无卤阻燃GF/PA66的界面相容性与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
玻纤增强尼龙广泛应用于电子、电气、汽车等领域,因此无卤阻燃玻纤增强尼龙新材料的研究和开发是十分重要的,特别是于2006年7月1日正式实施欧盟RoHS指令,《关于在电子电气设备中限制使用某些有害物质指令》,对无卤阻燃材料的研究更得到了各国的高度重视,产品的市场需求也更加迫切。
     对玻纤增强材料,其最终性能不仅取决于增强体和基质的性质,而且也决定于两相界面的性质。作为基质和增强体间的桥梁,界面是复合材料非常重要的微观结构,其对材料的物理、化学和机械性能都有着重要的影响,然而纤维和基质尼龙间的作用是较弱的,因此改善的界面粘结程度是非常重要的,也是复合材料研究的热点。
     为了解决玻纤增强尼龙的界面及阻燃性能,本文采用无卤阻燃剂聚磷酸蜜胺盐MPP来制备高性能无卤阻燃玻璃纤维增强尼龙66,用FTIR,XRD,DSC,DMA和SEM等手段对材料的界面和性能进行表征。结果表明,在MPP添加量为25%,玻璃纤维25%,界面改性剂MA-EPDM 7%,各种助剂为1%时,玻纤增强尼龙66可达到UL941.6mm V-0级,并具有良好的力学性能:拉伸强度大于140MPa,弯曲强度大于210MPa,冲击强度8.5kJ·m-~(2),确定了适于该体系的双螺杆组合参数,加工工艺参数,注塑工艺等条件。
     采用DSC法对尼龙66复合材料等温结晶和熔融行为进行研究,用Avrami方程对动力学过程进行分析。研究发现阻燃剂MPP的加入对尼龙66的结晶行为产生了很大影响,MPP对尼龙66有着较强的异相成核作用,使得复合材料中尼龙66结晶速率加快;但是MPP的存在,提高了界面间相互作用,同时又阻碍了尼龙66分子链的自由运动,使得球晶尺寸变小,结晶度并未显著增加;对等温结晶样品的熔融行为研究发现,所有的样品呈熔融双峰,这主要是由于尼龙66不同尺寸和完善程度的结晶以及升温过程中的再结晶和再熔融引起的,阻燃剂对尼龙66的晶态结构影响较小,XRD中的结晶峰位并未发生明显变化。
     采用DSC法对尼龙66复合材料非等温结晶行为进行研究,用Avrami、Kissinger和Ozawa模型对非等温结晶动力学进行处理。结果表明,该方法能够比较好地处理尼龙66及其复合材料的非等温结晶动力学。非等温结晶过程中,玻纤也起到了成核作用,使结晶速度大幅度增加;MPP对尼龙66的异相成核的作用,同时由于界面粘结的改善,也阻碍了尼龙66分子链运动,使得复合材料的结晶速率并未大幅度提高,这与等温结晶的结果有一定的偏差,说明非等温结晶过程更为复杂。采用XRD,DSC及POM相结合的方法研究了阻燃剂对尼龙66晶态结构的影响,结果显示尼龙66及其复合材料中都出现了多重结晶现象。
     力学性能研究表明,阻燃剂在提高材料阻燃性能的同时,使复合材料拉伸强度、弯曲强度、储能模量、玻璃化转变温度、松弛活化能都得到提高,说明体系界面粘结强度的提高,这进一步证实了界面粘结情况的改善。
     采用热重分析(TGA)研究了复合材料的热稳定性,结果表明,阻燃剂的存在,降低了尼龙66的热稳定性,提高了成炭能力,改善了阻燃性能。
     流变性能研究表明,尼龙66表现为牛顿流体,而在复合材料中表现为假塑性流体。通过活化能研究确定了适于阻燃玻纤增强尼龙66体系的加工温度为275℃,阻燃剂的加入,增加了体系的粘度和粘流活化能,也说明了材料界面相互作用的增强。
     总之,MPP的加入,增加了玻纤与尼龙基质间的界面粘结,提高了材料的阻燃及力学性能。
Glass fiber (GF) reinforced nylon has been widely used in many fields such as electric, electronic, automobile, etc, so the study and expoitation of non-halogen flame retardant glass fiber reinforced nylon new materials is very important. Especially RollS enforcement was delivered on the 1 st July 2006. The RollS Directive stands for "the restriction of the use of certain hazardous substances in electrical and electronic equipment". It makes many countries take remarkable consideration of the non-halogen materials and the demands of product's market are more imminence.
     The whole properties of composites relate to not only reinforcement phase and matrix phase, but also the interface between these two phases. Interface is a very important micro- structure of composites. As the bridge between reinforcement fiber and matrix, the interface has an important effect on the physical, chemical and mechanical properties of composites. However, the interface between fiber and matrix is the weak area in composites which are reinforced by fiber, therefore the improvement of interfacial adhesion, as the hotspot in composite research, is of great significance.
     In this paper, aiming at solving the problem of interface and flame retardancy, on the base of our previous work, we prepared the flame retardant through the reaction of melamine and polyphosphoric acid. FTIR, XRD, DSC, DMA and SEM were used to characterize the interface and properties. Upon the addition of 25%MPP, 25%GF, 7%MA-EPDM, 1% additives, the flame retarded GF reinforced PA66 reached UL 94 V-O rating at 1.6mm thickness, and possessed good mechanical properties, tensile strength more than 140MPa, flexural strength more than 210 MPa and impact strength 8.5 kJ.m~(-2). We also got the screw configuration, processing parameters, injection parameters, etc.
     The effect of MPP on the isothermal crystallization and melting behavior of PA66 was investigated by differential scanning calorimetry (DSC). The Avrami equation was used to describe the isothermal crystallization kinetics. It is indicated that the MPP act as effective heterogeneous nucleating agents, the crystallization rate of PA 66 in the composites is thus increased. However the MPP inhinders the motion of PA66 chains, thus reduce the crystal spherulite radius of PA66. The flame retarded composites exhibit double melting endotherms during researched crystallization temperature. The multiple melting endotherms are mainly caused by the recrystallization of PA66 spherulites with different crystal sizes and imperfection during heating. The MPP have little effect on the crystalline structure of PA66 under isothermal condition, which can be proved by XRD.
     The non-isothermal crystallization and melting behavior of PA66 and its composites were investigated by DSC. The Avrami, Kissinger, Ozawa equations are used to describe the non- isothermal crystallization kinetics. The results show that those equations can all describe the nonisothermal crystallization process. The addition of MPP into PA66 has an effect on the mechanism of nucleation and the growth of PA66 crystallites. The MPP and glass fiber all act as nucleating agents, but MPP hinders the motion of PA66 chains which resulted in the decrease of crystallization rate. The result is different from the isothermal process, indicating the complexity of non-isothermal crystallization. A combination of DSC, XRD and polarized microscopy (POM) was used to investigate the effect of MPP on the crystallization structure of PA66, the results showed the phenomena of multi-crystalline.
     The mechaniacal properties of PA66 composites were investigated. It is found that MPP cause the tensile strength, flexural strength, storage modulus, glass transiton temperature (Tg) and relaxation activation energy to increase. The better properties of the composites result from the stronger interfacial adhesion between GF and PA66.
     The thermal degradation behavior of GF/PA66/MPP composites was studied using thermogravimetric analysis (TGA). The presence of MPP decreased the thermal stability of PA66, which showed that MPP accelerated the formation of char of nylon 66 reinforced with glass fiber and enhanced the flame retardancy.
     From the rheology properties study, PA66 exhibited Newtonian fluid behavior, and the composites exhibited the shear thinning behavior. The introduction of MPP increased the viscosity and flow activation energy of GF/PA66 composites. The research of activation energy showed that the processing temperature fitted in the industrial production is at 275℃for GF/PA66/MPP. The stronger rheological effect of MPP results from stronger matrix-fillers interactions.
     In all, MPP improves the compatibility between the GF and PA66, resulting in stronger interfacial adhesion.
引文
[1] M. Sakaguchi, A. Nakai, etal. The mechanical properties of unidirectional thermoplastic composites manufactured by a micro-braiding technique [J]. Composites Science and Technology, 2000, 60: 717-722.
    [2] P. Boydell. Durability study of recycled glass-fiber-reinforced polyamide 66 in service-related environment [J]. Journal of Applied Polymer Science, 1997, 1631-1641
    [3] H. Salehi-mobarakeh, J. Brisson, A. Ait-kadis.Interfacial polycondensation of nylon-6, 6 at the glass fibre surface and its effect on fibre-matrix adhesion [J]. Journal of Materials Science, 1997, 32: 1297-1304.
    [4] A. Casu, G. Camino, M. D. Giorgi, etal. Fire-retardant mechanistic aspects of melamine cyanurate in polyamide copolymer [J]. Polymer Degradation and Stability, 1997, 58: 297-302.
    [5] 黄艳梅,张立平等.高增强PA66的研究和应用开发[J].中国塑料,2001,15(5):19-22.
    [6] N. Kazuya. Aggregation structure and molecular motion of (glass fiber/matrix nylon66) interface in short glass fiber reinforced nylon 66 composites[J]. Polymer, 2002, 43: 4055-4062.
    [7] S. Javangula, B. Ghorashi. Mixing of glass fibers with nylon 6, 6 [J]. Journal of Materials Science, 1999, 34: 5143-5151.
    [8] J. L. Thomason. The influence of fibre properties of the performance of glass-fibre-reinforced polyamide 6, 6[J]. Composites Science and Technology, 1999, 59: 2315-2328.
    [9] 赵若飞,周晓东等.玻璃纤维增强热塑性复合材料的增强方式及纤维长度控制[J].纤维复合材料,2000.1:19-23.
    [10] V. A. Kagan, R. M. Pherson, etal. An advanced high modulus(HMG) short glass fiber reinforced nylon 6: part 1 role and kinetic of fiber-glass reinforcements[J]. Journal of Reinforced Plastics and Composites, 2003, 22: 1033-1044.
    [11] 宗若雯,胡源等.尼龙的阻燃研究进展[J].火灾科学,2003,12(1):46-50.
    [12] F. Y. Wang, C. C. M. Ma, W. J. Wu. Mechanical properties, morphology, and flame retardance of glass fiber-reinforced polyamide-toughened novolac-type phenolic resin [J]. Journal of Applied Polymer Science, 1999, 73: 881-887.
    [13] 王慧芳,张立平等.膨胀阻燃剂在尼龙66中的应用[J].中国塑料,2001,15(9):63-65.
    [14] 肖崇伟,郝建薇,王建祺.膨胀阻燃PA-66体系热降解研究[J].北京理工大学学报,2000,20(5):656-660.
    [15] E. D. Weil, N. G. Patel. Iron compounds in non-halogen flame-retardant polyamide systems [J]. Polymer Degradation and Stability, 2003, 82: 291-296.
    [16] G. Pieter, S. Rieky, F. Christian. Differences in the flame retardant mechanism of melamine cyanurate in polyamide 6 and polyamide 66 [J]. Polymer Degradation and Stability, 2002, 78: 219-224.
    [17] 韩德昌,韩伟平.聚酰胺织物的阻燃改性[J].天津纺织工学院学报,1994,13(4):1-5.
    [18] 徐建华,郝建薇,赵芸等.纳米双羟基复合金属氧化物协同聚磷酸铵阻燃尼龙-6/聚丙烯燃烧及热降解行为的研究[J].现代化工,2002,22(3):34-37.
    [19] 孙卫青,邱宗玺等.聚乙烯塑料无卤阻燃技术进展[J].郑州大学学报,2002,34(4):60-64.
    [20] 朱新生,郑安呐等.卤素类阻燃剂的阻燃基础理论[J].火灾科学,1999,8(4):31-37.
    [21] 熊政治,魏杏林等.粒料赤磷阻燃剂母料的制备及其在工程塑料中的应用.塑料工业,1995,34:34-36.
    [22] 郑芙昊,陈秀兰等.微胶囊化红磷阻燃剂的研制及应用[J].上海化工,2002,27(15):21-22.
    [23] 冯道全,李斌等.无卤阻燃剂磷酸蜜胺盐的研制[J].淮南工业学院学报,2002,22(2):57-59.
    [24] G. I. Titelman, Y. Gonen, Y. Keidar, etc. Discolouration of polypropylene-based compounds containing magnesium hydroxide [J]. Polymer Degradation and Stability, 2002, 77: 345-352
    [25] S. V. Levchik, G. F. Levchik, etc. Mechanistic study of combustion performance and thermal decomposition behaviour of nylon 6 with added halogen-free fire retardants[J]. Polymer Degradation and Stability, 1996, 54: 217-222.
    [26] H. Horacek, R. Grabner. Advantages of flame retardants based on nitrogen compounds[J]. Polymer Degradation and Stability, 1996, 54: 205-215.
    [27] 刘志刚,杨云波等.同向双螺杆挤出机螺杆元件组合及其应用[J].工程塑料应用,2001,29(5):33-35.
    [28] 钟世云,梁昊.影响长纤维增强热塑性塑料注塑制品中纤维长度的主要因素[J].合成材料老化与应用,2004,33(1):28-33.
    [29] 金志明,朱复华,高福荣.注射成型塑化过程的可视化研究[J].中国塑料,2003,17(4):86-90.
    [30] 吕峰和,孔东胜等.啮合同向双螺杆挤出机螺杆组合及其应用[J].河南科学,2003,21(1):94-96.
    [31] 耿孝正.用于玻纤增强粒料制备的啮合同向双螺杆挤出机的螺杆构型[J].中国塑料,2000,14(7):97-100.
    [32] P. R. Hornsby, J. Wang. Thermal decomposition behaviour of polyamide fire-retardant compositions containing magnesium hydroxide filler[J]. Polymer Degradation and Stability, 1996, 51: 235-249.
    [33] P. K. Mallich, Y. X. Zhou. Effect of mean stress on the stress-controlled fatigue of a short E-glass fiber reinforced polyamide66 [J]. International Journal of Fatigue, 2004, 26: 941-946.
    [34] B. K. Kandola, A. R. Horrochs, P. Myler, etal. Mechanical performance of heat/fire damaged novel flame retardant glass-reinforced epoxy composites [J]. Composites Part A: Applied science and manufacturing, 2003, 34: 863-873.
    [35] B. K. Kandola, A. R. Horrochs, P. Myler, etal. New developments in flame retardancy of glassreinforced epoxy composites [J]. Journal of Applied Polymer Science, 2003, 88: 2511-2515.
    [36] B. K. Kandola, A. R. Horrochs. Complex char formation in flame retarded fiber-intumescent combinations: Ⅲ. Physical and chemical nature of char [J]. Textile Research Journal, 1999, 69: 374-38.
    [37] X. Y. Hao, G. S. Gai, J. P. Liu, etal. Flame retardancy and antidripping effect of OMT/PA nanocomposites [J]. Materials Chemistry and Physics, 2006, 96: 34-41.
    [38] K. Noda, A. Takahara. Fatigue failure mechanisms of short glass-fiber reinforced nylon 66 based on nonlinear dynamic viscoelastic measurement [J]. Polymer, 2001, 42: 5803-5811.
    [39] S. M. Lomakin, G. E. Zaikov. New type of ecologically safe flame retardant based on polymer char former [J]. Polymer Degradation and Stability, 1996, 51: 343-350.
    [40] G. F. Levchik, S. V. Levchik, A. I. Lesnikovich. Mechanisms of action in flame retardant reinforced nylon 6 [J]. Polymer Degradation and Stability, 1996, 54: 361-363.
    [41] 彭治汉,邓向阳.氮系阻燃剂MCA阻燃尼龙6的机理研究[J].高分子材料科学与工程,1998,14(4):107-109.
    [42] S. V. Levchik, G. F. Levchik, A. I. Balabanovich, etal. Mechanistic study of combustion performance and thermal decomposition behaviour of nylon 6 with added halogen-free fire retardants[J]. Polymer Degradation and Stability, 1996, 54: 217-222.
    [43] S. M. Lomakin, G. E. Zaikkov. New type of ecologically sage flame retardant based on polymer char former [J]. Polymer Degradation and Stability, 1996, 51: 343-350.
    [44] J. G. Iglesias, J. Gonzalez-Benito, A. J. Aznar, etal. Effect of glass fiber surface treatments on mechanical strength of epoxy based composite materials [J]. Journal of Colloid and Interface Science, 2002, 250: 251-260.
    [45] H. Horacck, R. Grabner. Advantages of flame retardants based on nitrogen compounds [J]. Polymer Degradation and Stability, 1996, 54: 205-215.
    [46] 李瑞琦.氨基硅烷偶联剂[J].辽宁化工,2002,31:158-160.
    [47] 欧育湘.新型无卤阻燃工程塑料[J].现代化工,2000,20:59-61.
    [48] 薄宪明.硅烷偶联剂在填充复合材料中的应用[J].国外塑料,1994,12:5-12.
    [49] S. Y. Lu, I. Hamerton. Recent developments in the chemistry of halogen-free flame retardant polymers [J]. Progress in Polymer Science, 2002, 27: 1661-1712.
    [50] D. J. Irvine, M. J. A. Cluskey, I. M. Robinson. Fire hazards and some common polymers[J]. Polymer Degradation Stability, 2000, 67(3): 83-96.
    [51] B. K. Kandola, A. R. Horrock. Complex char formation in flame-retarded fiber/intumescent combinations: physical and chemical nature of char[J]. Textile Research Journal, 1999, 69(5): 374-381.
    [52] J. Davis. The technology of halogen-Free flame retardant additives for polymeric systems [J]. Engineering Plastic, 1996, 9(5): 403-419.
    [53] J. M. Catala, J. Brossas. Synthesis of fire-retardant polymers without halogens [J]. Progress in Organic Coatings, 1993, 22(1-4): 69-82.
    [54] E. D. Well, S. V. Levchik, M. Ravey, W. M. Zhu. A survey of recent progress in phosphorus-based flame retardants and some mode of action studies [J]. Phosphorus, Sulfur and Silicon & the Related Elements, 1999, 146: 17-20.
    [55] G. Woodward, C. Harris, J Manku. Design of new organophosphorus flame retardants[J]. Sulfur and Silicon & the Related Elements, 1999, 146: 25-28.
    [56] G. Stern, H. Horacek. Melamine cyanurate halogen and phosphorus free flame-retardant[J]. International Journal of Polymer Materials, 1994, 25: 255-268.
    [57] V. W. Gentzkow, J. Huber, H. Kapitza, W. Rogler. Halogen-free flame-retardant plastics for electronic applications [J]. Journal of Vinyl and Additive Technology, 1997, 3 (2): 175-178.
    [58] E. Weil, B. McSwigan. Melamine phosphates and pyrophosphates in flame-retardant coatings: old products with new potential [J]. Journal of Coating Technology 1994, 66(839): 75-82.
    [59] Z. L. Ma, W. G. Zhao, Y. F. Liu, etal. Synthesis and properties of intumescent phosphorus-containing flame retardant polyesters[J]. Journal of Applied Polymer Science, 1997, 63(12): 1511-1515.
    [60] S. Jahromi, W. Gabrielse, etal. Effect of melamine polyphosphate on thermal degradation of polyamides: a combined X-ray diffraction and solid-state NMR study[J]. Polymer, 2003, 44: 25-37.
    [61] S. Y. Lu, I. Hamerton. Recent developments in the chemistry of halogen-MPPee flame retardant polymers[J]. Progress in Polymer Science, 2002, 27: 1661-1712.
    [62] 黄健,张云灿等.热接枝法MEPDM对尼龙66的增韧行为[J].塑料工业,2000,28(5):13-27.
    [63] J. W. Gilman, S. J. Ritchie, etal. Fire retardant additives for polymeric materials-1. char formation from silica gel-potassium carbonate [J]. Fire Material, 1997, 21: 23-25.
    [64] S. Javangula, B. Ghorashi. Mixing of glass fibers with nylon 66[J]. Journal of materials science, 1999, 34: 5143-5151.
    [65] G. Zhang, M. R. Thompson. Influence of foaming on the mechanical properties of glass-fiber reinforced polypropylene composite[J]. Polymer Processing Society Annual Conference, 2004, 128.
    [66] 杨海波,童玉清,张立群.啮合同向双螺杆挤出机普通螺纹元件中物料停留时间计算[J].中国塑料,2005,19:95-98.
    [67] 钟世云,梁昊.影响长纤维增强热塑性塑料注塑制品中纤维长度的主要因素[J].合成材料老化与应用.2004,22:28-32.
    [68] 耿孝正.用于玻纤增强粒料制备的啮合同向双螺杆挤出机的螺杆构型[J].中国塑料,2000,14:97-100.
    [69] 杨其,匡俊杰,赵亮等.PA66的增韧增强研究[J].塑料工业,2005,33:18-20.
    [70] G. Zhang, M. R. Thompson. Reduced fiber breakage in a glass-fiber reinforced thermoplastic through foaming [J]. Composites Science and Technology, 2005, 65: 2240-2249.
    [71] M. Akay, D. Barkley. Fiber orientation and mechanical behaviour in reinforced thermoplastic injection mouldings [J]. Journal of Material Science, 1991, 26: 2731-2742.
    [72] C. Albano, R. Sciamanna, R. Gonzalez etal. Analysis of nylon 66 solidification process [J]. European Polymer Journal, 2001, 37: 851-860.
    [73] A. Hassan, R. Yahya, A. H. Yahaya, etal. Tensile, impace and fiber length properties of injection-molded short and long glass fiber-reinforced polyamide 66 composites [J]. Journal of reinforced plasctic and composites, 2004, 23: 969-986.
    [74] R. Von Turkovich, L. Erwin. Fiber fracture in reinforced thermoplastic processing [J]. Polymer Engineering Science, 1983, 23: 743-749.
    [75] B. Franzen, C. Klason, J. Kubat, etal. Fiber degradation during processing of short fiber reinforced thermoplastics [J]. Composite, 1989, 20: 65-75.
    [76] 刘志刚,杨云波.同向双螺杆挤出机螺杆元件组合及其应用[J].工程塑料应用,2001,29:33-35.
    [77] U. Yilmazer, M. Cansever. Effects of processing conditions on the fiber length distribution and mechanical properties of glass fiber reinforced nylon 6 [J]. Polymer Composites, 2002, 23: 61-71.
    [78] 朱林杰,耿孝正,李鹏.啮合同向双螺杆挤出过程聚合物粒料熔融机理研究(二)——正向捏合块组合中熔融机理研究[J].中国塑料,1999,13:76-82.
    [79] J. P. Hernandez, T. Raush, A. Rios, etal. Analysis of fiber damage mechanisms during processing of reinforced polymer melts[J]. Engineering Analysis with Boundary Elements, 2002, 26: 621-628.
    [80] S. Toll, P. O. Andersson. Microstructure of long and short-fiber reinforced injection molded polyamdie [J]. Polymer Composites, 1993, 14: 116-125.
    [81] K. Short, J. L. White. A comparative study of fiber breakage in compounding glass fiber-renforced thermoplastics in a buss kneader, modulus co-rotating and counter-rotating twin screw extruders [J]. Polymer Engineering Science, 1999, 39: 1757-1768.
    [19] K. Ramani, D. Bank, N. Kraemer. Effect of screw design on fiber damage in extrusion compounding and composite properties [J]. Polymer Composites, 1995, 16: 258-266.
    [82] 朱林杰,耿孝正,李鹏.啮合同向双螺杆挤出过程聚合物熔融机理研究——复合螺杆组合中聚合物颗粒的熔融[J].中国塑料,2000,14:100-106.
    [83] 赵若飞,周晓东,戴干策.玻璃纤维增强热塑性复合材料的增强方式及纤维长度控制[J].纤维复合材料,2000,1:19-29.
    [84] A. Hassan, R R. Hornsby, M. J. Folkes. Structure-property relationship of injection-molded carbon fibre-reinforced polyamide 6, 6 composites: the effect of compounding routes [J]. Polymer Testing, 2003, 22: 185-189.
    [85] F. Apruzzese, J. Pato, S. T. Balke, L. L. Diosady. In-line measurement of residence time distribution in a co-rotating twin-screw extruder [J]. Food Research International, 2003, 36: 461-467.
    [86] J. L. Thomason. Micromechanicat parameters From macromechanical measurements on glass reinforced polyamide 6, 6 [J]. ComPosites Science and Technology, 2001, 61: 2007-2016.
    [87] G. X. Sui, S. C. Wong, C. Y. Yue Effect of extrusion compounding on the mechanical properties of rubber-toughened polymers containing short glass fibers [J]. Journal of Materials Processing Technology, 2001, 113: 167-171.
    [88] B. Mlekusch, E. A. Lehner, W. Geymayer. Fibre orientation in short-fibre-reinforced thermoplastics I. Contrast enhancement for image analysis [J]. Composites Science and Technology, 1999, 59: 543-545.
    [89] A. Kelly, W. R. Tyson. Tensile Properties of fiber-reinforced metal: copper-tungsten and coppermolybdenum[J]. Journal of Mechanical Physical Solids, 1965, 13: 329-350.
    [90] Y. H. Chen, Q. Wang. Preparation, properties and characterizations of halogen-free nitrogen-phosphorous flame-retarded glass fiber reinforced polyamide 6 composite [J]. Polymer Degradation and Stability, 2006, 91: 2003-2013.
    [91] K. Noda, T. Michihiro, T. Atsushi, etal. Aggregation structure and molecular motion of (glassfiber/matrix nylon 66) interface in short glass-fiber reinforced nylon66 composites [J]. Polymer, 2002, 43: 4055-4062.
    [92] R. L. Clark, R. G. Kander, B. B. Sauer. Nylon 66/poly(vinyl pyrrolidone) reinforced composites: 1. Interphase microstructure and evaluation of fiber-matrix adhesion [J]. Composites PartA: Applied science and manufacturing, 1999, 30: 27-36.
    [93] J. O. Iroh, G. A. Wood. Control of carbon fber-polypyrrole interphases by aqueous electrochemical process [J]. Composites Part B: 1998, 29B: 181-188.
    [94] J. J. Huang, H. Keskkula, D. R. Paul. Comparison of the toughening behavior of nylon 6 versus an amorphous polyamide using various maleated elastomers[J]. Polymer, 2006, 47: 639-651.
    [95] K. Noda, A. Takahara, T. Kajiyama. Fatigue failure mechanisms of short glass-fiber reinforced nylon 66 based on nonlinear dynamic niscoelastic measurement [J]. Polymer, 2001, 42: 5803-5811.
    [96] 杨俊,蔡力锋,林志勇.增强树脂用玻璃纤维的表面处理方法及其对界面的影响[J].塑料,2004,33:5-8.
    [97] D. Z. Wu, X. D. Wang, R. G. Jin. Toughening of poly(2,6-dimethyl-1,4-phenylene oxide)/nylon 6 alloys with functionalized elastomers via reactive compatibilization: morphology, mechanical properties, and rheology [J]. European Polymer Journal, 2004, 40: 1223-1232.
    [98] J. Ma, Y. X. Feng. J. Xu, etal. Effects of compatibilizing agent and in situ fibril on the morphology, interface and mechanical properties of EPDM/nylon copolymer blends [J]. Polymer, 2002, 43: 937-945.
    [99] H. C. Y. Cartledge, C. A. Baillie. Studies of microstrural and mechanical properties of nylon/glass composite, Part I The effect of thermal processing on crystallinity, transcrystallinity and crystal phased [J]. Journal of Materials Science, 1999, 34: 5099-5111.
    [100] Q. F. Yue, J. F. Ren, B. L. Pan. Compatibilizing effect of ethylene-propylene-diene grafted maleic anhydride terpolymer on the blend of polyamide 66 and thermal liquid crystalline polymer [J]. Polymer Composites, 2006, 608-613.
    [101] C. Y. Yue, H. C. Looi, M. Y. Quek. Assessment of fiber-matrix adhesion and interfacial properties using the pull-out test [J]. International Journal of Adhesion and adhesives, 1995, 15: 73-80.
    [102] G. A. Wade, W. J. Cantwell. Adhesive bonding and wettability of plasma treated, glass fiber-reinforced nylon-66 composites [J]. Journal of Materials Science, 2000, 19: 1829-1832.
    [103] 清水二郎.纤维的结构和性能(Ⅸ)[J].北京服装学院学报,1997,17:91-94.
    [104] 张祥福,张隐西,郑海欧等.相容剂在三元乙丙橡胶/聚酰胺共混物中的应用[J].橡胶工业,1994,41:42-47.
    [105] X. D. Wang, H. Q. Li. Compatibilizing effect of ethylene-vinyl acetate-acrylic acid copolymer on nylon 6/ethylene-vinyl acetate copolymer blended system: mechanical properties, morphology and rheology [J]. Journal of Materials Science, 2001, 36: 5465-5473.
    [106] J. L. Thomason. The influence of fibre properties of the performance of glass-fbre-reinforced polyamide 6, 6[J]. Composites Science and Technology, 1999, 59: 2315-2328.
    [107] A. Pegoretti, M. Fidanza, C. Migliaresi. Toughness of the fiber/matrix interface in nylon-6/glass fiber composites [J]. Composites Part A: 1998, 29: 283-291.
    [108] R. L. Clark Jr, R. G. Kander, B. B. Sauer. Nylon 66/poly(vinyl pyrrolidone) reinforced composites: 1. Interphase microstructure and evaluation of fiber-matrix adhesion[J]. Composites: Part A: 1999, 30: 27-36.
    [109] K. Tohgo, D. Fukuhara, A. Hadano. The influence of debonding damage on fracture toughness and crack-tip field in glass-particle-reinforced nylon 66 composites [J]. Composites Science and Technology, 2001, 61: 1005-1016.
    [110] M. Buggy, G. Bradley, A. Sullivan. Polymer-filler interactions in kaolin/nylon 6, 6 composites containing a silane coupling agent [J]. Composites: Part A: 2005, 36: 437-442.
    [111] C. Y. Yue, H. C. Looi, M. Y. Quek. Assessment of fibre-matrix adhesion and interfacial properties using the pull-out test [J]. International of Adhesion and Adhesives, 1995, 15: 73-80.
    [112] G. A. Wade, W. J. Cantwell. Adhesive bonding and wettability of plasma treated, glassfiber-reinforced nylon-6, 6 composites [J]. Journal of Materials Science Letters, 2000, 19: 1829-1832.
    [113] S. C. Wong, G. X. Sui, C. Y. Yue. Characterization of microstructures and toughening behavior of fiber-containing toughened nylon 6, 6[J]. Journal of Materials Science, 2002, 37: 2659-2667.
    [114] S. H. Yun, C. Donghwan. Effect of silane coupling agents with different organo-functional groups on the interfacial shear strength of glass fiber/nylon6 composites[J]. Journal of Materials Science Letters, 2003, 22: 1591-1594.
    [115] Y. H. Chen, Q. Wang. Preparation, properties and characterizations of halogen-free nitrogenphosphorous flame-retarded glass fiber reinforced polyamide 6 composite[J]. Polymer Degradation Stability, 2006, 91: 2003-2013.
    [116] J. Davis, M. Huggard. The Technology of Halogen-free Flame Retardant Phosphorus Additives for Polymeric Systems[J]. Journal of Vinyl and Additive Technology, 1996, 2: 69-75.
    [117] H. Salehi-Mobarakeh, J. Brisson, A. Ait-Kadi. Interfacial polycondensation of nylon-66 at the glass fiber surface and its effect on fiber-matrix adhesion [J]. Journal of Materials Science, 1997, 32: 1297-1304.
    [118] E. C. Botrlho, N. Scherbakoff, M. C. Rezende. Synthesis of polyamide 66 by interfacial polycondensation with the simultaneous impregnation of carbon fiber[J]. Macromolecules, 2001, 34: 3367-3374.
    [119] S. Idemura, H. Haraguchi. Glass-polyamide composite and process for producing the same. U. S. Patent 2000, 6063862.
    [120] G. A. Wade, W. J. Cantwell, R. C. Pond Plasma surface modification of glass fibre-reinforced nylon 6, 6 thermoplastic composites for improved adhesive bonding [J]. Interface Science, 2000, 8: 363-373.
    [121] B. N. Yow, U. S. Ishiaku, Z. A. Mohd Ishak, etal. Fracture behavior of rubber-modified injection molded Poly(butylenes terephthalate) with and without short glass fiber reinforcement[J]. Journal of Applied Polymer Science, 2002, 84: 1233-1244.
    [122] S. I. LEE, C. C. Byoung. Mechanical properties and fracture morphologies of poly (phenylene sulfide)/nylon66 blends, effect of nylon 66 content and testing temperature[J]. Journal of Materials Science, 2000, 35: 1187-1193.
    [123] S. C. Wong, Y. W. Mai. Effect of rubber functionality on microstructures and fracture toughness of impact-modified nylon 66/polypropylene blends[J]. Polymer, 2000, 41: 5471-5483.
    [124] T. Keiichiro, Fukuhara, A. Hadano. The influence of debonding damage on fracture toughness and crack-tip field in glass-particle-reinforced nylon 66 composites[J]. Composites Science and Technology, 2001, 61: 1005-1016.
    [125] K. Tohgo, M. Mochizuki, H. Ishii. Incremental damage theory and its application to glass- particle-reinforced nylon 66 composites[J]. International Journal of Mechanical Sciences, 1998, 40: 199-213.
    [126] K. Tohgo, D. Fukuhara, A. Hadano, Ishii H. Influence of debonding damage on mechanical performance of glass-particle-reinforced nylon 66 composites[J]. ASME Int, PVP, 1998, 374: 331-338.
    [127] G. Bao. Damage due to fracture of brittle reinforcements in a ductile matrix[J]. Acta Metall Mater, 1992, 40: 2547-2555.
    [128] K. Tohgo, Y. T. Cho. Theory of reinforcement damage in discontinuously-reinforced composites and its application [J]. JSME International Journal, 1999, 42: 521-529.
    [129] D. Z. Wu, X. D. Wang, R. G. Jin. Effect of nylon 6 on fracture behavior and morphology of tough blends of poty(2,6-dimethyl-1, 4-phenylene oxide) and maleated styene-ethlene-butadiene-styrene block copolymer[J]. Journal of Applied Polymer Science, 2006, 99: 3336-3343.
    [130] M. Akay, D. F. O'Regan. fracture behaviour of glass fibre reinforced polyamide mouldings[J]. Polymer Testing, 1995, 14: 149-162.
    [131] S. Y. Fu, B. Lauke, E. MaEder. Fracture resistance of short-glass-fiber-reinforced and short-carbon-fiber-reinforced polypropylene under Charpy impact load and its dependence on processing[J]. Journal of Materials Processing Technology, 1999, 90: 501-507.
    [132] S. C. Tjong, S. A. Xu, Y. W. Mai. Impact Fracture toughness of short glass fiber-reinforced polyamide6, 6 hybrid composites containing elastomer particles using essential work of Fracture concept[J]. Materials Science and Engineering A, 2003, 347: 338-345.
    [133] K. Tohgo, M. Mochizuki, H. Ishii. Incremental damage theory and its application to Glass-particle-reinforced nylon 66 composites[J]. International Journal of Mechanical Sciences, 1998, 40: 199-213.
    [134] S. Pisharath, S. C. Wong. Fracture behavior of nylon hybrid composites[J]. Journal of Materials Science, 2004, 39: 6529-6538.
    [135] S. Y. Fua, B. Laukeb, E. MaEder. Fracture resistance of short-glass-fiber-reinforced and short-carbon-fiber-reinforced polypropylene under Charpy impact load and its dependence on processing[J]. Journal of Materials Processing Technology, 1999, 89-90: 501-507.
    [136] M. Buggy, G. Bradley, A. Sullivan. Polymer-filler interactions in kaolin/nylon 6,6 composites containing a silane coupling agent[J]. Composites: Part A, 2005, 36: 437-442.
    [137] M. Akay, D. F. O. Regan. Fracture behaviour of glass fiber reinforced polyamide moulding[J]. Polymer Testing, 1995, 14: 149-152.
    [138] J. Li, C. X. Zhou, G. Wang, etal. Isothermal and nonisotherma crystallization kinetics of elastomeric polypropylene[J], PolymerTesting, 2002, 21: 583-589.
    [139] H. E. Kissinger. Variation of peak temperature with heating rate in differential thermal analysis[J]. Journal Research Natl Standard, 1956, 57: 217-222.
    [140] H. J. Tai, W. Y. Chui, L. W. Chen. Study on the crystallization kinetixs of PP/GF composites[J]. Journal of Appllied Polymer Science, 1991, 42: 311-315.
    [141] J. G. Gao, M. S. Yu, Z. T. Li. Nonisothermal crystallization kinetics and melting behavior of bimodal medium density polyethylene/low density polyethylene blends [J]. European Polymer Journal, 2004, 44: 1533-1599.
    [142] B. Narayan, H. Y. Kim. Nonisothermal crystallization and melting behavior of the copolymer derived from p-dioxanone and poly(ethytent glyco)[J]. European Polymer Journal, 2003, 39: 1365-1375.
    [143] J. Li, C. X. Zhou, G. Wang. Study on nonisothermal crystallization of maleic anhydride grafted polypropylene/montmorillonite nanocomposite[J]. Polymer Testing, 2003, 22: 217-223.
    [144] Z. G. Wu, C. X. Zhou. The syntheses and characterization of nylon1012/clay nano-composites[J]. Polymer Testing, 2002, 83: 2403-2407.
    [145] Z. G. Wu, C. X. Zhou. The nucleation effect of montmorillonite on nylon 1212/montmorillonite nanocomposites[J]. Polymer Testing, 2002, 21: 479-482.
    [146] A. Dobreva, Ⅰ. Gutzow. Activity of substrates in the catalyzed nucleation on glass-forming melts. Ⅱ. Experimental evidence [J]. Journal of Non-crystalline Solids, 1993, 162: 13-18.
    [147] B. K. Hong, H. J. Won. The effect of electric field on the crystallization of polyamide-66 by rheological measurement[J]. Polymer, 1996, 37: 4183-4185.
    [148] X. K. Zhang, T. X. Xie, G. S. Yang. Isothermal crystallization and melting behaviors of nylonl 1/nylon66 alloys by in situ polymerization[J]. Polymer, 2006, 47: 2116-2126.
    [149] D. J. Lin, C. L. Chang, C. K. Lee, etal. Fine structure and crystallinity of porous nylon 66 membranes prepared by phase inversion in the water/formic acid/nylon 66 system [J]. European PolymerJournal, 2006, 42: 356-367.
    [150] X. Zhang, Y. B. Li, G. Y. LV, etal. Thermal and crystallization studies of nano-hydroxyapatite reinforced polyamide 66 biocomposites [J]. Polymer Degradation and Stability, 2006, 91: 1202-1207.
    [151] B. X. Guan, R J. Phillips. Does isothermal crystallization ever occur?[J]. Polymer, 2005, 46: 8763-8773.
    [152] D. Nujalee, S. Pitt, N. Manit. Thermal, crystallization, and rheologicalcharacteristics of poly (trimethylene terephthalate)/poly (butylenes terephalate) blends [J]. Polymer Testing, 2004, 23: 187-194.
    [153] P. P. Zhu, D. Z. Ma. Study on the double cold crystallization peaks of poly(ethylene terephthalate) 3. The influence of the addition of calxium carbonate[J]. European Polymer Journal, 2000, 36:2471-2475.
    [154] A. Feldman, M. F. Gonzalez, G. Marom. Transcrystallinity in surface modified aramid fiber reinforced nylon66 composites [J]. Macromolecular Materials and Engineering, 2003, 288: 861-866.
    [155] P. A. Eriksson, A. C. Albertsson, K. Eriksson, etal. Thermal oxidative stability of heat-stabilised polyamide 66 by differential scanning calorimetry[J]. Journal of Thermal Analysis, 1998, 53: 19-26.
    [156] Y. X. Zhou, P. K. Mallick. A non-linear damage model for the tensile behavior of an injection molded short E-glass fiber reinforced polyamide-6,6[J]. Materials Science and Engineering A 2005, 393: 303-309.
    [157] T. Katayama, T. Omiya. A study on the characteristics of glass fibre reinforced thermoplastics by transfer moulding [J].Composite Structures, 1995, 32: 531-539.
    [158] C. S. Wang, C. H. Lin. Crystallization kinetics and multiple melting phenomena of a flame- retardant phosphorus containing copolyester[J]. Journal of Polymer Science: Part B: Polymer Physics, 1999, 37: 2269-2277.
    [159] X. Kang, S. Q. He, C. S. Zhu. Studies on crystallization behaviors and crystal morphology of polyamide 66/clay nanocomposites[J]. Journal of Applied Polymer Science, 2005, 95: 756-763.
    [160] G. Bogoeva-Gacevaa, A. Janevskib, E. Mader. Nucleation activity of glass fibers towards iPP evaluated by DSC and polarizing light microscopy[J]. Polymer, 2001, 42: 4409-4416.
    [161] Ki-Dong Kim, Seung-Heun Lee, Hyo-Kwon Ahn. Observation of nucleation effect on crystallization in lithium aluminosilicate glass by viscosity measurement[J]. Journal of Non-Crystalline Solids, 2004, 336: 195-201.
    [162] Z. G. Wu, C. X. Zhou, N. Zhu. The nucleating effect of montmorillonite on crystallization of nylon 1212/montmorillonite nanocomposite[J]. Polymer Testing, 2002, 21: 479-483.
    [163] M. J. Avrami. Kinetics of phase change, I: general theory[J]. Journal of Chemical Physics, 1939, 7: 1103.
    [164] H. E. Kissinger. Variation of peak temperature with heating rate in differential thermal analysis[J]. J Res Natl Stand, 1956, 57: 217-221.
    [165] 崔新宇,周晓东,戴干策.玻璃纤维增强聚丙烯复合材料的界面结晶行为[J].塑料科技,2000,(4):33-35.
    [166] K. Tohgo, D. Fukuhara, A. Hadano. The influence of debonding damage on fracture toughness and crack-tip field in glass-particle-reinforced nylon 66 composites[J]. Composite Science Technology, 2001, 61: 1005-1016.
    [167] C. Albano, R. Sciamanna, R. Gonzalez, etal. Analysis of nylon 66 solidification process[J]. European Polymer Journal, 2001, 37: 851-860.
    [168] J. Brandrup, E. H. Lmmergut. Polymer Handbook 2nd Ed. New York: Wiley-Interscience. 1975.
    [169] M. M. Martens, R. V. Kasowski. Fire resistant resin compositions. US Patent, 1999, 5618865.
    [170] Polizzi S, Fagherazzi G and Benedetti A. Crystallinity of polymers by x-ray diffraction: a new fitting approach[J]. European Polymer Journal, 1991, 27: 85-87.
    [171] X. H. Kong, X. N. Yang, G. Li, etal. Nonisothermal crystallization kinetics: poly(ethylene terephthalate)-poly(ethylene oxide) segmented copolymer and poly(ethylene oxide) homopolymer[J]. European Polymer Journal, 2001, 37: 1855-1862.
    [172] Ozawa T. Kinetics of non-isothermal crystallization[J]. Polymer, 1971, 12: 150-156.
    [173] T. D. Fornes, D. R. Paul. Crystallization behavior of nylon 6 nanocomposites[J]. Polymer, 2003, 44: 3945-3961.
    [174] M. Y. Liu, Q. X. Zhao, Y. D. Wang. Melting behaviors, isothermal and non-isothermal crystallization kinetics of nylon 1212[J]. Polymer, 2003, 44: 2537-2545.
    [175] A. Dobreva, Ⅰ. Gutzow. Activity of substrates in the catalyzed nucleation of glass-forming melts. Ⅱ. Experimental evidence Journal of Non-Crystalline Solids[J]. 1993, 162: 13-25.
    [176] E. Klata, K. Van de Velde, I. Krucin'ska. DSC investigations of polyamide 6 in hybrid GF/PA 6 yarns and composites[J]. Polymer Testing, 2003, 22: 929-937.
    [177] H. C. Y. Cartledge, C. A. Baillie. Studies of microstructural and mechanical properties of Nylon/Glass composite[J]. Journal of Materials Science, 1999, 34: 5113-5126.
    [178] J. Tunga, R. K. Guptab, G. P. Simona. Rheological and mechanical comparative study of in situ polymerized and melt-blended nylon 6 nanocomposites[J]. Polymer, 2005, 46: 10405-10418.
    [179] B. Wielage, T. Lampke, H. Utschick, F. Soergel. Processing of natural-fibre reinforced polymers and the resulting dynamic-mechanical properties[J]. Journal of Materials Processing Technology, 2003, 139: 140-146.
    [180] F. Hernandez-Sanchez, O. Roberto, M. Angel. Effect of NR and EPDM on the rheology of HDPE/PP blends[J]. Polymer Bulletin, 1999, 42, 481-488.
    [181] Let'Icia Socal Da Silva, Maria Madalena De Camargo Forte. Study of rheological properties of pure and polymer-modified Brazilian asphalt binders[J]. Journal of Materials Science, 2004, 39: 539-546.
    [182] S. F. Bush, F. G. Torres, J. M. MethvenRheological characterisation of discrete long glass fibre (LGF) reinforced thermoplastics[J]. Composites: Part A: 2000, 31: 1421-1431.
    [183] J. Thomasseta, P. J. Carreaua, B. Sanschagrina. Rheological properties of long glass fiber filled polypropylene[J]. Journal of Non-Newtonian Fluid Mechanical, 2005, 125: 25-34.
    [184] Y. P. Khanna, P. K. Han, E. D. Day. New developments in the melt rheology of nylons. I: effect of moisture and molecular weight[J]. Polymer Engineering and Science, 1996, 36: 1745-1754.
    [185] G. S. Hu, B. B. Wang, F. Z. Gao Investigation on the rheological behavior of nylon 6/11[J]. Materials Science and Engineering A, 2006, 42: 6263-265.
    [186] Y. F. Ding, J. S. He, J. Zhang. Rheological hybrid effect in nylon 6/liquid crystalline polymer blends caused by added glass beads[J].Journal of Non-Newtonian Fluid Mechanical. 2006, 135: 166-176.
    [187] R. W. Roberts, R. S. Jones. Rheological characterization of continuous fiber composites in oscillatory shear flow[J]. Composites Manufacturing, 1995, 6: 161-167.
    [188] J. Tunga, R. K. Guptab, G. P. Simon. Rheological and mechanical comparative study of in situ polymerized and melt-blended nylon 6 nanocomposites[J]. Polymer, 2005, 46: 10405-10418.
    [189] M. Richardson. Polymer engineering composite. Applied Science Publishers, 1977.
    [190] L. E. Nielsen. Mechanical properties of polymers and composites: New Dekkm, 1974, 1, 16
    [191] 过梅丽编著.高聚物与复合材料的动态力学热分析[M].北京:化学工业出版社,2002:61-62.
    [192] M. Ashida, T. Noguchi. Effect of matrix's type on the dynamic properties for short fiber- elastomer composite [J]. Journal of Appllied Polymer Science, 1985, 30: 1011-1014.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700