聚酯表面氯化银抗菌溶胶薄膜的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文采用溶胶-凝胶(Sol-Gel)工艺,以聚乙烯吡咯烷酮(PVP)作为活性分散剂,通过优化溶液的成分、pH值以及烘干时间、烘干温度等制备出稳定性和抗变色性良好的AgCl抗菌溶胶。采用浸渍提拉法在聚酯(PET)表面进行涂膜试验,成功地制备出表面均匀无裂纹,抗变色性能良好的抗菌溶胶薄膜。
     利用金相显微镜(OM)和扫描电镜(SEM)对薄膜进行形貌分析;傅立叶红外光谱仪(FTIR)、X射线衍射仪和X射线能谱仪(EDS)对表面膜层的元素分布、相结构进行了分析。通过润湿角测量仪对溶胶和溶胶薄膜分别进行了润湿性和耐水性分析;机械折叠试验和摩擦磨损试验对膜基结合力及耐磨性进行了检测;力学万能试验机对有抗菌薄膜的PET进行拉伸性能的检测。最后利用平板计数法对表面抗大肠肝菌以及金黄色葡萄球菌的性能进行了评估和分析。
     FTIR检测结果表明,PVP侧链上的-C=O处峰值发生10cm-1红移,证明AgCl粒子与PVP的分子链相连;在1570cm-1和922cm-1两处产生了新的吸收峰,表明分散剂PVP和基体PET之间产生了化学键结合。EDS分析结果表明,抗菌溶胶薄膜的主要组成元素为C、H、O、N、Ag和Cl。XRD结果表明,AgCl和PVP发生了络合反应形成PVP·AgCl,溶胶膜层总体上表现出PVP·AgCl(111)、AgCl(200)和AgO(311)的晶向。溶胶的pH值和烘干温度对溶胶薄膜的晶型和晶化度有影响,较高的烘干温度有利于晶化度的提高。
     采用的分级干燥法(80℃~60℃~40℃)使大量溶剂在干燥过程中快速充分排出,同时又防止了膜层发生龟裂。二次烘干温度和烘干时间对膜基结合力有重要影响;溶胶的PH值,烘干温度和烘干时间对溶胶薄膜的耐磨性有主要影响。用pH=3.0的溶胶,在120℃烘干2h~8h的条件下制备的溶胶薄膜具有较好的耐磨性能。在溶胶中加入丙烯酸乙酯可以大幅度提高溶胶薄膜的强度、韧性、耐磨性能和耐水性能。
     抗菌检测结果表明,所有试样均显示出良好的抗菌作用,氯化银胶体具有很强的抗菌能力。在24小时内,对大肠杆菌和金黄色葡萄球菌的抗菌作用都达到99%以上。在对试样进行抗菌速率的检测中发现,溶胶的pH值和烘干温度对抗菌速率有一定的影响。高烘干温度有利于形成AgO的{311}和AgClO2{200}衍射晶面,由于Ag2+和ClO2的氧化性能高于AgCl中的Ag+,从而使得薄膜的抗菌速率提高。折叠实验对溶胶薄膜的抗菌率几乎没有影响。对加入耐水性物质的溶胶薄膜抗菌检测表明,没加入耐水性物质的AgCl溶胶薄膜和加入丙烯酸乙酯的溶胶薄膜经过生理盐水浸泡1.5h小时后两者的抗菌率分别为降低到60%和92.5%,证明丙烯酸乙酯的加入提高了溶胶薄膜的耐水性,使溶胶薄膜具有持久的抗菌性能。
In this paper, antibacterial films containing AgCl were fabricated on PET substrate by Sol-Gel method. Polyvinyl pyrrolidone (PVP) was used as the dispersant and protected agent in the Sol-Gel solution. Dipping coating method was applied during the process. The component of solution, pH value, drying temperature and drying time, etc. were optimized to obtain uniform coatings with good antibacterial properties and anti-color change ability.
     Optical microscope (OM) and scanning electronic microscope(SEM) were used to observe the surface topography. Fourier Transform Infrared Spectrometer(FTIR), X-ray energy spectrum(EDS) and X-ray diffraction (XRD) were used to analysis the phase structures as well as chemical bonds. The contact-measuring device was used to analysis the surface wettability and water resistance of sol thin films containing AgCl. The adhesion strength and tribological properties of the fabricated film were investigated by mechanical folding test and the pin-on-disk tester. Antibacterial ability against Escherichia coli and staphylococcus aureus of the films was evaluated using plate-counting method.
     The FTIR results indicate that the peak of -C=O related to PVP molecules chains moves 10cm-1 towards low wave number, which imply that AgCl nanoparticles links with PVP molecules chains.The new peaks of 1570 cm-1and 922 cm-1 illustrate that the dispersant PVP reacts with the PET and generates new chemical bonds and cross-linking.The EDS results demonstrate that the antibacterial thin films are mainly composed of C, O, N, Ag and Cl elements. The XRD results show that AgCl binds with PVP to form PVP·AgCl. The sol films are mainly composed of PVP·AgCl (111), AgCl (200) and AgO (311). Higher drying temperature can improve the crystallization of films.
     Classification-drying method (80℃~60℃~40℃) is used to release the solvent completely, as well as avoid the crack of coatings. In order to improve the adhesion strength between the thin films and the PET substrate, the AgCl sol thin films were finally dried at higher temperature after classification-drying. The final drying temperature and drying time greatly affect the adhesion strength. The tribological properties are dependent on the pH values, drying temperature and drying time. The AgCl sol films treated with pH =3.0 and dried at 120℃for above 2h exhibit good bonding strength and wear resistance. Adding the ethylacrylate (EA) into the AgCl sol films can improve the strength, toughness, wear resistance and water resistance of the fabricated films.
     The antibacterial effect of all sol thin films containing AgCl are 99.9% after 24-hour antibacterial tests. The pH values and drying temperature play important roleS in the antibacterial rate. The high drying temperature can induce the formation of AgO (311) and AgClO2 (200), which may improve the antibacterial rate of the coatings. The folding test shows slight effect on the antibacterial ability. The antibacterial effect of sample Y22 and Y20 immersed in the 0.87% brine for 1.5 hours drops to 60% and 92.5% respectively, which demonstrate that adding the ethylacrylate(EA) into the AgCl sol films can improve water resistance and prolong the antibacterial life of the thin films containing AgCl.
引文
1李建雄.塑料抗菌技术的新发展分子组装抗菌技术.塑料包装. 2004, 14(2): 23-25
    2 Q. Zhao,Y. Liu,C. Wang. Development and evaluation of electroless Ag-PTFE comoposite coatings with anti-microbial and anti-corrosion properties. Applied Surface Science . 2005, 252: 1620-1627
    3 Park Soo-Jin, Jang Yu-Sin. Preparation and characterization of activated carbon fibers supported with silver metal for antibacterial behavior. Journal of Colloid and Interface Science. 2003, 261:238-243.
    4李伟光.国内PET薄膜生产与市场现状.上海化工. 1997, 22(5): 32-42
    5蔡明池.塑料包装材料现状与发展趋势.包装论坛. 2004, (6): 27-31
    6冯德才,刘小林,杨其,等.抗菌薄膜的最新研究进展.塑料科技. 2005, (2): 53-56
    7郭等峰,郭腊梅.壳聚糖-银复合抗菌整理剂及对非织造布的抗菌整理.印染助剂.2007, 24(8): 38-39
    8 Martin Lanz , Gion Calzaferri. Photocatalytic oxidation of water to O2 on AgCl-coated electrodes. Journal of photochemistry And photobiology. A:chemistry. 1997, 109: 87-89
    9李勇,高明侠.金属离子抗菌保鲜薄膜的试验研究.包装工程, 2002, 23(2): 11-14
    10肖华,陈春宝,谢飚.银锌复合抗菌剂及纳米抗菌塑料的制备.塑料制造. 2006, 9: 25-29
    11李继杰,邱树毅.纳米抗菌粉体在PVC树脂中的应用.贵州大学学报. 2006, 23(2): 163-166
    12王淑花,魏丽乔,许并社.抗菌纳米复合材料的研究及应用.工程塑料应用. 2005, 33(6): 8-10
    13 J.E.Gray, P. R. Norton, R.Alnouno, et al. Biological Efficacy of Electroless-deposited Silver on Plasma Activated Pdyurethane. Biomaterials. 2003, 24: 2759-2766
    14裴喜华,齐宏进.磁控溅射法制备PET基纳米TiO2抗菌薄膜的研究.青岛大学学报. 2003, 16(1): 16-20
    15 D. P. Dowling, A. J. Betts, C. Pope, et al. Anti-bacterial Silver CoatingsExhibiting Enhanced Activity Through the Addition of Platinum. Surface and Coatings Technology. 2003, 163: 637-644
    16 D. Hegemann. Nanostructured plasma coatings to obtain multifunctional textile surfac-es. Progress in Organic Coatings. 2006, 27(10): 1016-1020
    17 N.Huang, P.Yang,Y.X.Leng, et al. Surface modification of biomaterials by plasma immersion ion implantation . Surface&Coatings Technology. 2004, 186: 218-226
    18 Youtao Xie, Xuanyong Liu, Anping Huang, et al. Improvement of surface bioactivity on titanium by water and hydrogen immersion ion implantation.Biomaterials. 2005, 26: 6129-6135
    19 Wei Zhang, Paul K. Chu, Junhui Ji, et al. Plasma surface modification of poly vinyl chloride for improvement of antibacterial properties. Biomaterials. 2006, 27: 44-51
    20 Wei Zhang, Paul K. Chu b, Junhui Ji, et al. Antibacterial properties of plasma-modified and triclosan or bronopol coated polyethylene.Ploymer. 2006, 47: 931-936
    21刘超锋,杨振如.纳米抗菌塑料的开发和应用.橡塑资源利用. 2007, (2): 8-11
    22王茜.溶胶-凝胶(Sol-Gel)法的原理、工艺及其应用.河北化工. 2007, 30(4): 25-26
    23马春,马铁成,周靖.陶瓷釉面砖上制备TiO2:杀菌薄膜.大连轻工业学院学报. 1999, 18(3): 206-208
    24 W.G. Xu, A.Chen, Q.Zhang. PreParation of TiO2 thin film and its antibacterial activity. Journal of Wuhan University of Technology. 2004, 19(1): 16-18
    25 C. C. Trapalis, P. Keivanidis, G Kondas, et al. TiO2(Fe3+) nanostructured thin films with Antibacterial Properties. Thin Solid Films. 2003, 433: 186- 190
    26汪铭,丁新更,曹旭丹,等.不锈钢基片上制备Ag+/TiO2抗菌薄膜的研究.材料科学与工程学报. 2003, 21(3): 379-382
    27杨晓君,邢彦军,戴瑾瑾.溶胶凝胶法在棉织物抗菌整理中的应用.印染. 2006, (2): 1-3
    28弓太生,王小丽.溶胶凝胶技术及其在皮革工业中的应用.中国皮革.2007, 36(9): 17-19
    29梁丽萍,张磊,徐耀,等. PVP掺杂-ZrO2溶胶-凝胶工艺制备多层激光高反射膜的研究. 2006, 55(11): 6175-6184
    30张秀荷,张振方,童昕. Ag/PVA复合水凝胶的制备及其性能的研究.材料导报. 2007, 21: 367-368
    31 Krouse S. Macromolecular solutions as an integral part of beginning physical chemistry. Chemistry Education. 1978, 55(3): 174
    32赵崇立.国外塑料抗菌剂新产品介绍.化工新型材料. 1999, 27(8): 35-36
    33季君晖,史维明.抗菌材料.化学工业出版社. 2004, 85-341
    34王德禧.世界塑料新材料发展概况.塑料. 2000, (1): 38-42
    35 Zhang Liuxue, Wang Xiulian , Liu Peng, et al. Low temperature deposition of TiO2 thin films on polyvinyl alcohol fibers with photocatalytical and antibacterial activities. Applied Surface Science . 2008, 254: 1771-1774
    36张文毓.抗菌材料进展.产业透视. 2004, (2): 45-50
    37罗敏.溶胶凝胶技术及其在纺织上的应用前景.印染助剂, 2004, (21): 32-33
    38王德宪.溶胶-凝胶法的化学原理简述.玻璃. 1998, 25(1): 5-38
    39余桂郁,杨南如.溶胶-凝胶法工艺过程.硅酸盐通报. 1993, (6): 60-66
    40刘春艳,陈习意,王宇杰.氯化银水溶胶的性质与介质影响.化学物理学报.1997, (101): 193-196
    41李占强,李登新.纳米氯化银溶胶的制备及其热稳定性研究.材料开发与应用. 2006, 21(6): 11-14
    42 Aleksandra L, Natasa Majcen, Karlheinz N, et al. Sol-gel based optical sensor for continuous determination of dissolved hydrogen peroxide. Sensors and Actuators. 2001, B(74): 200-206
    43 Wiley B, Sun Y G, Mayers B, et al. Shape-controlled synthesis of metal nanostructures, The case of silver. Chemistry Europe J. 2005, 11: 454-463
    44宋吉明,张胜义,史洪伟等.纳米银的软模版制备方法及形成机理研究.贵金属. 2006, 27(4): 26-32
    45 Coester C, Kreuter J, von Briesen H, et al. Preparation of avidin-labeled gelati nanopartiles as carriers for biotinylated peptide nucleic acid (PNA). Int J Pharm. 2000, 196(2): 147-149
    46 Jole E Maskask, Rochester N Y. High tabularity high chloride emulsions with inherently stable grain faces.US Patent, 5292632. 1994-03-08
    47 Ashokkumar M, J .-L. Marignier. Hydrogen and oxygen evolution form water using Ag and AgCl . Internation Journal of Hydrogen Energy. 1999, 24: 17-20
    48 Rachna Mishra, K.J.Rao, Thermal and morphological studies of binary and ternary and ternary composites of poly(vinylalcohol) with alumina and zirconia . Ceramics International . 2000, 6(4): 371-378
    49李占强.纳米AgCl制备及其应用.东华大学硕士学位论文. 2007: 24-39
    50征茂平,金燕苹,吴祯干,等. Sol-gel法制备TiO2 /PVP纳米复合材料及其表征.金属学报. 1999, 35(11): 1124-1128
    51杜茂平,毛君,绒曾睿.丙烯酸酯涂料改性研究现状及发展趋势.涂料涂装与电镀. 2006, 4(5): 11-14
    52 D Darwis, N Hilmy, L Hardiningsih, et al. Poly vinyl pyrrolidone: radiationpolymerization and crosslinking of N-vinyl pyrrolidone. Radiat Physical Chemistry. 1993, 42(4-6): 907-910.
    53高雪香,杨其新,马庆辉.丙烯酸喷膜防水材料在隧道及地下工程施工中的适应性.新型建筑材料. 2006, 7: 22-24
    54邹国享,邹新良,瞿金平.淀粉/PVA降解塑料耐水性能的研究.塑料科技. 2008, 36(2): 54-58
    55莫黎昕,李路海,李亚玲,等.柠檬酸银纳米乳液的合成与表征.功能材料. 2007, 38: 898-900
    56刘斌,颉伟博,李小成.牙科用抗菌性义齿基托材料的摩擦磨损性能研究.摩擦学学报. 2006, 27(4): 372-376
    57 S.V.Kalinin,L.I. Kheiefts,A.I.Mamchik, et al. Influence of the drying tehcnique on the structure of Silica Gels. Sol-Gel Science Technology. 1999, (15): 31-35
    58胡大樾,朱达.庭两种高分子抗摩涂层的摩擦磨损特性.摩擦学学报. 1986, 3: 148-153
    59汤斌,张庆庆.胶体氯化银的光催化特性研究.中国科学技术大学学报. 2002, 32(6): 743-747
    60杜建时.卤化银纳米粒子/聚合物纳米复合材料的制备与表征.吉林大学博士论文. 2007: 125-127
    61 MANFRED·G·Noack. The chemistry of chlorine in industrial and wast water treatment applration. em’oxdation. 1992, (2): 1-19
    62 HARNAL atterholm, GUNILLA Jadesjo. Chlorine dioxine water treatment promise. Water. 2001, 21(10): 23-24
    63 VARMA·M·M·et al. Pelative disinfection petenials of chlorire and chlorine dioxide in drinking water. Gonvronmental Impact and Effects. 1986, (5): 635-637
    64刘洪泽,齐民,吴云峰,等.制备方法对高分子载药涂层结构和体外释放动力学的影响.功能材料. 2007, 38(10): 1727-1730
    65 Fwu-Long Mi, Yu-Bey Wu. Shin-Shing Shyu, etal. Asymmetric chitosan membranes prepared by dry/wet phase separation: a new type of wound dressing for controlled antibacterial release. Journal of Membrane Science . 2003, 212: 237-254

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700