农业废弃物再生吸附剂制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以农业废弃物茭白叶为原料,利用氯化铁或氯化亚铁溶液进行浸渍改性,再生制备了吸附剂。配制了适量浓度的磷酸二氢钠溶液模拟含磷富营养化水体,研究了吸附剂吸附磷元素的效果和机制。同时针对实际河水开展了实证研究,取得了较好的效果。该研究工作为拓展具有水乡特色农业废弃物的循环利用,以及对于治理富营养化废水开展了富有意义的探索。
     利用扫描电镜研究了茭白叶改性前后的表面形貌变化,设计进行了一系列吸附试验,重点研究了被吸附溶液pH值、浸渍改性液的浓度、生物吸附剂的粒度、吸附时间等因素对磷吸附能力的影响。研究结果表明:采用5%FeCl3溶液对原始茭白叶进行浸渍改性制备的片状生物吸附剂I,当被吸附溶液pH值为5.5,吸附时间为30小时,磷吸附能力可达4.36mg/g。另一方面,采用12%FeCl2溶液对原始茭白叶进行浸渍改性制备的片状生物吸附剂II,在pH值为5.5的NaH2PO4溶液中经30h吸附后,其去磷能力最高可达5.02mg/g。两种吸附实验均符合伪一级动力学模型。红外光谱研究表明,农业废弃物茭白叶经过充分浸渍改性处理后,茭白叶中纤维素的羟基与浸渍液中铁离子发生反应,使茭白叶生物吸附剂产生了较强的吸附除磷能力。
     利用茭白叶为原材料,以氯化钙作为催化剂、以碳酸钾作为活化剂,经过真空烧结制备了茭白叶混合吸附剂。设计进行了不同吸附条件下的吸附实验,研究了吸附剂吸附磷元素的行为。研究结果发现:采用0.1mol/LCaCl2以及1mol/L K2CO3溶液浸渍茭白叶,烧结制备的混合吸附剂,在吸附剂用量为0.1g,吸附时间为32小时的实验条件下,被吸附后的水溶液磷元素含量可达地表水环境质量标准(GB3838-2002)一类湖库水质标准总磷含量为0.02mg/L(ppm)以下。利用X射线衍射揭示了茭白叶混合吸附剂中存在碳酸钙微晶是吸附去磷的主要原因。上述混合吸附剂经酸洗和氯化铁溶液浸渍处理,针对实际湖水样品进行了磷吸附实证研究,取得了较好的效果。
This paper aims at dealing with the eutrophic water caused by the excessive phosphorus nutrient in the industrial detergents and agricultural fertilizers. The bio-sorbent I—the cellulosic material Water Bamboo Leaves (WBL) treated with FeCl3 solution is found to improve the phosphorus removal capability. The adsorption results show that the bio-sorbent has much greater phosphorus removal capacity than natural WBL. By studying the effects of the different experimental parameters, the best phosphorus removal capacity could achieve 4.36mg/g at the conditions of the pieces size WBL modified with 5%FeCl3、pH at 5.5、the time of the adsorption at 30h. Through the Infrared spectra, we study the adsorption mechanism.
     In this paper, the bio-sorbent II—the cellulosic material Water Bamboo Leaves (WBL) treated with FeCl2 solution is taken for research about its phosphorus removal capability. Through the SEM, we found the surface morphology changes between WBL and the bio-sorbent. By studying the effects of the different experimental parameters, the best phosphorus removal capacity could achieve 5.02mg/g at the condition of the pieces size WBL modified with 12%FeCl2、pH at 5.5、the time of the adsorption 30h. The high phosphorus removal capacity mechanism could be due to the formation of compounds on the bio-sorbent. The compounds formed through the ferric ions reacting with hydroxyl on the WBL cellulose. Kinetics studies revealed that the adsorption process follows a pseudo-first order kinetic mode.
     Using 0.1mol/LCaCl2, 1mol/L K2CO3 as Catalyst and activator, the WBL mixed adsorbent preparation conditions have found through different adsorption experiments. The studies find that the initial phosphorus concentration under experimental conditions has little impact on P adsorption. Through X-ray diffraction analysis of activated carbon made from WBL, the activated carbon has micro-crystal structure of calcium carbonate. Using the mixed adsorbent 0.1g, after 32 hours adsorption, the initial concentration of the phosphorus solution 2mg/L decrease to 0.02ppm, the first level of the surface water environmental quality standards (GB3838-2002).
引文
[1]高自超,周元军.农作物秸秆综合开发利用.农产品加工2007.
    [2] Prasad S, Singh A, Joshi HC. Ethanol as an alternative fuel from agricultural, industrial and urban residues. Resources, Conservation and Recycling 2007;50:1.
    [3] Yalc?in N, Sevinc V. Studies on silica obtained from rice husk. Ceramics International 2001;27:219.
    [4] Huang S, Jing S, Wang J, Wang Z, Jin Y. Silica white obtained from rice husk in a fluidized bed. Powder Technology 2001;117:232.
    [5]董文.秸秆等资源的综合利用.安徽科技1999:22.
    [6]高学锋.多菌发酵秸秆饲料生产工艺.内蒙古教育学报(自然科学版) 1999;12:36.
    [7]胡明秀.农业废弃物资源化综合利用途径探讨.安徽农业科学2004;32:757.
    [8] Fan YT, Zhang YH, Zhang SF, Hou HW, Ren BZ. Efficient conversion of wheat straw wastes into biohydrogen gas by cow dung compost. Bioresource Technology 2006;97:500.
    [9]袁辉,刘敏,等.生物质能对我国能源政策的影响.高技术纵览2006:55.
    [10]贾小黎,丁航.中国生物质产业现状、问题和建议.太阳能2007:10.
    [11] Orlando US, Baes AU, Nishijima W, Okada M. Preparation of agricultural residue anion exchangers and its nitrate maximum adsorption capacity. Chemosphere 2002;48:1041.
    [12] Gong R, Ding Y, Li M, Yang C, Liu H, Sun Y. Utilization of powdered peanut hull as biosorbent for removal of anionic dyes from aqueous solution. Dyes and Pigments 2005;64:187.
    [13] Robinson T, Chandran B, Nigam P. Removal of dyes from a synthetic textile dye effluent by biosorption on apple pomace and wheat straw. Water Research 2002;36:2824.
    [14] Ajmal M, Hussain Khan A, Ahmad S, Ahmad A. Role of sawdust in the removal of copper(II) from industrial wastes. Water Research 1998;32:3085.
    [15] Namasivayam C, Muniasamy N, Gayatri K, Rani M, Ranganathan K. Removal of dyes from aqueous solutions by cellulosic waste orange peel. Bioresource Technology 1996;57:37.
    [16] Sreenivasulu A, Sundaram EV, Komal Reddy M. Phosphate adsorption studies using carbon prepared from stem bark of Eucalyptus teriticornis Smith. Indian Journal of Chemical Technology 1999;6:256.
    [17] Ayoub GM, Koopman B, Pandya N. Iron and aluminum hydroxy (oxide) coated filter media for low-concentration phosphorus removal. Water Environment Research 2001;73:478.
    [18] Eberhardt TL, Min SH, Han JS. Phosphate removal by refined aspen wood fiber treated with carboxymethyl cellulose and ferrous chloride. Bioresource Technology 2006;97:2371.
    [19] Eberhardt TL, Min SH. Biosorbents prepared from wood particles treated with anionic polymer and iron salt: Effect of particle size on phosphate adsorption. Bioresource Technology 2008;99:626.
    [20] Manju GN, Raji C, Anirudhan TS. Evaluation of coconut husk carbon for the removal of arsenic from water. Water Research 1998;32:3062.
    [21] Namasivayam C, Sangeetha D. Equilibrium and kinetic studies of adsorption of phosphate ontoZnCl 2 activated coir pith carbon. Journal of Colloid and Interface Science 2004;280:359.
    [22]张东升.竹炭及SiC陶瓷材料的结构及性能研究. vol.博士:中国林业科学研究院, 2005. p.163.
    [23] Lin C, Popov BN, Ploehn HJ. Modeling the effects of electrode composition and pore structure on the performance of electrochemical capacitors. Journal of the Electrochemical Society 2002;149:A167.
    [24] [日]炭素材料学会编,高尚愚等译.活性炭基础与应用.北京:中国林业出版社, 1984.
    [25]左秀风.稻壳吸附剂的制备及其应用. vol.硕士:河南工业大学, 2006.
    [26]王泉清,秦瑞丰.用磷酸法制备玉米秸杆活性炭的研究.中国资源综合利用2003:17.
    [27] Jagtoyen M, Derbyshire F. Activated carbons from yellow poplar and white oak by H3PO4 activation. Carbon 1998;36:1085.
    [28]韩松.用炼油厂石油焦生产活性炭.石油化工1999;28:128.
    [29]张晓昕,郭树才,邓贻钊.高表面积活性炭的制备.材料科学与工程1996;14:34.
    [30]杨绍斌.在氩气流中热处理KOH-煤焦制大比表面积活性炭.染料化学学报1997;25:253.
    [31]芦春梅.秸秆活性炭的制备及在印染废水中的应用研究. vol.硕士:吉林大学.
    [32] Tamon H, Okazaki M. Influence of acidic surface oxides of activated carbon on gas adsorption characteristics. Carbon 1996;34:741.
    [33]唐乃红.乌桕籽壳活性炭的改性及其应用的研究.信阳师范学院学报(自然科学版) 1997;10:78.
    [34]高首山等.活性炭纤维的化学改性.鞍山钢铁学院学报2000;23:406.
    [35]范顺利等.改性活性炭的吸附性能变异探讨.河南师范大学学报(自然版) 1995;23:48.
    [36] Park SJ, Kim KD. Adsorption behaviors of CO2 and NH3 on chemically surface-treated activated carbons. Journal of Colloid and Interface Science 1999;212:186.
    [37] Morawski AW, Inagaki M. Application of modified synthetic carbon for adsorption of trihalomethanes (THMs) from water. Desalination 1997;114:23.
    [38] Vinke P, van der Eijk M, Verbree M, Voskamp AF, van Bekkum H. Modification of the surfaces of a gasactivated carbon and a chemically activated carbon with nitric acid, hypochlorite, and ammonia. Carbon 1994;32:675.
    [39] Tsutsumi K, Matsushima Y, Matsumoto A. Surface heterogeneity of modified active carbons. Langmuir 1993;9:2665.
    [40] Mene?ndez JA, Xia B, Phillips J, Radovic LR. On the modification and characterization of chemical surface properties of activated carbon: Microcalorimetric, electrochemical, and thermal desorption probes. Langmuir 1997;13:3414.
    [41]高尚愚等.表面改性活性炭对苯酚及苯磺酸吸附的研究.林产化学与工业1994;24:29.
    [42]万福成等.活性炭富集溶液中Au (Ⅲ)的研究.信阳农业高等专科学校学报1999;9:39.
    [43]李德伏等.活性炭的改性及对乙烯的吸附性.石油化工2001;30:677.
    [44]符若文等.负载金属基活性炭纤维对一氧化氮和一氧化碳的吸附及催化性能研究.新型炭材料2000;15:1.
    [45]刘慧英等.以果物核壳为原料制备活性炭及其改性研究.宁夏大学学报(自然科学版) 1996;17:32.
    [46]地表水环境质量标准-GB3838-2002. 2002.
    [47]梁鸣.我国城市湖泊富营养化现状及外源控制技术.武汉理工大学学报2007;29.
    [48]王慎强司.农田氮、磷的流失与水体富营养化.土壤2000.
    [49]涂建峰.湖泊富营养化的产生机制及主要影响.水利水电快报2007;28.
    [50]申秀英许.活性污泥生物除磷机制及其影响.农业环境与发展1994;3.
    [51]李佐荣,鲍素敏,黄祥敏.水体富营养化及其防治.安徽农学通报2007;13.
    [52]张镇,刘桂民.当前我国湖泊富营养化治理的进展及思考.工业安全与环保2007;33.
    [53]郭燕.几种类型矿物对磷的吸附对比研究. vol.硕士:合肥工业大学, 2007.
    [54]王茹静.利用植物秸秆治理富营养化水体的方法. 2007.
    [55]李小平.美国湖泊富营养化的研究和治理.自然杂志2002;24.
    [56] Erdogan Okus IO, Halil Ibrahim Sur. Critical evaluation of wastewater treatment and disposal strategies for Istanbul with regards to water quality monitoring study results Desalination 2008;226:231.
    [57]周景博.国外水体富营养化治理的经验及对我国的政策建议.环境保护2003.
    [58] Vymazal J. Removal of nutrients in various types of constructed wetlands. Science of The Total Environment 2007;380:48.
    [59]杨清海.中国富营养化水体修复技术进展.辽东学院学报(自然科学版) 2008;15:71.
    [60] I. R. Rodriguez CAaMAARR, C. Amrhein and M. A. Anderson. Reducing dissolved phosphorus loading to the Salton Sea with alumnium sulfate. Hydrobiologia 2008;604.
    [61] Lee SI, Weon SY, Lee CW, Koopman B. Removal of nitrogen and phosphate from wastewater by addition of bittern. Chemosphere 2003;51:265.
    [62]张宏,喻鹏辉.治理湖泊富营养化过程中磷循环利用的战略性思考.污染控制2007;384:46.
    [63]王建翔,陈洪斌等.生物膜法除磷的研究进展.环境科学与管理2006;31:47.
    [64]李旭东,周琪,张荣社.三种人工湿地脱氮除磷效果.地学前缘2005:73.
    [65]王凤英,李利红,于凤娥.改性沸石除磷性能的试验研究.广东化工2007;34.
    [66] Seida Y, Nakano Y. Removal of phosphate by layered double hydroxides containing iron. Water Research 2002;36:1306.
    [67]赵雪松,胡小贞,卢少勇.不同粒径方解石在不同pH值时对磷的等温吸附特征与吸附效果.环境科学学报2008;28:1872.
    [68] Aliotta G, Greca MD, Monaco P, Pinto G, Pollio A, Previtera L. In vitro algal growth inhibition by phytotoxins of Typha latifolia L. Journal of Chemical Ecology 1990;16:2637.
    [69]李锋民,胡洪营.大型水生植物浸出液对藻类的化感抑制作用.中国给水排水2004;20:18.
    [70] Barrett PRF, Littlejohn JW, Curnow J. Long-term algal control in a reservoir using barley straw. Hydrobiologia 1999;415:309.
    [71]汤烈青,朱玉琴.纤维素的功能材料.功能材料1994;26:101.
    [72]谭军.我国研制成功超强特效吸附分离材料.功能材料2006;3.
    [73]茭白吃掉叶子也是宝.农家顾问2005.
    [74]冯丹旭.对于茭白叶的利用价值浅谈.人民教育出版社, 2003.
    [75]任建国周.分析化学中的离子平衡.北京:科学出版社, 1998.
    [76]王宇,高宝玉,岳文文.改性玉米秸秆对水中磷酸根的吸附动力学研究.环境科学2008;29:703.
    [77]李梦青,王新征等.钙催化活化制备活性炭的研究进展.河北工业大学学报2003;32:74.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700