PC/PE共混物加工过程中的形态演变与控制及其结构与性能关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以聚乙烯(PE)和聚丙烯(PP)为主的通用塑料高性能化是当前及以后高分子材料科学与工程领域的研究热点和重点,聚烯烃与工程塑料(如聚碳酸酯等)共混是提高聚烯烃性能的一个重要途径。本论文将聚碳酸酯(PC)与聚乙烯共混,并通过形态设计与控制实现聚乙烯性能的改善。在实现PC/PE共混物形态设计与控制及其性能提高的过程中主要存在两个问题需要解决,一为共混物相形态的控制,二为聚乙烯与聚碳酸酯两相间界面作用的提高。共混物形态是影响材料性能的关键因素之一,为获得高性能的聚乙烯共混物材料,必须对PC/PE共混物在混合和成型过程中的形态演变规律进行研究,并能达到对形态的控制和预测。对于PC/PE极不相容体系,界面作用弱,界面往往是材料发生破坏的薄弱点,因此必须对PC/PE体系进行增容,以获得良好的界面作用,同时增容作用也有利于共混物形态的控制。本论文通过双螺杆挤出混合和注射成型获得共混物试样,研究了PC/PE共混物在混合和成型过程中的形态演变与控制,以及外场作用和反应增容等因素共混物形态、结构和性能的影响。主要研究内容和结果如下:
     1)PC/PE共混物在双螺杆挤出过程中的形态演变规律
     研究了PC/PE共混物在双螺杆挤出过程中沿螺杆轴向不同位置的分散相形态,建立了PC/PE共混物在混合过程初期的形态演变模型。结果表明,PC分散相在从毫米尺度的颗粒演变为微米尺度的多样化形态的过程中,经历片层状、纤维状和粒子状结构的发展过程。PC分散相的软化变形是混合初期分散相尺寸降低和形态改变的主要原因,在混合初期,PC分散相的破碎过程占主导,可忽略聚集作用的影响。
     研究了混合温度、两相粘度比、螺杆转速和螺杆组合等因素对分散相形态演变的影响规律。发现在PC临界流动温度以上进行了混合,PC分散相经过初期的软化变形阶段后,在混合的中后期以液滴的形式继续变形破碎,同时发生聚集;而在PC临界流动温度以下进行混合,PC分散相始终以软化变形的机理进行形态的演变,特别是在混合中后期,分散相尺寸不再下降,且形态不规则。分散相粘度越低,越接近于基体粘度,其由毫米尺度转化为微米尺度的过程越快,尺寸下降也较高粘度分散相明显;但在混合的中后期,低粘度分散相易变形、易聚集,导致分散相产生了一定取向的有序结构,同时聚集作用会导致混合后期分散相尺寸增加。螺杆转速提高,剪切作用将增强,因此分散相由毫米尺度转化为微米尺度的过程加快,最终得到的共混物分散相尺寸降低。混合初期的捏合区构造对分散相形态和尺寸的影响较大,在这一区域主要以分散相破碎为主,故加强剪切作用,可改善混合效果;在混合的中期,加强剪切作用,可改变分散相由毫米尺度转化为微米尺度的机制,获得特殊的有序结构,同时降低分散相尺寸;在混合后期,捏合区的调控可加强或减弱聚集作用的发生,从而平衡分散相的破碎和聚集过程。
     2)PC与EAA的大分子反应及其对PC/PE共混物形态和性能的影响通过核磁共振氢谱表征了PC/EAA共混物在催化作用下的反应产物。结果表明,PC与EAA在熔体混合过程中发生了酸-酯交换反应,生成了PC-g-EAA共聚物。DBTO是该反应的有效催化剂。该反应受共混物组成、催化剂用量和混合时间的影响。PC-g-EAA的生成提高了PC/EAA体系的粘度。
     DSC分析发现,在PC/EAA两相体系中,PC与EAA的反应提高了PC分子链与EAA分子链的相互作用,限制了EAA分子链的运动能力,从而导致EAA结晶度的降低。在PC/PE/EAA体系中,通过EAA的反应增容,相间的相互作用提高,PE的结晶过程受到阻碍,降低了PE相的结晶度。动态机械分析的结果也证明了PE结晶度和晶体完善程度的下降,导致α松弛温度向低温方向偏移。
     EAA的加入和反应生成的PC-g-EAA共聚物降低了共混体系的表面张力,导致PC分散相粒子的尺寸降低。通过动态流变分析发现EAA反应增容PC/PE体系的粘弹行为发生了改变,由于PC-g-EAA接枝共聚物的生成,增强了PC相与PE相的相互作用,导致催化体系的动态弹性模量、粘性模量和复数粘度上升。结果表明PC与EAA间的反应产物PC-g-EAA共聚物有助于改善两相界面作用,相界面的改善对在成型过程中获得分散相的形态控制有重要意义。
     3)PC/PE/EAA共混物在混合和成型过程中的形态控制
     对PC/PE/EAA共混物在双螺杆混合和注射成型过程中的形态进行了研究,并利用混合过程中的剪切与停留作用及其注塑过程中的剪切变化实现了对PC/PE/EAA共混物的形态控制。结果表明,在双螺杆挤出过程中,增加螺杆转速,将加强了剪切作用,同时也降低了停留作用,因此螺杆转速对分散相形态的影响是上述两种作用相互竞争的结果,在中等转速(120rpm)下,两种作用达到平衡,获得分散相尺寸最小和分布最窄的共混物。而螺杆组合对分散相形态的影响是剪切和停留作用相互协同的结果。通过改变螺杆组合得到的共混物分散相尺寸最低达到0.50μm(D_n)和1.24μm(D_v)。
     利用Palieme模型计算得到了不同条件下的PC/PE/EAA共混物的界面张力。EAA的反应增容极大地降低了共混物的界面张力,由PC/PE体系的19.3mN/m降低到PC/PE/EAA体系的7.3mN/m。由于界面张力主要受大分子反应生成的接枝产物量的影响,因此停留时间对界面张力的影响更明显。随停留时间的增加,PC/PE/EAA的界面张力逐渐下降。本工作获得的PC/PE/EAA共混物的界面张力最低可达2.5mN/m,说明通过混合过程中的调控,共混物的相界面得到显著改善。
     在高速注塑过程中,增容体系的PC分散相在增强的界面作用下更易获得变形,在流动过程中从剪切层到芯部均形成了较大长径比的纤维结构。在冻结过程中,由于过渡区和芯部的冷却时间较长,纤维状分散相逐渐松弛产生颈缩,并最终破碎成为有序排列的椭球状粒子。在低速注塑过程中,分散相受剪切作用较弱,形成的取向纤维的长径比较高速条件小,在冷却过程中,长径比较小的纤维分散相松弛作用较弱,两相界面能够维持其形态,从而不发生颈缩和破碎。由此获得了具有多层次纤维分散相的特殊皮芯结构,这种皮芯结构中的纤维分散相的直径随距表层距离增加而变大。
     4)PC/PE/EAA共混物注塑试样的形态与冲击性能关系
     本论文研究了PC/PE和PC/PE/EAA共混物在不同注射速率下成型试样的冲击性能。与PC/PE体系相比,PC/PE/EAA反应增容体系的缺口冲击强度明显提高。当注射速率为3.6cm~3/sec时,PC/PE/EAA共混物的缺口冲击强度达到最大值,其近浇口处为52.1kJ/m~2,远浇口处为24.5kJ/m~2,分别比未增容体系提高了3.5倍和1.9倍。说明EAA大分子反应原位增容能明显改善PC/PE共混物的冲击性能。PC/PE共混物的远近浇口冲击性能差异较小,且不随注射速率变化而发生改变。但PC/PE/EAA体系的近浇口的缺口冲击强度高于远浇口,在不同注射速率下均相差近一倍。同时增容体系的冲击性能依赖于注射速率的变化,注射速率升高,冲击性能下降。
     由于增容体系特别是低速注塑试样的分散相形态与未增容体系存在明显差异,因而增容前后分散相抵抗裂纹生长的能力不同,导致了冲击性能的变化。注射速率差异导致的分散相纤维的尺寸变化对冲击性能产生了较大的影响,长径比较小、直径较大的纤维在抵抗裂纹发展的过程中吸收了大量能量,因而增容体系低速注塑试样的冲击性能远高于未增容体系。
     界面作用和压应力也是影响PC/PE/EAA共混物冲击性能的重要因素,同时也是造成增容体系样品远近浇口性能差异的原因。在注射速率为3.6cm~3/sec的PC/PE/EAA共混物试样近浇口的断面中发现,芯部的大直径短纤维分散相在破坏过程中不发生断裂,而且在增容作用和压应力的影响下,基体与分散相结合较好,分散相纤维不能从基体中拔出,导致试样芯部的分散相与基体发生整体拔出破坏,这种破坏形式吸收了较多的能量,提高了材料的冲击性能。而远浇口的压应力较弱,分散相纤维与基体的摩擦作用降低,导致纤维从基体中拔出,未与基体结合发生变形。芯部区域纤维结构的破坏形式的差异是导致低速增容样品冲击性能变化的主要因素。在高速注塑试样中,也存在基体与分散相粘结和分散相变形等现象,但高速注塑试样的冲击性能受过渡区分散相纤维变形的影响较大。
Performance enhancement of general-purpose plastics (mainly polyethylene (PE) and polypropylene (PP)) is one of the most important topics in the field of polymer materials science and engineering at present and in the future. Blending modification with engineering plastics is a major route to enhance the performance of general-purpose plastics. Polycarbonate (PC) was used to modify the high density polyethylene in this thesis. Controlling of phase morphology and compatibilization are both the important problems that should be settled to realize the performance enhancement of polyethylene blend. Phase morphology of PC/PE blend is an important factor to influence the properties of the blend. Therefore, the morphology development of PC/PE during the twin-screw extrusion and injection molding was investigated in this thesis. The interface interaction is weak in PC/PE blend, which induced the decreasing of the mechanical properties. In this thesis, the macromolecular reaction between PC and ethylene-acrylic acid (EAA) was used to in-situ compatibilize the PC/PE blend. Morphology of PC/PE blend was controlled by adjusting the technical parameter of blending, injection molding and the reactive compatibilization. A novel skin-core structure was obtained in the processing, which could be the reason that the enhancement of the impact property of PC/PE blend. The main results are:
     1) Morphology development of PC/PE blend during compounding in a twin-screw extruder
     The morphology of PC/PE blends at different positions along the screw axis was studied and the model of morphology development of the dispersed phase in the initial stage during twin-screw extrusion was proposed. The polycarbonate pellets partially deformed to sheets and ribbons during the melt softening step. Due to the effect of interfacial tension and flow characteristics, those sheets or ribbons became unstable and holes were formed. The holes rapidly grew in size and in concentration until the ribbons were changed to fibers.
     The effects of blending temperature, viscosity ratio (the ratio of the viscosity of the dispersed phase to that of the matrix), screw speed and the screw configuration on the morphology of the PC/PE blend during the extrusion were discussed in detail. It was found that the morphology of the dispersed particles and the interfacial adhesion between the dispersed phase and matrix were both influenced by the extrusion temperature. The dispersed phase exhibits a spheroidal shape and a small size during high temperature processing, and an irregular shape and a large size when it was processed at low temperature. The PC phase with a lower viscosity was easier to. disperse and also to coalesce. Therefore, the deformation of the low-viscosity dispersed phase during the processing was more intense than that of the high-viscosity dispersed phase. It was found that both of the shape and size of the dispersed phase in the uncompatibilized PC/PE blend are influenced by the screw speed. The evolution of dispersed phase morphology can be affected by increasing screw speed, and the dispersed particle size decreases with the increasing of the screw speed. By comparing the effect of the screw configuration on the morphology development of the PC/PE blend, it was found that the melting and breaking up of the dispersed phase were mainly affected in the initial blending stages by the number of the kneading blocks. When a kneading block with a 90 degree staggering angle was used, the size of the dispersed particles decreased and the long fibers were shortened, the large particles were drawn by the additional kneading zone. Finally, all of these structures were completely changed to the short fibers.
     2) Macromolecular reaction between PC and EAA and the effect of reactive compatibilization on the morphology and properties of PC/PE blend A grafted copolymer PC-graft-ethylene-co-acrylic acid (PC-g-EAA) was generated as a compatibilizer in situ during processing operation by ester and acid reaction between PC and EAA in the presence of the catalyst of dibutyl tin oxide (DBTO). The effects of the blend composition, catalyst content and mixing time on the reaction between PC and EAA were discussed. The influence of this copolymer formation at the interface between PC and EAA on the rheological properties and crystallization behavior for EAA/PC binary blends were studied. The equilibrium torque increased with the DBTO content increasing in EAA/PC blends on Haake torque rheometer, indicating the in situ formation of the graft copolymer, which enhanced the viscosity of PC/EAA blend.
     DSC studies suggested that the heat of fusion of the EAA phase in PC/EAA blends with or without DBTO reduced with the formation of copolymer compared with pure EAA. This indicated that the generation of PC-g-EAA enhanced the interaction between PC and EAA molecule, which decreases the mobility of EAA chain. Therefore, the crystallization of EAA chain was hindered and the degree of crystallinity of EAA phase decreased. Study on the crystallization of PC/PE/EAA blend indicated that PE phase crystallized still at its bulk crystallization temperature. The degree of crystallinity of PE phase in PC/PE/EAA blends was also reduced with the addition of EAA and DBTO compared to the uncompatibilized PC/PE blend, indicating that the graft copolymer PC-graft-EAA improves the interaction between PC and PE phase and hindered the movement of PE chain and arrangement into the lattices. It was found by dynamic mechanical analysis that the temperature of relaxationαandγof PE both shifted to the lower temperature due to the decreasing of the crystallinity of PE phase.
     Then morphology of the uncompatibilized and compatibilized blends of PC/PE was studied with different contents of EAA and DBTO. Morphological observations in PC/PE blends also revealed that the number of microvoids was reduced and the interface was imprived by increasing EAA content or adding catalyst DBTO as compared to the uncompatibilized PC/PE blends. This implied the interface tension of compatibilized PC/PE blend became lower owing to the addition of EAA and the generation of PC-g-EAA copolymer. It was found by dynamic rheological analysis that the elastic modulus, viscous modulus and complex viscosity were all increased along with the generation of PC-g-EAA copolymer, which indicated that the reactive compatibilizaion with EAA could improve the interface interaction of PC/PE blend.
     3) Morphology control of PC/PE/EAA blend during blending and injection molding The morphology of dispersed phase was tailored by optimizing of the combination of the share rate and the resident time during twin-screw extrusion. It was found that the increasing of screw speed provided higher shear rate and hence resulted in the less resident time. At a medium speed, the morphology of dispersed phase was modified, and the size of dispersed particles decreased and the diameter distribution narrowed. The size of dispersed phase was controlled by changing the screw configuration, and the number average diameter of PC particles was reduced to 0.50 um and the volume average diameter was 1.24 um.
     The interface tension of the different PC/PE/EAA blends was calculated using Palierne model. The interface tension of PC/PE blend was reduced due to the reactive compatibilization. The interface tension of uncompatibilized PC/PE blend, 19.3mN/m, was dropped to 7.3mM/m of the compatibilized blend. The resident time was variable with the varieties of the screw configuration, which influenced the generation of PC-g-EAA copolymer. Therefore, the interface tension of PC/PE/EAA blend was obviously influenced by the screw configuration. In this thesis, the PC/PE/EAA blend with a lower interface tension of 2.5mN/m was obtained by changing the screw configuration. The morphology and interface interaction were both improved by the controlling of the technical parameter during twin-screw extrusion.
     In the injection molding, the dispersed phase in the compatibilized PC/PE blend is easy to deform by the shear. At a high injection rate, the dispersed particles at different zone (skin, sub-skin, intermediate and core) all deformed to the fiberious structure. But in the cooling and solidification of the polymer melt, the dispersed fibers, in the intermediate and core, would relaxed and necked, and broke up to the oriented particles. On the other hand, at a low injection rate, the deformation of dispersed phase was smaller than that of high injection rate due to the decreasing of shear rate. Therefore, the dispersed fibers in the core zone with a small length/diameter ratio did not break up to particles, and the fiber structure was held, which could be a novel skin-core structure differing from the former proposed model.
     4) Morphology and impact strength property of PC/PE/EAA blend The impact properties of PC/PE/EAA blends injected at different injection rate were studied in this thesis. The notched impact strength of the gate side of PC/PE/EAA blend injected at an injection rate of 3.6cm~3/sec was 52.1kJ/m~2, and 24.5kJ/m~2 of the non-gate side. The notched impact strength of PC/PE blend at the same positions was 11.64 and 8.36kJ/m~2 respectively. This indicated that the reactive compatibilization improved the toughness of the blend. The impact properties of the gate side and non-gate side of uncompatibilized blend were comparative, but the difference at gate and non-gate side of compatibilized blend was obvious. The impact property of compatibilized PC/PE blend depended on the injection rate and the impact strength decreased along with the increasing of the injection rate.
     The novel skin-core structure in the injection bar with a low injection rate improved obviously the impact strength because the dispersed fiber with a small length/diameter ratio and a large diameter could absorb the sizeable energy during the impacting. It was found from the SEM micrograph of the impact fracture surface of the blend injected at the low injection rate that the dispersed fiber at the gate side was pulled out and the dispersed fibers stuck on the matrix. This indicated that the interface interaction in the PC/PE/EAA blend was too intense to be destroyed, which induced that the matrix was broken during the impacting, and the improved interface bonding enhanced the impact strength of the blend. At the non-gate side, the interface contact decreased, which induced the invalidation of the interface bonding during the impact experiment. Therefore, the impact strength at non-gate side of compatibilized blend was lower than that at gate side. The dispersed particles in the core zone of the blend injected at the high rate absorbed only few of the energy during the impacting, which induced that the impact property of the blend at high injection rate was much lower than that at low injection rate.
引文
[1] Perron P. J. Unique materials produced by reactive compounding. Plastics Engineering, 1988, 44 (12): 47-49.
    [2] Wang SJ, Wang CL, Wang B. Microstructure and mechanical properties of polymers studied by positron annihilation. Journal of Radioanalytical and Nuclear Chemistry-Articles, 1996, 210(2): 407-421.
    [3] Wang CL, Wang SJ, Qi ZN. Interaction of two phases in PIP/EPDM polymer blend probed by positron annihilation: CONTIN analysis. Journal Of Polymer Science Part B-Polymer Physics,. 1996, 34(1): 193-199.
    [4] Bureau MN, EIKadi H, Denault J, et al. Injection and compression molding of polystyrene/high-density polyethylene blends-Phase morphology and tensile behavior. Polymer Engineering and Science, 1997, 37(2): 377-390.
    [5] Pal SK, Kale DD. Effect of compatibilization and blend composition on PP-cp/Nylon6 blends., Journal of Polymer Materials, 2000, 17(4): 385-391.
    [6] Pal SK, Kale DD. Effect of processing conditions and properties of PP/nylon 6 blends. Journal of Polymer Research-Taiwan, 2000, 7(2): 107-113.
    [7] D'Orazio L, Cecchin G. Isotactic polypropylene/ethylene-co-propylene blends: effects of composition on rheology, morphology and properties of injection moulded samples. Polymer, 2001, 42(6): 2675-2684.
    [8] Kurian M, Dasgupta A, Galvin ME, et al. A novel route to inducing disorder in model polymer-layered silicate nanocomposites. Macromolecules, 2006, 39(5): 1864-1871.
    [9] Vermogen A, Masenelli-Varlot K, Seguela R, et al. Evaluation of the structure and dispersion in polymer-layered silicate nanocomposites. Macromolecules, 2005, 38(23): 9661-9669.
    [10] Yang H, Zhang XQ, Qu C, et al. Largely improved toughness of PP/EPDM blends by adding nano-SiO_2 particles. Polymer, 2007,48(3): 860-869.
    
    [11] Tannenbaum R, Zubris M, Goldberg EP, et al. Polymer-directed nanocluster synthesis: Control of particle size and morphology. Macromolecules, 2005, 38(10): 4254-4259.
    
    [12] Konishi Y, Cakmak A. Nanoparticle induced network self-assembly in polymer-carbon black composites. Polymer, 2006,47(15): 5371-5391.
    
    [13] Chae HG, Minus ML, Kumar S. Oriented and exfoliated single wall carbon nanotubes in polyacrylonitrile. Polymer, 2006, 47(10): 3494-3504.
    
    [14] Yang K, Ozisik R. Effects of processing parameters on the preparation of nylon 6 nanocomposites. Polymer, 2006, 47 (8): 2849-2855.
    
    [15] Zou H, Zhang Q, Tan H, et al. Clay locked phase morphology in the PPS/PA66/clay blends during compounding in an internal mixer. Polymer, 2006, 47(1): 6-11.
    
    [16] Guerrica-Echevarria G, Eguiazabal JI, Nazabal J. Morphology and physical properties of injection-molded mineral-filled polyamide 6/poly(hydroxy ether of bisphenol A) blends. Journal of Applied Polymer Science, 1999,73(9): 1805-1814.
    
    [17] Vallejo FJ, Eguiazabal JI, Nazabal J. Morphology and mechanical performance of pregenerated and "in-situ" PP/Vectra B composites. Polymer Engineering and Science, 1999, 39(9): 1726-1735.
    
    [18] Bastida S, Eguiazabal JI, Nazabal J. Effects of mixing procedure on the morphology and properties of poly(ether imide)/thermotropic copolyester blends. European Polymer Journal, 1999, 35(9): 1661-1669.
    
    [19] Guerrica-Echevarria G, Eguiazabal JI, Nazabal J. Phase behavior and physical properties of injection-molded polyamide 6 phenoxy blends. Journal of Applied Polymer Science, 1999, 72(9): 1113-1124.
    
    [20] Zhang XM, Ajji A, Jean-Marie V. Processing-structure-properties relationship of multilayer films. 1. Structure characterization. Polymer, 2001, 42(19): 8179-8195.
    
    [21] Zhang XM, Ajji A. Biaxial orientation behavior of polystyrene: Orientation and properties. Journal of Applied Polymer Science, 2003, 89(2): 487-496.
    
    [22] Ajji A, Zhang XM. Biaxial orientation characterization on-line and off-line and structure properties correlations in films. Macromolecular Symposia, 2002, 185: 3-14.
    
    [23] Kit KM, Schultz JM. Simulation of the effect of noncrystalline species on long spacing in crystalline/noncrystalline polymer blends. Macromolecules, 2002, 35(26): 9819-9824.
    
    [24] H ashimoto T, Yamaguchi D, Court F. Self-assembly in mixtures of block copolymers: "Co-surfactant effects" on morphology control. Macromolecular Symposia, 2003, 195:191-200.
    
    [25] Rebizant V, Abetz V, Tournilhac F, et al. Reactive tetrablock copolymers containing glycidyl methacrylate. Synthesis and morphology control in epoxy-amine networks. Macromolecules, 2003, 36(26): 9889-9896.
    
    [26] Ritzenthaler S, Court F, Girard-Reydet E, et al. ABC triblock copolymers/epoxy-diamine blends. 2. Parameters controlling the morphologies and properties. Macromolecules, 2003, 36(1): 118-126.
    
    [27] Okamoto N, Shiomi K, Inoue T. Lcst-Type Phase-Behavior and Structure Development during Melt Processing in a Polycarbonate Poly(Styrene-Co-Acrylonitrile) Blend. Polymer, 1995.. 36(1): 87-91.
    
    [28] Kojima T, Ohnaga T, Inoue T. 2-Phase Structure and Mechanical-Properties of Poly(Methyl Methacrylate)/ Poly(Ethylene-Co-Vinylacetate) Alloys by Polymerization-induced Phase-decomposition. Polymer, 1995, 36(11): 2197-2201.
    
    [29] Kim Bs, Chiba T, Inoue T. Morphology Development via Reaction-induced Phase-separation in Epoxy Poly(Ether Sulfone) Blends-Morphology Control using Poly(Ether Sulfone) with Functional End-groups. Polymer, 1995, 36(1): 43-47.
    
    [30] Shanks RA, Amarasinghe G. Crystallisation of blends of LLDPE with branched VLDPE. Polymer, 2000, 41(12): 4579-4587.
    
    [31] Majumdar B, Paul DR, Oshinski AJ. Evolution of morphology in compatibilized vs uncompatibilized polyamide blends. Polymer, 1997, 38(8): 1787-1808.
    
    [32] Shimizu H, Kitano T, Nakayama K. Morphological control of LCP/PET blends using a melt mixer equipped with a milling part. Materials Letters, 2004, 58(7-8): 1277-1281.
    
    [33] Shanks RA, Li J, Yu L. Polypropylene-polyethylene blend morphology controlled by time-temperature-miscibility. Polymer, 2000, 41(6): 2133-2139.
    
    [34] Higgins AM, Martin SJ, Geoghegan M, et al. Interfacial structure in conjugated polymers: Characterization and control of the interface between poly(9,9-dioctylfluorene) and poly(9,9-dioctylfluorene-alt-benzothiadiazole). Macromolecules, 2006, 39(19): 6699-6707.
    
    [35] Daniel C, Avallone A, Rizzo P, et al. Control of crystal size and orientation in polymer films by host-guest interactions. Macromolecules, 2006, 39(14): 4820-4823.
    
    [36] Jonkheijm P, van Duren JKJ, Kemerink M, et al. Control of film morphology by folding hydrogen-bonded oligo(p-phenylenevinylene) polymers in solution. Macromolecules, 2006, 39(2): 784-788.
    
    [37] Sarazin P, Favis BD. Influence of temperature-induced coalescence effects on co-continuous morphology in poly(epsilon-caprolactone)/polystyrene blends. Polymer, 2005, 46(16): 5966-5978.
    
    [38] Dhoble A, Kulshreshtha B, Ramaswami S, et al. Mechanical properties of PP-LDPE blends with novel morphologies produced with a continuous chaotic advection blender. Polymer, 2005, 46(7): 2244-2256.
    
    [39] Francis B, Rao VL, Poel GV, et al. Cure kinetics, morphological and dynamic mechanical analysis of diglycidyl ether of bisphenol-A epoxy resin modified with hydroxyl terminated poly(ether ether ketone) containing pendent tertiary butyl groups. Polymer, 2006, 47(15): 5411-5419.
    
    [40] Na B, Wang K, Zhang Q, et al. Tensile properties in the oriented blends of high-density polyethylene and isotactic polypropylene obtained by dynamic packing injection molding. Polymer, 2005, 46(9): 3190-3198.
    
    [41] Na B, Zhang Q, Wang K, et al. Origin of various lamellar orientations in high-density polyethylene/isotactic polypropylene blends achieved via dynamic packing injection molding: bulk crystallization vs. epitaxy. Polymer, 2005,46(3): 819-825.
    
    [42] Na B, Wang Y, Zhang Q, et al. Shish and its relaxation dependence of re-crystallization of isotactic polypropylene from an oriented melt in the blends with high-density polyethylene. Polymer, 2004,45(18): 6245-6260.
    
    [43] Na B, Wang Y, Du RN, et al. Crystal and phase morphology of dynamic-packing-injection-molded high-density polyethylene/ethylene vinyl acetate blends. Journal of Polymer Science Part B-Polymer Physics, 2004,42(10): 1831-1840.
    
    [44] Wang Y, Zhang Q, Na B, et al. Dependence of iMPact strength on the fracture propagation direction in dynamic packing injection molded PP/EPDM blends. Polymer, 2003, 44(15): 4261-4271.
    
    [45] Yin B, Zhao Y, Yu RZ, et al. Morphology development of PC/PE blend during processing in a twin-screw extruder. Polymer Engineering and Science, 2007, 47(1): 14-25.
    
    [46] Zhao Y, Yin B, Yang MB, et al.Rheological properties of PC/EVA blend compatibilized with the transesterification. Polymer-Plastics Technology and Engineering, 2007, 46(2): 175-182.
    
    [47] Tucker CL, Moldenaers P. Microstructural evolution in polymer blends. Annu. Rev. Fluid Mech. 2002,34: 177-210.
    
    [48] Deyrail Y, Cassagnau P. Phase deformation under shear in an immiscible polymer blend: Influence of strong permanent elastic properties. J. Rheol. 2004, 48: 505-524.
    
    [49] Mani S, Malone MF, Winter HH, Halary JL, Monnerie L. Effects of shear on miscible Polymer blends: in situ fluorescence studies. Macromolecules, 1991, 24: 5451-5458.
    
    [50] Matsuzaka K, Jinnai H, Koga T, Hashimoto T. Effect of oscillatory shear deformation on demixing processes of polymer blends. Macromolecules, 1997, 30: 1146-1152.
    
    [51] Lin B, Sundararaj U. Sheet formation during drop deformation and breakup in polyethylene/polycarbonate systems sheared between paralled plates. Polymer, 2004, 45: 7605-7613.
    
    [52] Almusallam AS, Larson RG, Solomon MJ. A constitutive model for the prediction of ellipsoidal droplet shapes and stressed in immiscible blends. Journal of Rheology, 2000, 44: 1055-1083.
    
    [53] Perilla JE, Jana SC. A time-scale approach for analysis of coalescence in processing flows. Polymer Engineering and Science, 2004, 44: 2254-2265.
    
    [54] Lazo NDB, Scott CE. Morphology development during phase inversion in isothermal, model experiments: steady simple-shear and quiescent flow fields. Polymer, 2001, 42: 4219-4231.
    
    [55] Lazo NDB, Scott CE. Morphology development during phase inversion of a PS/PE blend in isothermal, steady shear flow. Polymer, 1999, 40: 5469-5478.
    
    [56] Tan LP, Yue CY, Tarn KC, Lam YC, Hu X, Nakayama K. Relaxation of liquid-crystalline polymer fibers in polycarbonate-liquid-crystalline polymer blend system. Journal of Polymer Science: PartB: Polymer Physics, 2003,41: 2307-2312.
    
    [57] Sharma L, Ogino Y, Kanaya T, Iwata T, Doi Y. Fiber formation in medium and ultra-high-molecular-weight polyhydroxybutyrate blends under shear flow. Macromol. Mater. Eng. 2004, 289:1068-1073.
    
    [58] Okamoto K, Takahashi M, Yamane H, Kashihara H, Watanabe H, Masuda T. Shape recovery of a dispersed droplet phase and stress relaxtion after applicaion of step shear strains in a polystyrene/polycarbonate blend melt. Journal of Rheology, 1999, 43: 951-965.
    
    [59] Comas-Cardona S, Tucker CL. Measurements of droplet deformation in simple shear flow with zero interfacial tension, Journal of Rheology, 2001, 45(1): 259-273.
    
    [60] Mighri F, Huneault MA. Dispersion visualization of model fluids in a transparent Couette flow cell. Journal of Rheology, 2001, 45(3): 783-797.
    
    [61] Lin B, Sundararaj U, Mighri F, Huneault MA. Erosion and breakup of polymer drops under simple shear in high viscosity ratio systems. Polymer Engineering and Science, 2003, 43(4): 891-904.
    
    [62] Ajji A, Sammut P, Huneault, MA. Elongational rheology of LLDPE/LDPE blends. Journal of Applied Polymer Science, 2003, 88(14): 3070-3077.
    
    [63] Sundararaj U, Dori Y, Macosko CW. Sheet formation in immiscible polymer blends: model experiments on initial blend morphology. Polymer, 1995, 36(10): 1957-1968.
    
    [64] Levitt L, Macosko CW, Pearson SD. Influence of normal stress difference on polymer drop deformation. Polymer Engineering and Science, 1996, 36(12): 1647-1655.
    
    [65] Tsakalos VT, Navard P, Peuvrel-Disdier E. Deformation and breakup mechanisms of single drops during shear. Journal of Rheology, 1998, 42(6): 1403-1417.
    
    [66] Mighri F, Carreau PJ, Ajji A. Influence of elastic properties on drop deformation and breakup in shear flow. Journal of Rheology, 1998, 42(6): 1477-1490.
    
    [67] Migler KB. Droplet vorticity alignment in model polymer blends. Journal of Rheology, 2000, 44(2): 277-290.
    
    [68] Grace HP. Dispersion phenomena in high viscosity immiscible fluid systems and application of static mixers as dispersion devices in such systems. Chem. Eng. Commun. 1982,14: 225-277.
    
    [69] de Bruijn RA. Deformation and break-up of drops in simple shear flows. PhD thesis. Eindhoven Univ. Technol., The Netherlands, 1989.
    
    [70] de Bruijn RA.Tipstreaming of drops in simple shear flows. Chemical Engineering Science, 1993,48(2): 277-284.
    
    [71] Khakhar DV, Ottino JM. Deformation and breakup of slender drops in linear flows. J. Fluid Mech., 1986, 166: 265-285.
    
    [72] Khakhar DV, Ottino JM. Breakup of liquid threads in linear flows. Int. J. Multiph. Flow, 1987,13: 71-86.
    
    [73] Van Puyvelde P, Yang H, Mewis J, Moldenaers P. Breakup of filaments in blends during simple shear flow. J. Rheol. 2000, 44: 1401-1415.
    
    [74] Chesters AK. The modelling of coalescence processes in fluid-liquid dispersions: a review of current understanding. Trans. IChemE Ser. A, 1991, 69: 259-270.
    
    [75] Minale M, Mewis J, Moldenaers P. Study of the morphological hysteresis in immiscible polymer blends. AIChE J. 1998,44:943-950.
    
    [76] Minale M, Moldenaers P, Mewis J. Effect of shear history on the morphology of immiscible polymer blends. Macromolecules, 1997, 30: 5470-5475.
    
    [77] Grizzuti N, Bifulco O. Effects of coalescence and breakup on the steady-state morphology of an immiscible polymer blend in shear flow. Rheol. Acta, 1997, 36: 406-415.
    
    [78] Van Puyvelde P, Moldenaers P, Mewis J. Modelling and scaling of dichroism during relaxation in emulsions and polymer blends. Phys. Chem. Chem. Phys. 1999, 1: 2505-2511.
    
    [79] Van Puyvelde P, Moldenaers P, Mewis J, Fuller GG. On the existence of a stress-optical relation in immiscible polymer blends. Langmuir, 2000,16: 3740-3747.
    
    [80] Van Puyvelde P, Yang H, Mewis J, Moldenaers P. Rheo-optical probing of relaxational phenomena in immiscible polymer blends. J. Colloid Int. Sci., 1998,200: 86-94.
    
    [81] Stone HA, Bentley BJ, Leal LG. An experimental study of transient effects in the breakup of viscous drops. J. Fluid Mech., 1986,173: 131-158.
    
    [82] Stone HA, Leal LG. Relaxation and breakup of an initially extended drop in an otherwise quiescent fluid. J. Fluid Mech., 1989, 198: 399-427.
    
    [83] Levitt L, Macosko CW. Influence of normal stress difference on polymer drop deformation. Polym. Eng. Sci., 1996, 36: 1647-1655.
    
    [84] Yamane H, Takahashi M, Hayashi R, Okamoto K, Kashihara H, Masuda T. Observation of deformation and recovery of poly (isobutylene) droplet in a poly (isobutylene)/poly(dimethyl siloxane) blend after application of step shear strain. J. Rheol., 1998,42: 567-580.
    
    [85] Okamoto K, Takahashi M, Yamane H, Kashihara H, Watanabe H, Masuda T. Shape recovery of a dispersed droplet phase and stress relaxation after application of step shear strains in a polystyrene/polycarbonate blend melt. J. Rheol., 1999,43: 951-965.
    
    [86] Almusallam AS, Larson RG, Solomon MJ. A constitutive model for the prediction of ellipsoidal droplet shapes and stresses in immiscible blends. J. Rheol., 2000, 44: 1055-1083
    
    [87] Han CD, Kim KU. Viscoelastic properties of polymer solutions. I. Measurements of the axial normal stress in capillary flow and the primary normal stress difference. Rheologica Acta, 1972, 11(3): 313-322.
    
    [88] Han CD, Kim YW. Dispersed two-phase flow of viscoelastic polymeric melts in a circular tube. Transactions of the Society of Rheology, 1975,19(2): 245-269.
    
    [89] Murthy NS, Grubb DT, Zero K, Nelson CJ, Chen G. Lamellar structure and properties in poly(ethylene terephthalate) fibers. Journal of Applied Polymer Science, 1998, 70(12): 2527-2538.
    
    [90] Miles IS, Zurek A. Preparation, Structure, and Properties of Two-phase co-Continuous Polymers Blends. Polymer Engineering and Science, 1988, 28(12): 796-814.
    
    [91] Ho RM, Wu CH, Su AC. Morphology of plastic/rubber blends. Polymer Engineering and Science, 1990, 30(9): 511-518.
    
    [92] Favis BD, Therrien D. Factors influencing structure formation and phase size in an immiscible polymer blend of polycarbonate and polypropylene prepared by twin-screw extrusion. Polymer, 1991, 32(8): 1474-1481.
    
    [93] Scott CE, Macosko CW. Morphology development during the initial stages of polymer-polymer blending. Polymer, 1995, 36(3): 461-470.
    
    [94] Lee JK, Han CD. Evolution of polymer blend morphology during compounding ni an internal mixer. Polymer, 1999, 40: 6277-6296.
    
    [95] Wildes G, Keskkula H, Paul DR. Coalescence in PC/SAN blends: effect of reactive coMPatibilization and matrix phase viscosity. Polymer, 1999, 40: 5609-5621.
    
    [96] Burch HE, Scott CE. Effect of viscosity ratio on structure evolusion in miscible polymer blends. Polymer, 2001, 42: 7313-7325.
    
    [97] Bourry D, Favis BD. Morphologu development in a polyethylene/polystyrene binary blend during twin-screw extrusion. Polymer, 1998, 39:1851-1856.
    
    [98] Lee JK, Han CD. Evolution of polymer blend morphology during compounding in a twin-screw extruder. Polymer, 2000,41:1799-1815.
    
    [99] He JS, Bu WS, Zeng JJ. Co-phase continuity in immiscible binary polymer blends. Polymer, 1997, 38(26): 6347-6353.
    [100] Shih CK. Mixing And Morphological Transformations in the Compounding Process for Polymer Blends-the Phase Inversion Mechanism. Polymer Engineering and Science, 1995, 35 (21): 1688-1694.
    [101] Sundararaj U, Macosko CW, Shih CK. Evidence for inversion of phase continuity during morphology development in polymer blending. Polymer Engineering and Science, 1996, 36 (13): 1769-1781.
    [102] Ghodgaonkar, PG, Sundararaj, U. Prediction of dispersed phase drop diameter in polymer blends: the effect of elasticity. Polymer Engineering and Science, 1996, 36(12): 1656-1665.
    [103] Scott CE, Macosko CW. Morphology Development During The Initial-Stages Of Polymer-Polymer Blending. Polymer, 1995, 36(3): 461-470.
    [104] Anastasiadis JH, Gancarz I, Koberstein JT. Compatibilizing effect of block copolymers added to the polymer/polymer interface. Macromolecules, 1989, 22(3): 1449-1453.
    [105] Sondergaard K, Lyngaae-Jorgensen J. In Rheo-Physics of Multiphase Systems: Characterization by Rheo-Optical Techniques, Technomic Publishing, Co., Lancaster, PA, 1995.
    [106] Datta S, Lohse DJ. Polymeric CoMPatibilizers: Use and Benefits, Hanser Publishers, Munich, 1996.
    [107] Gaylord YG. High Density Polymethylene-g-Maleic Anhydride Preparation in Presence of Electron Donors. J. Appl. Polym. Sci., 1989, 38: 359-371.
    [108] Gaylord YG. Maleation of Linear Low-Density Polymethylene by Reactive Processing. J. Appl. Polym. Sci., 1992, 44: 1941-1949.
    [109] 王益龙,蹇锡高.反应性挤出粉料PE接枝MA研究.高分子材料科学与工程,1993,1:105-108.
    [110] 陈连周,高忠良,王润.热溶胶用接枝聚乙烯的研究.中国粘胶剂,1996,5(4):1-4.
    [111] Samay. Grafting Maleic Anhy-Dride and Commoners onto Polyethene. J. Appl. Polym. Sci., 1995, 56: 1423-1433.
    [112] 林明德,俞强.聚碳酸醋/马来酸酐接枝高密度聚乙烯共混体系的结构研究.中国塑料,1994,8 (3):40-43.
    [113] 唐颂超,郭卫红,张志平.聚碳酸酯/聚乙烯相容性的研究.高分子材料科学与工程,2000,16 (5):150-152.
    [114] 高茜斐,赵耀明,阳范文.高密度聚乙烯接枝甲基丙烯酸缩水甘油酯的研究.合成材 料老化与应用,2001,4:17-19.
    [115] 阳范文,赵耀明,高倩斐,段伟伟,罗登科.HDPE/LDPE混合物熔融接枝GMA的研究.中国塑料,2001,15 (7):58-61.
    [116] 阳范文,赵耀明,高茜斐.HDPE-g-GMA增容PC/UHMWPE的形态结构和力学性能.中国塑料,2002,16 (2):37-39.
    [117] 阳范文,赵耀明,高倩斐.(HDPE/LDPE)-g-GMA增容PC/UHMWPE共混物的冲击性能与断面形态.中国塑料,2003,17 (7):34-36.
    [118] 徐鸣,李忠明.低密度聚乙烯接枝烯基双酚A醚对HDPE/PC共混体系性能的影响.塑料工业,1998,26 (5):25-26.
    [119] 杨鸣波,郑学晶,李忠明,冯建民.HDPE/PC共混体系的增容剂分子设计与合成.中国塑料,2000,14 (4):53-59.
    [120] Yang MB, Li ZM, Feng JM. Studies on high density polyethylene/polycarbonate blend system compatibilized with low density polyethylene grafted diallyl bisphenol A ether. Polymer Engineering and Science, 1998, 38(6): 879-883.
    [121] 李忠明,杨鸣波,冯建民,黄锐.二烯丙基双酚A醚接枝聚乙烯增容聚碳酸酯/聚乙烯合金中的纤维化增韧现象.高分子学报,2001,(1):32-36.
    [122] 李忠明,杨鸣波,冯建民.烯基双酚A醚接枝LDPE对HDPE/PC相容性和结晶速率的影响.中国塑料,1997,11(4):26-29.
    [123] 杨鸣波,郑学晶,李忠明,冯建民.增容剂对HDPE/PC共混体系性能的影响.工程塑料应用,2002,30(2):1-4.
    [124] Seon J. Morphology and Properties of PBT/Nylon 6/EVA-g-MAH Temary Blends Prepared by Reactive Extrusion. Polymer Engineering and Science, 2003, 43(6): 1298-1311.
    [125] 何慧,沈家瑞,黄庙由.HDPE/PET共混体系的原位增容机理.合成橡胶工业,2000,3:177.
    [126] Pesneau I. Morphology Monitoring of PE/PBT Blends by Reactive Processing. Journal of Applied Polymer Science, 2001, 82(14): 3568-3577.
    [127] 刘新民,李劲,石晓欣.HDPE/PC/EVA共混体系的性能研究.现代塑料加工应用,2004,16 (4):7-10.
    [128] 廖永霞,赵印,杨伟,冯建民,杨鸣波.PC/EAA共混物体系在加工过程中的反应.高分子学报,2005,(6):907-913.
    [129] 赵印,廖永霞,尹波,杨鸣波.PC/EVA共混体系在加工过程中的反应.高分子材料科学与工程,2005,21(6):201-204.
    [130] Hu JW. Study on Compatibility of Ethylene-Co-Uinly. EVA/PP Blends. Polymeric Materials Science and Engineering, 1993, 9(1): 42-46.
    [131] Dalai S. Radiation Effects on HDPE/EVA Blends. Journal of Applied Polymer Science, 2002, 86(3): 553-558.
    [132] Guo SY. Study on Reactive Compatibilization of HDPE/PA-6/EAA Blend. Polymeric Materials Science and Engineering, 1997, 13(5): 114-118.
    [133] Scaffaro R. Reactive Compatibilization of PA6/LDPE Blends with Ethylene-Acrylic Acid Copolymer and a Low Molar Mass Bis-oxazoline, Polymer, 2003, 44(22): 6951-6957.
    [134] Jiang CH. Reactive Compatibilizer Precursors for LDPE/PA6 Blends, 2: Maleic Anhydride Grafted Polyethylenes. Polymer, 2003, 44(8): 2411-2422.
    [135] 徐胜清,刘卫东,董丽杰,黄葆.EAA增容LLDPE/SAN共混物的形态及力学性能应用化学,1998,4:49-53.
    [136] Mascla L, Valenza A. Reactive dual-component compatibilizers for polycarbonate/high-density polyethylene blends. Advance in Polymer Technology, 1995, 14(4): 327-335.
    [137] Keskkula H, Paul DR, Barlow JW. Polymer Blends, in Kirk-Othmer Encyclopedia of Chemical Technology, 4th Ed., Vol. 19, New York: John Wiley and Sons, 1996.
    [138] Datta S, Lohse DJ. Polymeric Compatibilizers: Use and Benefits. Munich: Hanser Publishers, 1996.
    [139] Xanthos M. Reactive Extrusion: Principles and Practice. Munich: Hanser Publishers, 1992.
    [140] Bussink J. GE Plastics, Bergen op Zoom, The Netherlands, Hendrik T. van de Grampel, Polymer Blends, in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag GmbH & Co. 2002.
    [141] Pilati F. Poly (butyleneterephthalate)-Ethylenevinylacetate Polymer Blends. Polymer Engineering and Science, 1983, 23(13): 750-755.
    [142] Pesneau I, Liauro MF, Gregoire M. Morphology control of polyester-polyolefin blends by transesterification during processing operations in the presence of dibutyltin oxide. Journall Applied Ploymer Science, 1997, 65(12): 2457-2469.
    [143] Legros A, Carreau PJ, Favis BD. Reactive compatibilization of polyester/vinyl acetate copolymer blends: rheological, morphological and mechanical properties. Polymer, 1994, 35(4): 758-764.
    
    [144]廖永霞.大分子反应原位增容HDPE/PC共混体系的结构与性能.硕士学位论文,四川大学,2005.
    
    [145] Cassagnau P, Bert M, Verney V, Michel A. Co-crosslinking of ethylene vinyl acetate and ethylene acrylic ester copolymers by transesterification: Chemical and rheological studies of kinetics. Polymer, 1993, 34(1): 124-131.
    
    [146] Sato T, Wakahara Y, Otera J, Nozaki H, Fukuzumi S.Importance of lewis acid mediated electron transfer in mukaiyama-michael reaction of ketene silyl acetals. Journal of the American Chemical Society, 1991, 113(10): 4028-4028.
    
    [147] Otton J, Ratton S, Markova GD, Nametov KM, Bakhmutov AV, Komarova LI, Vinogradova SV, Korshak VV. Investigation of the Formation of Poly(ethylene terephthalate) with Model Molecules: Kinetics and Mechanism of the Catalytic Esterification and Alcoholysis Reactions. I. Carboxylic Acid Catalysis (Monofunctional Reactants). J Polym Sci Part A: Polym Chem, 1988, 26(8): 2183-2197.
    
    [148] Shah TH, Bhatty JI, Gamlen GA, Dollimore D. Aspects of the Chemistry of Poly(ethylene terephthalate): 5. Polymerization of Bis(hydroxyethyl)Terephthalate by Various Metallic Catalysts. Polymer, 1984, 25(9): 1333-1336.
    
    [149] Shah TH, Bhatty JI, Gamlen GA, Dollimore D. Aspects of the Chemistry of Poly(ethylene terephthalate). III. Transesterification of Dimethyl Terephthalate with Ethylene Glycol in the Presence of Various Catalytic Systems. Journal Macromolecular Science-Chemistry, 1984, 21(4): 431-443.
    
    [150] Pesneau I, Kadi AA, Bousmina M, Cassagnau P, Michel A. From polymer blends to in situ polymer/polymer composites: morphology control and mechanical properties. Polymer Engineering and Science, 2002, 42(10): 1990-2004.
    
    [151] Pesneau I, Gregoire M, Michel A. Catalytic aspect of chemical modifications of polymers by transesterification: NMR study with model compounds. Journal of Applied Polymer Science, 2001, 79(9): 1556-1562.
    
    [152] Espinasse I, Cassagnau P, Bert M, Michel A. Characterization of crosslinking of random polymer network by rheological and equilibrium swelling data. Journal of Applied Polymer Science, 1994, 54(13): 2083-2089.
    [1] Liu HZ, Xie TX, Zhang Y, et al. Phase morphology development in PP/PA6 blends induced by a maleated thermoplastic elastomer. Journal of Polymer Science Part B-Polymer Physics, 2006, 44(7): 1050-1061.
    [2] Jaziri M, Kallel TK, Mbarek S, et al. Morphology development in polyethylene/polystyrene blends: the influence of processing conditions and interfacial modification. Polymer International, 2005, 54(10): 1384-1391.
    [3] Machado AV, Yquel V, Covas JA, et al. The effect of the compatibilization route of PA/PO blends on the physico-chemical phenomena developing along a twin-screw extruder. Macromolecular Symposia, 2006, 233: 86-94.
    [4] Filipe S, Cidade MT, Wilhelm M, et al. Evolution of the morphological and rheological properties along the extruder length for compatibilized blends of a commercial liquid-crystalline polymer and polypropylene. Journal of Applied Polymer Science, 2006,99(1): 347-359.
    
    [5] Bourry D, Favis BD. Morphologu development in a polyethylene/polystyrene binary blend during twin-screw extrusion. Polymer, 1998, 39:1851-1856.
    
    [6] Lee JK, Han CD. Evolution of polymer blend morphology during compounding in a twin-screw extruder. Polymer, 2000,41: 1799-1815.
    
    [7] Scott CE, Macosko CW. Morphology development during the initial stages of polymer-polymer blending. Polymer, 1995, 36(3): 461-470.
    
    [8] Favis BD, Therrien D. Factors influencing structure formation and phase size in an immiscible polymer blend of polycarbonate and polypropylene prepared by twin-screw extrusion. Polymer, 1991, 32(8): 1474-1481.
    
    [9] Ho RM, Wu CH, Su AC. Morphology of plastic/rubber blends. Polymer Engineering and Science, 1990, 30(9): 511-518.
    
    [10] He JS, Bu WS, Zeng JJ. Co-phase continuity in immiscible binary polymer blends. Polymer, 1997, 38(26): 6347-6353.
    
    [11] Shih CK. Mixing and morphological transformations in the compounding process for polymer blends-The phase inversion mechanism. Polymer Engineering and Science, 1995, 35(21): 1688-1694.
    
    [12] Sundararaj U, Macosko CW, Shih CK. Evidence for inversion of phase continuity during morphology development in polymer blending. Polymer Engineering and Science, 1996, 36(13): 1769-1781.
    
    [13] Ghodgaonkar, PG, Sundararaj, U. Prediction of dispersed phase drop diameter in polymer blends: the effect of elasticity. Polymer Engineering and Science, 1996,36(12): 1656-1665.
    
    [14] Scott CE, Macosko CW. Morphology development furing the initial-stages of polymer-Polymer blending. Polymer, 1995, 36(3): 461-470.
    
    [15] Bhadane PA, Champagne MF, Huneault MA, et al. Continuity development in polymer blends of very low interfacial tension. Polymer, 2006,47(8): 2760-2771.
    
    [16] Ruckdaschel H, Sandier JKW, Altstadt V, et al. Compatibilisation of PPE/SAN blends by triblock terpolymers: Correlation between block terpolymer composition, morphology and properties. Polymer, 2006, 47 (8): 2772-2790.
    
    [17] Wang JS, Chen XD, Zhang NQ, et al. Polyurethane/polyolefin blends: Morphology, compatibilization and mechanical properties. Polymers & Polymer Composites, 2006, 14(1): 1-11.
    
    [18] Lee JK, Im JE, Park JH, et al. Morphology development and crystallization behavior of a poly(ethylene terephthalate)/polycarbonate blend. Journal of Applied Polymer Science, 2006, 99(5): 2220-2225.
    
    [19] Yang YP, Xiao ZG, Jiang X, et al. Light scattering studies on phase behavior of PP/PcBR blends during melt-mixing. Journal of Macromolecular Science Part B-Physics, 2006, 45(6): 1083-1098.
    [1] Gaylord YG. High Density Polymethylene-g-Maleic Anhydride Preparation in Presence of Electron Donors. Journal of Applied Polymer Science, 1989, 38: 359-371.
    [2] Gaylord YG. Maleation of Linear Low-Density Polymethylene by Reactive Processing. Journal of Applied Polymer Science, 1992, 44: 1941-1949.
    [3] 王益龙,蹇锡高.反应性挤出粉料PE接枝MA研究.高分子材料科学与工程,1993,9(1):105-108.
    [4] 唐颂超,郭卫红,张志平.聚碳酸酯/聚乙烯相容性的研究.高分子材料科学与工程,2000,16(5):150-152.
    [5] 杨鸣波,郑学晶,李忠明,冯建民.HDPE/PC共混体系的增容剂分子设计与合成.中国塑料,2000,14(4):53-59.
    [6] Yang MB, Li ZM, Feng JM. Studies on high density polyethylene/polycarbonate blend system compatibilized with low density polyethylene grafted diallyl bisphenol A ether. Polymer Engineering and Science, 1998, 38(6): 879-883.
    [7] 李忠明,杨鸣波,冯建民,黄锐.二烯丙基双酚A醚接枝聚乙烯增容聚碳酸酯/聚乙烯合金中的纤维化增韧现象.高分子学报,2001,(1):32-36.
    [8] Seon J. Morphology and Properties ofPBT/nylon 6/EVA-g-MAH Temary Blends Prepared by Reactive Extrusion. Polymer Engineering and Science, 2003, 43(6): 1298-1311.
    [9] 何慧,沈家瑞,黄庙由.HDPE/PET共混体系的原位增容机理.合成橡胶工业,2000,23(3):177-177.
    [10] Pesneau I. Morphology Monitoring of PE/PBT Blends by Reactive Processing. Journal of Applied Polymer Science, 2001, 82(14): 3568-3577.
    [11] 刘新民,李劲,石晓欣.HDPE/PC/EVA共混体系的性能研究.现代塑料加工应用,2004,16(4):7-10.
    [12] Guo SY. Study on Reactive Compatibilization of HDPE/PA-6/EAA Blend. Polymeric Materials Science and Engineering, 1997, 13(5): 114-118.
    [13] ScaffarO R. Reactive Compatibilization of PA6/LDPE Blends with Ethylene-Acrylic Acid Copolymer and A Low Molar Mass Bis-oxazoline. Polymer, 2003, 44(22): 6951-6957.
    [14] Jiang C H. Reactive Compatibilizer Precursors for LDPE/PA6 Blends, 2: Maleic Anhydride Grafted Polyethylenes. Polymer, 2003, 44(8): 2411-2422.
    [15] 廖永霞,赵印,杨伟,冯建民,杨鸣波.PC/EAA共混物体系在加工过程中的反应.高分子学报,2005,(6):907-913.
    [16] 赵印,廖永霞,尹波,杨鸣波.PC/EVA共混体系在加工过程中的反应.高分子材料科学与工程,2005,21(6):201-204.
    [17] Pesneau, I. Gregoire, M.; Michel, A. Catalytic aspect of chemical modifications of polymers by transesterification: NMR study with model compounds. Journal of Applied Polymer Science, 2001, 79(9): 1556-1562.
    [18] Espinasse, I. Cassagnau, P.; Bert, M.; Michel, A. Characterization of crosslinking of random polymer network by rheological and equilibrium swelling data. Journal of Applied Polymer Science, 1994, 54(13): 2083-2089.
    [19] Cassagnau, P. Espinasse, I. Michel, A. Viscoelastic and elastic behavior of polypropylene and ethylene copolymer blends. Journal of Applied Polymer Science, 1995, 58(8): 1393-1399.
    [20] Feng WL, Isayev AI. In situ compatibilization of PP/EPDM blends during ultrasound aided extrusion. Polymer, 2004, 45(4): 1207-1216.
    [21] Kim H, Lee JW. Effect of ultrasonic wave on the degradation of polypropylene melt and morphology of its blend with polystyrene. Polymer, 2002, 43(8): 2585-2589.
    [22] 郑强,杨碧波,吴刚,李立伟.多组分高分子体系动态流变学研究.高等学校化学学报,1999,20(9):1483-1490.
    [23] Biju John, K. T. Varughese, Zachariah Oommen, Petra Potschke, Sabu Thomas. Dynamic Mechanical Behavior of High-Density Polyethylene/Ethylene Vinyl Acetate Copolymer Blends: The Effects of the Blend Ratio, Reactive Compatibilization, and Dynamic Vulcanization. Journal of Applied Polymer Science, 2003, 87(13): 2083-2099.
    [1] Tan LP, Yue CY, Tam KC, et al. Factors that affect fibrillation of the liquid crystalline polymer (LCP) phase in an injection moulded polycarbonate/LCP blend. Key Engineering Materials, 2006, 312: 133-138.
    [2] Wang Y, Wang C, Zhang Q, et al. Shear induced phase coarsening in Polystyrene/Styrene-ethylene-butylene-styrene blends. Journal of Materials Science, 2006, 41(18): 5882-5889.
    [3] Wang Y, Zhang Q, Na B, et al. Dependence of impact strength on the fracture propagation direction in dynamic packing injection molded PP/EPDM blends. Polymer, 2003, 44(15): 4261-4271.
    [4] Wang Y, Xiao Y, Zhang Q, et al. The morphology and mechanical properties of dynamic packing injection molded PP/PS blends. Polymer, 2003, 44(5): 1469-1480.
    [5] Wang Y, Zou H, Fu Q, et al. Shear-induced morphological change in PP/LLDPE blend. Macromolecular Rapid Communications, 2002, 23(13): 749-752.
    [6] Wang Y, Fu Q, Li QJ, et al. Ductile-brittle-transition phenomenon in polypropylene/ethylene-propylene-diene rubber blends obtained by dynamic packing injection molding: A new understanding of the rubber-toughening mechanism. Journal of Polymer Science Part B-Polymer Physics, 2002, 40(18): 2086-2097.
    [7] Wang Y, Zou H, Fu Q, et al. Super polyolefin blends achieved via dynamic packing injection molding: Tensile strength. Journal of Applied Polymer Science, 2002, 85(2): 236-243.
    
    [8] Na B, Wang K, Zhang Q, et al. Tensile properties in the oriented blends of high-density polyethylene and isotactic polypropylene obtained by dynamic packing injection molding. Polymer, 2005,46(9): 3190-3198.
    
    [9] Na B, Wang Y, Du RN, et al. Crystal and phase morphology of dynamic-packing injection-molded high-density polyethylene/ethylene vinyl acetate blends. Journal of Polymer Science Part B-Polymer Physics, 2004,42(10): 1831-1840.
    
    [10] Na B, Zhang Q, Fu Q, et al. Super polyolefin blends achieved via dynamic packing injection molding: the morphology and mechanical properties of HDPE/EVA blends. Polymer, 2002, 43(26): 7367-7376.
    
    [11] Zhong GJ, Li LB, Mendes E, et al. Suppression of skin-core structure in injection-molded polymer parts by in situ incorporation of a microfibrillar network. Macromolecules, 2006, 39(19): 6771-6775.
    
    [12] Quan H, Zhong GJ, Li ZM, et al. Morphology and mechanical properties of poly (phenylene sulfide)/isotactic polypropylene in situ microfibrillar blends. Polymer Engineering and Science, 2005,45(9): 1303-1311.
    
    [13] Li ZM, Lu A, Lu ZY, et al. In-situ microfibrillar PET/iPP blend via a slit die extrusion, hot stretching and quenching process: Influences of PET concentration on morphology and crystallization of iPP at a fixed hot stretching ratio. Journal of Macromolecular Science-Physics B, 2005,44(2): 203-216.
    
    [14] Li ZM, Xie BH, Huang R, et al. Influences of hot stretch ratio on essential work of fracture of in-situ microfibrillar poly(ethylene terephthalate)/polyethylene blends. Polymer Engineering and Science, 2004, 44(12): 2165-2173.
    
    [15] Li ZM, Fu MR, Yang SY, et al. Deformation and morphology development of poly(ethylene terephthalate)/polyethylene and polycarbonate/polyethylene blends with high interfacial contact during elongation. Polymer Engineering and Science, 2004,44(8): 1561-1570.
    
    [16] Li ZM, Yang W, Xie BH, et al. Morphology and tensile strength prediction of in situ microfibrillar poly(ethylene terephthalate)/polyethylene blends fabricated via slit-die extrusion-hot stretching-quenching. Macromolecular Materials and Engineering, 2004, 289(4): 349-354.
    |
    [17] Li ZM, Yang MB, Xie BH, et al. In-situ microfiber reinforced composite based on PET and PE via slit die extrusion and hot stretching: Influences of hot stretching ratio on morphology and tensile properties at a fixed composition. Polymer Engineering and Science, 2003, 43(3): 615-628.
    
    [18] Li ZM, Yang MB, Feng JM, et al. Morphology of in situ poly(ethylene terephthalate) polyethylene microfiber reinforced composite formed via slit-die extrusion and hot-stretching. Materials Research Bulletin, 2002, 37(13): 2185-2197.
    
    [19] Xing P, Bousmina M, Rodrigue D, Kamal MR. Critical experimental comparison between five techniques for the determination of interfacial tension in polymer blends: model system of polystyrene/polyamide-6. Macromolecules, 2000, 33: 8020-8034.
    
    [20] Covas JA, Machado AV. Monitoring reactive processes along the extruder. International Polymer Processing, 2005, 20(2): 121-127.
    
    [21] Machado A, van Duin M. Dynamic vulcanisation of EPDM/PE-based thermoplastic vulcanisates studied along the extruder axis. Polymer, 2005,46(17): 6575-6586.
    
    [22] Jaziri M, Kallel TK, Mbarek S, et al. Morphology development in polyethylene/polystyrene blends: the influence of processing conditions and interfacial modification. Polymer International, 2005,54(10): 1384-1391.
    
    [23] Weber M, Heckmann W, Goeldel A. Styrenics/Polyamide-Blends - Reactive blending and properties. Macromolecular Symposia, 2006, 233:1-10.
    
    [24] Machado AV, Yquel V, Covas JA, et al. The effect of the compatibilization route of PA/PO blends on the physico-chemical phenomena developing along a twin-screw extruder. Macromolecular Symposia, 2006, 233: 86-94.
    
    [25] Zhong GJ, Li ZM. Injection molding-induced morphology of thermoplastic polymer blends. Polymer Engineering and Science, 2005,45(12): 1655-1665.
    
    [26] Li ZM, Yang W, Yang SY, et al. Morphology-tensile behavior relationship in injection molded poly(ethylene terephthalate)/polyethylene and polycarbonate/polyethylene blends (I)-Part I-Skin-core structure. Journal of Materials Science, 2004,39(2): 413-431.
    
    [27] Karger-Kocsis, J. Csikai, I. Skin-Core Morphology and Failure of Injection-Molded Specimens of Impact-Modified Polypropylene Blends. Polymer Engineering and Science, 1987, 27(4): 241-253.
    [28] Nysten, Bernard. Ghanem, Antoine; Costa, Jean-Louis; Legras, Roger. Influence of EP/PP viscosity ratio on the surface morphology and elasticity of injection moulded PP/EP. Polymer International, 1999, 48(4): 334-338.
    
    [29] Lee, M.-P. Hiltner, A.; Baer, E. Fractography of injection molded polycarbonate acrylonitrile-butadiene-styrene terpolymer blends. Polymer Engineering and Science, 1992, 32(13): 909-919.
    
    [30] Walling, N. Kamal, M.R. Phase morphology and properties of injection molded polypropylene/ethylene vinyl alcohol copolymer blends. Advances in Polymer Technology, 1996, 15(4): 269-288.
    
    [31] Palierne, J.F. Linear rheology of viscoelastic emulsions with interfacial tension. Rheologica Acta, 1990, 29(3): 204-214.
    
    [32] Gramespacher, H. Meissner, J. Interfacial tension between polymer melts measured by shear oscillations of their blends. Journal of Rheology, 1992, 36(6): 1127-1141.
    
    [33] Graebling, D. Muller, R.; Palierne, J.F. Linear viscoelastic behavior of some incompatible polymer blends in the melt. Interpretation of data with a model of emulsion of viscoelastic liquids. Macromolecules, 1993, 26(2): 320-329.
    
    [34] Bousmina, M. Muller, R. Linear viscoelasticity in the melt of impact PMMA. Influence of concentration and aggregation of dispersed rubber particles. Journal of Rheology, 1993, 37(4): 663-679.
    
    [35] Bousmina, M. Bataille, P.; Sapieha, S.; Schreiber, H.P. Comparing the effect of corona treatment and block copolymer addition on rheological properties of polystyrene/polyethylene blends. Journal of Rheology, 1995,39(3): 499-517.
    
    [36] Friedrich, C. Gleinser, W.; Korat, E.; Maier, D.; Weese, J. Comparison of sphere-size distributions obtained from rheology and transmission electron microscopy in PMMA/PS blends. Journal of Rheology, 1995,39(6): 1411-1425.
    
    [37] H.T. Pham, C.J. Carriere. The effect of temperature on the interfacial tension of polycarbonate/polyethylene blends, Polym. Eng. Sci., 1997, 37(3): 636-639.
    
    [38] N. Chapleau, B.D. Favis, P.J. Carreau. Measuring the interfacial tension of polyamide/polyethylene and polycarbonate/polypropylene blends: effect of temperature. Polymer, 2000,41:6695-6698.
    [39] Tadmor, Z. Molecular Orientation in Injection Molding. Journal of Applied Polymer Science, 1974,18(6): 1753-1772.
    [1] Shan GF, Yang W, Yang MB, et al. Effect of crystallinity level on the double yielding behavior of polyamide 6, Polymer Testing, 2006, 25(4): 452-459.
    [2] Pan JL, Li ZM, Ning NY, et al. Double yielding in injection-molded polycarbonate/polyethylene blends: Composition dependence. Macromolecular Materials and Engineering, 2006, 291(5): 477-484.
    [3] Shan GF, Yang W, Xie BH, et al. Double yielding behaviors of polyamide 6 and glass bead filled polyamide 6 composites. Polymer Testing, 2005, 24(6): 704-711.
    [4] Li ZM, Huang CG, Yang W, et al. Morphology dependent double yielding in injection molded polycarbonate/polyethylene blend. Macromolecular Materials and Engineering, 2004, 289(11): 1004-1011.
    [5] Li ZM, Yang W, Yang SY, et al. Morphology-tensile behavior relationship in injection molded poly(ethylene terephthalate)/polyethylene and polycarbonate/polyethylene blends (I)-Part I-Skin-core structure. Journal of Materials Science, 2004, 39(2): 413-431.
    [6] Li ZM, Xie BH, Yang SY, et al. Morphology-tensile behavior relationship in injection molded poly(ethylene terephthalate)/polyethylene and polycarbonate/polyethylene blends (II)-Part II-Tensile behavior, Journal of Materials Science, 2004,39(2): 433-443.
    
    [7] Li ZM, Qian ZQ, Yang MB, et al. Anisotropic micro structure-impact fracture behavior relationship of polycarbonate/polyethylene blends injection-molded at different temperatures. Polymer, 2005, 46(23): 10466-10477.
    
    [8] Wang Y, Zhang Q, Na B, et al. Dependence of impact strength on the fracture propagation direction in dynamic packing injection molded PP/EPDM blends. Polymer, 2003, 44(15): 4261-4271.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700