availability and cytotoxic potency of organochlorine pesticides and chlorophenols in vitro, Toxicology,2002, 175(1):201-213.
    [2]X. Cheng and C. D. Klaassen, Perfluorocarboxylic acids induce cytochrome P450 enzymes in mouse liver through activation of PPAR-alpha and CAR transcription factors, Toxicol Sci, 2008,106(1):29-36.
    [3]X. Yao and L. Zhong, Genotoxic risk and oxidative DNA damage in HepG2 cells exposed to perfluorooctanoic acid, Mutat Res,2005,587 (1):38-44.
    [4]A. S. Faqi, W. D. Johnson, R. L. Morrissey, et al., Reproductive toxicity assessment of chronic dietary exposure to soy isoflavones in male rats, Reprod Toxicol,2004,18 (4): 605-611.
    [5]孟紫强,环境毒理学基础,北京,高等教育出版社,2003.
    [6]J. H. Yeon and J. K. Park, Cytotoxicity test based on electrochemical impedance measurement of HepG2 cultured in microfabricated cell chip, Anal Biochem,2005,341 (2): 308-315.
    [7]S. A. Tittlemier, K. Pepper, C. Seymour, et al., Dietary exposure of Canadians to perfluorinated carboxylates and perfluorooctane sulfonate via consumption of meat, fish, fast foods, and food items prepared in their packaging, J Agric Food Chem,2 007,5(8) 3203-3210.
    [8]D. C. Carter and J. X. Ho, Structure of serum albumin, Adv Protein Chem,1994,45: 153-203.
    [9]陶慰孙,李惟,姜涌明,蛋白质分子基础,北京,高等教育出版社,1995.
    [10]黄诸森,张远强,生物化学与分子生物学,北京,科学出版社,2003.
    [11]F. J. Miller, Jr., D. D. Gutterman, C. D. Rios, et al., Superoxide production in vascular smooth muscle contributes to oxidative stress and impaired relaxation in atherosclerosis, Circ Res,1998,82 (12):1298-1305.
    [12]F. Lu, J. H. Pan, Y. Liu, et al., Study on the interaction of bovine serum albumin with acid
    cyanine 5R and its application in analysis, Biochem Cell Biol,2006,84 (1):1-8.
    [13]L. Bures, J. Bostik, K. Motycka, et al., The use of protein as a carrier of methotrexate for experimental cancer chemotherapy. III. Human serum albumin-methotrexate derivative, its preparation and basic testing, Neoplasma,1988,35 (3):329-342.
    [14]L. Zhao, R. Liu, X. Zhao, et al., New strategy for the evaluation of CdTe quantum dot toxicity targeted to bovine serum albumin, Sci Total Environ,2009,407 (18):5019-5023.
    [15]R. Liu, F. Sun, L. Zhang, et al., Evaluation on the toxicity of nanoAg to bovine serum albumin, Sci Total Environ,2009,407 (13):4184-4188.
    [16]S. Soares, N. Mateus and V. Freitas, Interaction of different polyphenols with bovine serum albumin (BSA) and human salivary alpha-amylase (HSA) by fluorescence quenching, J Agric Food Chem,2007,55 (16):6726-6735.
    [17]Y. Z. Zhang, B. Zhou, X. P. Zhang, et al., Interaction of malachite green with bovine serum albumin:Determination of the binding mechanism and binding site by spectroscopic methods, J Hazard Mater,2009,163 (2):1345-1352.
    [18]李晓峰,徐怡庄,张庭芳钙调素的构象及Ca-(2+)、Eu-(3+)对它的影响,[J]光谱学与光谱分析,1996,16(2):24-26.
    [19]S. Naveenraj, S. Anandan, A. Kathiravan, et al., The interaction of sonochemically synthesized gold nanoparticles with serum albumins, J Pharm Biomed Anal (in press).
    [20]T. Peters, Jr., Serum albumin, Adv Protein Chem,1985,37:161-245.
    [21]X. Zhao, R. Liu, Z. Chi, et al., New insights into the behavior of bovine serum albumin adsorbed onto carbon nanotubes:comprehensive spectroscopic studies, J Phys Chem B, 2010,114 (16):5625-5631.
    [22]H. Lin, J. Lan, M. Guan, et al., Spectroscopic investigation of interaction between mangiferin and bovine serum albumin, Spectrochim Acta A Mol Biomol Spectrosc,2009, 73 (5):936-941.
    [23]G. Zhang, N. Zhao, X. Hu, et al., Interaction of alpinetin with bovine serum albumin: Probing of the mechanism and binding site by spectroscopic methods, Spectrochim Acta A Mol Biomol Spectrosc, (in press).
    [24]陈国珍,荧光分析法,北京,科学出版社,1990.
    [25]Y.Ni, G. Liu and S. Kokot, Fluorescence spectrometric study on the interactions of
    Isoprocarb and sodium 2-isopropylphenate with bovine serum albumin, Talanta,2008,76 (3):513-521.
    [26]黄晓峰,张英起,荧光探针技术,北京,人民军医出版社,2004.
    [27]P. Qin, R. Liu, X. Pan, et al., Impact of carbon chain length on binding of perfluoroalkyl acids to bovine serum albumin determined by spectroscopic methods, J Agric Food Chem, 2010,58 (9):5561-5567.
    [28]X. C. Lin, J. Yan, L. Q. Guo, et al., Determination of protein by synchronous fluorometric method with a new indole homodimeric cyanine as fluorescence probe, Guang Pu Xue Yu Guang Pu Fen Xi,2008,28 (11):2615-2618.
    [29]徐永群,彭翠红,徐坦等,三维荧光等高线特征谱及其应用研究[J],分析测试学报,2008.11:1151-1156.
    [30]黄冬兰,曹佳佳,徐永群,陈小康,三维荧光指纹技术的应用研究进展[J],韶关学院学报自然科学,2008,9:65-67.
    [31]Q. Zhang, S. H. Lei, X. L. Wang, et al., Discrimination of phytoplankton classes using characteristic spectra of 3D fluorescence spectra, Spectrochim Acta A Mol Biomol Spectrosc,2006,63 (2) 361-369.
    [32]B. Barbieri, E. Terpetschnig and D. M. Jameson, Frequency-domain fluorescence spectroscopy using 280-nm and 300-nm light-emitting diodes:measurement of proteins and protein-related fluorophores, Anal Biochem,2005,344 (2):298-300.
    [33]D. Ran, X. Wu, J. Zheng, et al., Study on the interaction between florasulam and bovine serum albumin, J Fluoresc,2007,17 (6):721-726.
    [34]祁超,李伟国,张玉静,用荧光光谱和紫外可见差谱研究抗体卟啉的相互作用[J],高等学校化学学报,2002,23(8):1453-1456.
    [35]P. D. Ross and S. Subramanian, Thermodynamics of protein association reactions:forces contributing to stability, Biochemistry,1981,20 (11):3096-3102.
    [36]郭尧君,分光光度技术及其在生物化学中的应用,北京,科学出版社,1987.
    [37]S. N. Khan, B. Islam, R. Yennamalli, et al., Interaction of mitoxantrone with human serum albumin:spectroscopic and molecular modeling studies, Eur J Pharm Sci,2008,35 (5): 371-382.
    [38]张朝红,臧树良,耿兵,紫外和圆二色光谱法研究丁基锡化合物与牛血清白蛋白的相
    互作用[J],分析科学学报,2005,21(2):179-181.
    [39]N. Sreerama, S. Y. Venyaminov and R. W. Woody, Estimation of protein secondary structure from circular dichroism spectra:inclusion of denatured proteins with native proteins in the analysis, Anal Biochem,2000,287 (2):243-251.
    [40]N. C. Price, Conformational issues in the characterization of proteins, Biotechnol Appl Biochem,2000,31 (Pt 1):29-40.
    [41]B. A. Wallace, J. G. Lees, A. J. Orry, et al., Analyses of circular dichroism spectra of membrane proteins, Protein Sci,2003,12 (4):875-884.
    [42]V. Suryavathi, S. Sharma, S. Sharma, et al., Acute toxicity of textile dye wastewaters (untreated and treated) of Sanganer on male reproductive systems of albino rats and mice, Reproductive Toxicology,2005,19 (4):547-556.
    [43]J. M. Moore, NMR screening in drug discovery, Curr Opin Biotechnol,1999,10 (1):54-58.
    [44]J. R. Simard, P. A. Zunszain, J. A. Hamilton, et al., Location of high and low affinity fatty acid binding sites on human serum albumin revealed by NMR drug-competition analysis, J Mol Biol,2006,361 (2):336-351.
    [45]D. S. Hage, T. A. Noctor and I. W. Wainer, Characterization of the protein binding of chiral drugs by high-performance affinity chromatography. Interactions of R-and S-ibuprofen with human serum albumin, J Chromatogr A,1995,693 (1):23-32.
    [46]A. Kaibara, M. Hirose and T. Nakagawa, Evaluation of hydrophobic interaction between acidic drugs and bovine serum albumin by reversed-phase high-performance liquid chromatography, Chem Pharm Bull (Tokyo),1991,39 (3):720-723.
    [47]B. W. Manning, C. E. Cerniglia and T. W. Federle, Metabolism of the benzidine-based azo dye Direct Black 38 by human intestinal microbiota, Appl Environ Microbiol,1985,50 (1): 10-15.
    [48]K. T. Chung, The significance of azo-reduction in the mutagenesis and carcinogenesis of azo dyes, Mutat Res,1983,114 (3):269-281.
    [49]H. W. Gao, Q. Xu, L. Chen, et al., Potential protein toxicity of synthetic pigments:binding of poncean S to human serum albumin, Biophys J,2008,94 (3):906-917.
    [50]钟金汤,偶氮染料及其代谢产物的化学结构与毒性关系的回顾与前瞻[J],环境与职业医学,2004,21:58-62.
    [51]F. Wang, J. Yang, X. Wu, et al., Study on the formation and depolymerization of acridine orange dimer in acridine orange-sodium dodecyl benzene sulfonate-protein system, J Colloid Interface Sci,2006,298(2):757-764.
    [52]M. Isik and D. T. Sponza, Fate and toxicity of azo dye metabolites under batch long-term anaerobic incubations, Enzyme and Microbial Technology,2007,40 (4):934-939.
    [53]K. T. Chung, S. C. Chen and L. D. Claxton, Review of the Salmonella typhimurium mutagenicity of benzidine, benzidine analogues, and benzidine-based dyes, Mutat Res,2006, 612(1):58-76.
    [54]H. Y. Lee, S. H. Choi and M. B. Gu, Response of bioluminescent bacteria to sixteen azo dyes, Biotechnology and Bioprocess Engineering,2003,8 (2):101-105.
    [55]Y. Z. Zhang, B. Zhou, Y. X. Liu, et al., Fluorescence study on the interaction of bovine serum albumin with p-aminoazobenzene, J Fluoresc,2008,18 (1):109-118.
    [56]Y. Q. Wang, H. M. Zhang and Q. H. Zhou, Studies on the interaction of caffeine with bovine hemoglobin, Eur J Med Chem,2009,44 (5):2100-2105.
    [57]J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Plenum Press,2006,277.
    [58]E. L. Gelamo, C. H. Silva, H. Imasato, et al., Interaction of bovine (BSA) and human (HSA) serum albumins with ionic surfactants:spectroscopy and modelling, Biochim Biophys Acta, 2002,1594 (1):84-99.
    [59]J. S. Johansson, R. G. Eckenhoff and P. L. Dutton, Binding of halothane to serum albumin demonstrated using tryptophan fluorescence, Anesthesiology,1995,83 (2):316-324.
    [60]J. R. Lakowicz and G. Weber, Quenching of fluorescence by oxygen. A probe for structural fluctuations in macromolecules, Biochemistry,1973,12 (21):4161-4170.
    [61]Y. Z. Zhang, X. X. Chen, J. Dai, et al., Spectroscopic studies on the interaction of lanthanum(III) 2-oxo-propionic acid salicyloyl hydrazone complex with bovine serum albumin, Luminescence,2008,23 (3):150-156.
    [62]S. S. Lehrer, Solute perturbation of protein fluorescence. The quenching of the tryptophyl fluorescence of model compounds and of lysozyme by iodide ion, Biochemistry,1971,10 (17):3254-3263.
    [63]K. Yamasaki, T. Maruyama, A. Takadate, et al., Characterization of site I of human serum albumin using spectroscopic analyses:locational relations between regions Ib and Ic of site
    I, J Pharm Sci,2004,93 (12):3004-3012.
    [64]H. Gao, L. D. Lei, J. Q. Liu, et al., The study on the interaction between human serum albumin and a new reagent with antitumour activity by spectrophotometric methods, Journal of Photochemistry and Photobiology a-Chemistry,2004,167 (2):213-221.
    [65]V. Anbazhagan and R. Renganathan, Study on the binding of 2,3-diazabicyclo[2.2.2]oct-2-ene with bovine serum albumin by fluorescence spectroscopy, Journal of Luminescence,2008,128 (9):1454-1458.
    [66]H. Xu, Q. Liu and Y. Wen, Spectroscopic studies on the interaction between nicotinamide and bovine serum albumin, Spectrochim Acta A Mol Biomol Spectrosc,2008,71 (3): 984-988.
    [67]B. Valeur, J. C. Brochon,, New Trends in Fluorescence Spectroscopy, Springer Press,2001 25.
    [68]W. D. Horrocks, Jr. and A. P. Snyder, Measurement of distance between fluorescent amino acid residues and metal ion binding sites. Quantitation of energy transfer between tryptophan and terbium(III) or europium(III) in thermolysin, Biochem Biophys Res Commun,1981,100(1):111-117.
    [69]H. X. Zhang, X. Huang and M. Zhang, Thermodynamic studies on the interaction of dioxopromethazine to beta-cyclodextrin and bovine serum albumin, J Fluoresc,2008,18 (3): 753-760.
    [70]L. Cyril, J. K. Earl and W. M. Sperry, Biochemists'Handbook, E.&F.N. Spon,1961,84.
    [71]D. J. Li, J. F. Zhu and J. Jin, Spectropho.tometnc studies on the interaction between nevadensin and lysozyme, Journal of Photochemistry and Photobiology a-Chemistry,2007, 189(1):114-120.
    [72]A. Nevin, S. Cather, A. Burnstock, et al., Analysis of protein-based media commonly found in paintings using synchronous fluorescence spectroscopy combined with multivariate statistical analysis, Appl Spectrosc,2008,62 (5):481-489.
    [73]N. Wang, L. Ye, F. Yan, et al., Spectroscopic studies on the interaction of azelnidipine with bovine serum albumin, Int J Pharm,2008,351 (1):55-60.
    [74]R. Liu, P. Qin, L. Wang, et al., Toxic effects of ethanol on bovine serum albumin, J Biochem Mol Toxicol,2010,24(1):66-71.
    [75]S. Patil, A. Sandberg, E. Heckert, et al., Protein adsorption and cellular uptake of cerium oxide nanoparticles as a function of zeta potential, Biomaterials,2007,28 (31):4600-4607.
    [76]S. K. Haq and R. H. Khan, Spectroscopic analysis of thermal denaturation of Cajanus cajan proteinase inhibitor at neutral and acidic pH by circular dichroism, Int J Biol Macromol, 2005,35(1):111-116.
    [77]M. A. Khan, S. Muzammil and J. Musarrat, Differential binding of tetracyclines with serum albumin and induced structural alterations in drug-bound protein, Int J Biol Macromol,2002, 30 (5):243-249.
    [78]F. L. Cui, J. Fan, J. P. Li, et al., Interactions between 1-benzoyl-4-p-chlorophenyl thiosemicarbazide and serum albumin:investigation by fluorescence spectroscopy, Bioorg Med Chem,2004,12 (1):151-157.
    [79]H. X. Zhang, X. Huang, P. Mei, et al., Studies on the Interaction of Tricyclazole with beta-cyclodextrin and human Serum Albumin by Spectroscopy, J Fluoresc,2006,16 (3): 287-294.
    [80]U. Kragh-Hansen, Molecular aspects of ligand binding to serum albumin, Pharmacol Rev, 1981,33(1):17-53.
    [81]A. Papadopoulou, R. J. Green and R. A. Frazier, Interaction of flavonoids with bovine serum albumin:a fluorescence quenching study, J Agric Food Chem,2005,53 (1):158-163.
    [82]B. Ahmad, S. Parveen and R. H. Khan, Effect of albumin conformation on the binding of ciprofloxacin to human serum albumin:a novel approach directly assigning binding site, Biomacromolecules,2006,7 (4):1350-1356.
    [83]黄晓峰,张远强,张英起,荧光探针技术,北京,人民军医出版社,2004.
    [84]A. S. Sharma, S.G. Introduction of Fluorescence Spectroscopy, Wiley,1999,58.
    [85]S. M. Song, X. L. Hou, Y. B. Wu, et al., Study on the interaction between methyl blue and human serum albumin by fluorescence spectrometry, Journal of Luminescence,2009,129 (3):169-175.
    [86]Y. Q. Wang, H. M. Zhang, G. C. Zhang, et al., Interaction of the flavonoid hesperidin with bovine serum albumin:A fluorescence quenching study, Journal of Luminescence,2007, 126(1):211-218.
    [87]J. S. Johansson, Binding of the volatile anesthetic chloroform to albumin demonstrated
    using tryptophan fluorescence quenching, J Biol Chem,1997,272 (29):17961-17965.
    [88]C. N. Yan, H. X. Zhang, Y. Liu, et al., Fluorescence spectra of the binding reaction between paraquat and bovine serum albumin, Acta Chimica Sinica,2005,63 (18):1727-1732.
    [89]H. Zhao, M. Ge, Z. Zhang, et al., Spectroscopic studies on the interaction between riboflavin and albumins, Spectrochim Acta A Mol Biomol Spectrosc,2006,65 (3):811-817.
    [90]D. Leckband, Measuring the forces that control protein interactions, Annual Review of Biophysics and Biomolecular Structure,2000,29:1-26.
    [91]J. Tian, J. Liu, W. He, et al., Probing the binding of scutellarin to human serum albumin by circular dichroism, fluorescence spectroscopy, FTIR, and molecular modeling method, Biomacromolecules,2004,5 (5):1956-1961.
    [92]S. Deepa and A. K. Mishra, Fluorescence spectroscopic study of serum albumin-bromadiolone interaction:fluorimetric determination of bromadiolone, Journal of Pharmaceutical and Biomedical Analysis,2005,38 (3):556-563.
    [93]J. Kang, Y. Liu, M. X. Xie, et al., Interactions of human serum albumin with chlorogenic acid and ferulic acid, Biochimica Et Biophysica Acta-General Subjects,2004,1674 (2): 205-214.
    [94]I. M. Klotz, Physiochemical aspects of drug-protein interactions:a general perspective, Ann N Y Acad Sci,1973,226:18-35.
    [95]A. Mahammed, H. B. Gray, J. J. Weaver, et al., Amphiphilic corroles bind tightly to human serum albumin, Bioconjugate Chemistry,2004,15 (4):738-746.
    [96]A. Sulkowska, Interaction of drugs with bovine and human serum albumin, Journal of Molecular Structure,2002,614 (1):227-232.
    [97]B. P. Kamat and J. Seetharamappa, In vitro study on the interaction of mechanism of tricyclic compounds with bovine serum albumin, Journal of Pharmaceutical and Biomedical Analysis,2004,35 (3):655-664.
    [98]C. Zhang, M. S. Liu, B. Han, et al., Correcting for the inner filter effect in measurements of fluorescent proteins in high-cell-density cultures, Anal Biochem,2009,390 (2):197-202.
    [99]J. Riesz, J. Gilmore and P. Meredith, Quantitative photoluminescence of broad band absorbing melanins:a procedure to correct for inner filter and re-absorption effects, Spectrochim Acta A Mol Biomol Spectrosc,2005,61 (9):2153-2160.
    [100]吴根华,荧光法研究Pb2+与牛血清白蛋白的相互作用[J],光谱学与光谱分析,2005,25(2):246-248.
    [101]Q. Gu and J. E. Kenny, Improvement of inner filter effect correction based on determination of effective geometric parameters using a conventional fluorimeter, Anal Chem,2009,81 (1):420-426.
    [102]I. Petitpas, A. A. Bhattacharya, S. Twine, et al., Crystal structure analysis of warfarin binding to human serum albumin:anatomy of drug site I, J Biol Chem,2001,276 (25): 22804-22809.
    [103]Dudley H.Williams, spectroscopy method in organic chemistry(有机化学中的光谱方法),北京,北京大学出版社译,2001,12.
    [104]覃兆海,金淑惠,李楠,基础有机化学,北京,科学技术文献出版社,2004,170.
    [105]陆洋,有机化学,北京,科学出版社,2004.
    [106]Y. S.-y., F. Peng, The Relation Between One-Dimensional Box and Huckel MO Method, Journal of Anhui Normal University (Natural Science),2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700