关联电子体系新奇磁学性质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文报道了几种典型的关联电子体系材料的合成方法、晶体结构与磁学、电学性质。系统的研究了关联电子体系材料在低温下自旋的关联有序态,并在深入材料结构与性能关系的基础上对材料表现出丰富的磁学现象给出了科学的解释。
     在第一章绪论中,介绍了Mott绝缘体的提出、内容以及Mott-Hubbard模型,对材料磁性的起源、磁性的分类、自旋间的交换相互作用等进行了总结。第二章中,对无机合成技术中三种常用的制备技术进行了介绍,并对一些相关测试原理、技术参数与指标进行归纳总结。第三章中,详细的研究了Li(Mn,Cr)O2材料的磁学性质。自旋轨道耦合效应在高温区对材料的磁化率曲线起着重要的影响,表明了该体系存在着传统凝聚态体系所不具备的自旋和轨道自由度间的耦合。该材料在低温呈现类自旋玻璃态行为;表明该体系存在较强的量子涨落(quantum fluctuation)。第四章中,系统的讨论了六方晶系的Li0.8V0.8O2的水热合成条件,并且通过XPS能谱表征发现体系中V离子的价态为+4价。材料呈现出的低温顺磁基态和典型的半导体导电行为都说明该体系基态是Anderson绝缘体。第五章中,具体地讨论了空穴掺杂对于低温自旋链系统材料LiCuVO4的影响。通过XPS能谱、Raman光谱与磁性方面的研究,我们发现空穴掺杂可以诱导体系出现部分低自旋态的Cu3+离子,材料的磁学性质的变化源于非磁性Cu3+离子的影响,而非普遍意义上的Zhang-Rice单重态。第六章主要围绕着对反尖晶石结构LiNiVO4材料磁学性质的研究展开,发现该材料在高温存在自旋轨道耦合效应,在低温呈现短程反铁磁有序的磁基态。
The free electron theory of metal and band theory of solids are based on the single-electron approximation. In solid state physics, atom is composed of the valence electrons and ion. When we study the electron motions, the Born-Oppenheimer approximation is an important assumption that the electronic motion and ion motion in molecules are independent of each other. In the theory of free electron, ion can be regarded as background with positive charge to maintain charge neutral. While in the single-electron approximation of band theory, the effect of ion is summed up as the periodic potential and the other electrons move in the mean field. The effects of electron-electron interaction are included in the exchange-correlated term by various methods, such as Hartree-Fork theory and Density-functional theory. As the correlated interaction becomes stronger, the single-electron approximation will be invalidated. Especially for the d-electron transition metal oxides, the correlated interaction among the electrons is so strong that the novel properties can not be well explained by the traditional condensed matter theories.
     The correlated interaction among electrons induces a series of important physical phenomena, such as novel magnetic properties, giant magnetoresistance, superconductivity, and so on. In the correlated system, there also exist the correlated interaction among spins, between spins and orbits, and between spins and lattices. Such correlated interaction is the physical origin of novel magnetic properties in solids. The magnetic effect comes from the correlated interaction among electrons, rather than the effect of quantum relativism.
     In this thesis, we explored some typical kinds of materials with correlated interaction and studied their synthesis processes, lattice structure, magnetic properties and electronic properties. We also offered our perspective on their novel and abundant magnetic phenomena.
     (1)In most manganites, Mn3+ ion is in High-spin state with three 3d electrons in t2g orbits and the last in the eg orbits. Some interesting and important properties are concerned with the two eg orbits under the strong electron correlation. Our experimental and theoretical study find that rhombohedral Li(Mn,Cr)O2 displays abnormal spin state with four 3d electrons occupying all three t2g orbits, S=1. Furthermore, a magnetic transition from paramagnetism to paramagnetism is found in high-temperature region, which shows changes of magnetic moment. Spin-orbit coupling plays an important role in this transition. The materials shows spin-glass-like behavior in low-temperature region, which should comes from the effect of geometrical frustration and abnormal t2g properties.
     (2)Rhombohedral Li0.8V0.8O2 was synthesized by hydrothermal method, and the influence of alkalinity on the hydrothermal treatment is also studied. The measurement of dc/ac susceptibility shows paramagentism in the whole temperature region between 2 K and 300 K. Typical semiconducting behaviors of resistivity is found, which can be explained by the variable-range-hopping mechanism. In Li0.8V0.8O2, Li+ and V4+ ion are disorderly distributed in the 3a and 3b sites. Disorder can induce the localization of electron state. Model of Anderson weak localization is employed to explain the low-temperature paramagnetism and semiconducting behavior.
     (3)Low-temperature quantum magnets have attracted considerable attentions because of their rich and interesting quantum magnetic phenomena, which have no analogy in high dimensions due to the enhanced quantum fluctuations in the one-dimensional (1D) structure. We systemically study the effect of hole-doping on the structure, valence state and magnetic properties of one-dimensional spin chain material LiCuVO4. XPS results showed that the valence state of V and O ion maintain unchanged before and after hole- doping. But the valence of Cu ion changes and partly +3 Cu ion appear, which is in correspondence with results of magnetic moment calculation. Part nonmagnetic [Cu3+O4] units suppress the magnetic susceptibility and induce new magnetic ordering at low temperature.
     (4)Despite the same chemical formula with that of LiCuVO4, LiNiVO4 has a totally different lattice structure, because of the John-Teller effect of Cu2+ ion. LiNiVO4 is of the inverse spinel structure with space group Fd 3 m, whose Li+ and Ni2+ ion disorderly occupy the space of octahedron, and V5+ ion is in the space of tetrahedron. The chemical formula can also be represented as V(LiNi)O4. There exists spin-orbit coupling in the high-temperature region, and LiNiVO4 displays short-range antiferromagnetic order.
引文
1. 冯端, 金国钧, 凝聚态物理学(上卷). 高等教育出版社,2003
    2. Y. Tokura and N. Nagaosa, Orbital Physics in Transition-Metal Oxides. Science, 2000, 288: 462
    3. Karsten Küpper, PHD thesis, 2005
    4. 吴代鸣, 固体物理基础. 高等教育出版社, 2007
    5. P. A. Cox, Transition Metal Oxides. Oxford University Press, 1992
    6. 黄昆, 韩汝琦, 固体物理学. 高等教育出版社, 2001 重版
    7. Anthony R. West, 固体化学及其应用. 复旦大学出版社, 1989
    8. 陈岩, 博士论文. 2007
    9.郭贻诚, 铁磁学. 人民教育出版社,1965
    10. Richard L. Carlin, Magnetochemistry. Springer-Verlag Berlin Heidelberg, 1986
    11. 冯端, 师昌绪, 刘治国, 材料科学导论-融贯的论述. 化学工业出版社, 2002
    12. P. G. De Gennes, Effects of Double Exchange in Magnetic Crystals. Physical Review, 1960, 118: 141
    13. S. Igor, H. Noriaki and T. Kiyoyuki, Crucial Role of the Lattice Distortion in the Magnetism of LaMnO3. Physical Review Letters, 1996, 76: 4825
    14. D. Coffey, K. S. Bedell and S.A. Trugman, Effective spin Hamiltonian for the CuO planes in La2CuO4 and metamagnetism. Physical Review B, 1990, 42: 6509
    15. John E. Greedan, Geometrical frustrated magnetic materials.Journal of Materials Chemistry, 2001, 11: 37-53
    16. M. J. Harris, S. T. Bramwell, et al., Physical Review Letters, 1997, 79: 12554
    17. G. C. Lau, R. S. Freitas, B. G. Ueland, et al., Geometrical magnetic frustration in rare-earth chalcogenide spinels. Physical Review B, 2005, 72: 054411
    18. Satoshi Fujimoto, Geometrical Frustration Induced (Semi) Metal to Insulator Transition. Physical Review Letters, 2002, 89: 226402
    19. Nobuko Hamaguchi, Taku Matsushita, et al., Low temperature phases of the pyrochlore compound Tb2Ti2O7. Physical Review B, 2004, 69: 132413
    20. J. S. Gardner, B. D. Gaulin, A. J. Berlinsky, et al., Neutron scattering studies of the cooperative paramagnet pyrochlore Tb2Ti2O7. Physical Review B, 2001, 64: 224416
    21. K. Kawamura, S. Miyashita, Phase Transitions of Anisotropic Heisenberg Antiferromagnets on the Triangular Lattice. Journal of the Physical Society of Japan, 1985, 54: 3385
    22. J. Villain, Zeitschrift Fur Physik B, 1979, 33: 31
    23. J. S. Gardner, et al., Cooperative Paramagnetism in the Geometrically Frustrated Pyrochlore Antiferromagnet Tb2Ti2O7. Physical Review Letters, 1999, 82: 1012
    24. K. Binder, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics, 1986, 58: 801
    25. C. A. Cardoso, F. M. Araujo-Moreira, et al., Spin glass behavior in RuSr2Gd1.5Ce0.5Cu2O10-δ. Physical Review B, 2003,67: 020407
    26. F. Wang, J. Zhang, Y.-F. Chen, et al., Spin-glass behavior in La(Fe1-xMnx)11.4Si1.6 compounds. Physical Review B, 2004, 69: 094424
    27. R. Coldea, D. A. Tennant, et al., Experimental Realization of a
    2D Fractional Quantum Spin Liquid. Physical Review Letters, 2001, 86: 1335
    28. S. Nakatsuji, Y. Machida, Y. Maeno, et al., Metallic Spin Liquid Behavior of the Geometrically Frustrated Kondo Lattice Pr2Ir2O7. Physical Review Letters, 2006, 96: 087204
    29. I. Mirebeau and I. N. Goncharenko, et al., Pressure and Field Induced Magnetic Order in the Spin Liquid Tb2Ti2O7 as Studied by Single Crystal Neutron Diffraction. Physical Review Letters, 2004, 93: 187204
    30. I. Mirebeau, I. N. Goncharenko, P. Cadavez-Peres, et al., Pressure-induced crystallization of a spin liquid. Nature, 2002, 420: 54
    31. B. Canals and C. Lacroix, Pyrochlore Antiferromagnet: A Three-Dimensional Quantum Spin Liquid. Physical Review Letters, 1998, 80: 2933
    32. B. Canals and C. Lacroix, Quantum spin liquid The Heisenberg antiferromagnet on the three-dimensional pyrochlore lattice. Physical Review B, 2000, 61: 1149
    33. P. W. Anderson, Physics of the Resonating Valence Bond (Pseudogap) State of the Doped Mott Insulator: Spin-Charge Locking. Materials Research Bulletin, 1973, 8: 153
    34. P. Fayelas and P. W. Anderson, Philosophical Magazine,1974, 30: 423
    35. M. J. Harris, et al., Geometrical Frustration in theFerromagnetic Pyrochlore Ho2Ti2O7. Physical Review Letters, 1997, 79: 2554; Liquid-Gas Critical Behavior in a Frustrated Pyrochlore Ferromagnet. Physical Review Letters, 1998, 81: 4496
    36. A. P. Ramirez, et al., Zero-point entropy in ‘spin ice’. Nature, 1999, 399: 333
    37. Shandong Li, Meimei Liu, Zhigao Huang, et al., CoMnSb: A magnetocaloric material with a large low-field magnetic entropy change at intermediate temperature. Journal of Applied Physics, 2006, 99: 063901
    38. P. M. Shand, C. C. Stark, D. Williams, et al., Spin glass or random anisotropy?: The origin of magnetically glassy behavior in nanostructured GdAl2. Journal of Applied Physics, 2005, 97: 10J505
    39. H. Saito, V. Zayets, S. Yamagata, K. Ando, Room-Temperature Ferromagnetism in a II-VI Diluted Magnetic Semiconductor Zn1-xCrxTe. Physical Review Letters, 2003, 90: 207202
    40. Zu-Fei Huang, Fei Du, Chun-Zhong Wang, Deng-Pan Wang, Gang Chen Low-spin Mn3+ ion in rhombohedral LiMnO2 predicted by first-principles calculations. Physical Review B 2007 75: 054411
    41. Kiyoshi Ozawa, Lianzhou Wang, et al., Preparation and Electrochemical Properties of the Layered LixVyO2. Journal of Electrochemical Society, 2006, 153(1): A117-A121
    42. A. Shengelaya, G. T. Meijer, J. Karpinshi, et al., SpontaneousMagnetization and Antiferromagnetic Correlations of the CuO2 Chains in Sr0.73CuO2. Phys. Rev. Lett., 1998, 80: 3626-3629
    43. S. A. Cater, B. Batlogg, R. J. Cava, et al., Hole Doping of the CuO2 Chains in (La,Sr,Ca)14Cu24O41. Physical Review Letters, 1996, 77: 1378-1381
    44. Alexei A. Belik, Masaki Azuma, and Mikio Takano, Short-Range and Long-Range Magnetic Ordering in SrCuP2O7 and PbCuP2O7. Inorganic Chemistry, 2003, 42: 8572-8578
    45. F. Orsini, E. Baudrin, S. Denis, et al., ‘Chimie douce’ synthesis and electrochemical properties of amorphous and crystallized LiNiVO4 vs. Li. Solid State Ionic, 1998, 107: 123
    46. S. Chitra, P. Kalyani, B. Yebka, et al., An innovative soft-chemistry approach to synthesize LiNiVO4. Materials Chemistry and Physics, 2000, 65: 32-37
    1. A. Urushibara, Y. Tokura, et al., Insulator-metal transition and giant magnetoresistance in La1-xSrxMnO3. Physical Review B, 1995, 51: 14103
    2. J. Vergara, K. V. Rao, et al., Effect of disorder produced by cationic vacancies at the B sites on the electronic properties of mixed valence manganites. Physical Review B, 1999, 60: 1127
    3. J. A. Souza, and R. F. Jardim, et al., Magnetoresistivity in the clustered state of La0.7–xYxCa0.3MnO3 manganites. Physical Review B, 2005, 71: 054404
    4. M. Kriener, T. Lorenz, et al., Structure, magnetization, and resistivity of La1-xMxCoO3 (M=Ca, Sr, and Ba). Physical Review B, 2004, 69: 094417
    5. V. Garcia, M. Bibes, et al., Temperature dependence of the interfacial spin polarization of La2/3Sr1/3MnO3. Physical Review B, 2004, 69: 052403
    6. C. S. Hong, H. H. Hur, et al., Transport and magnetic properties in the ferromagnetic regime of La1-xCaxMnO3. Physical Review B, 2001, 63: 092504
    7. C. R. Sankar, P. A. Joy, Magnetic properties of the self-doped lanthanum manganites La1–xMnO3. Physical Review B, 2005, 72: 024405
    8. Y. Yeshurun, and A. P. Malozemoff, Giant Flux Creep and Irreversibility in an Y-Ba-Cu-O Crystal: An Alternative to the Superconducting-Glass Model. Physical Review Letters, 1988, 60: 2202
    9. R. H. Koch, V. Foglietti, et al., Experimental evidence forvortex-glass superconductivity in Y-Ba-Cu-O. Physical Review Letters, 1989, 63: 1511
    10. T. Mizokawa, Orbital polarization in layered t2g electron systems. New Journal of Physics, 2004, 6: 169
    11. E. V. Sampathkumaran, N. Fujiwara, S. Rayaprol, P. K. Madhu, and Y. Uwatoko, Magnetic behavior of Co ions in the exotic spin-chain compound Ca3Co2O6 from 59Co NMR studies. Physical Review B, 2004, 70: 014437
    12. C. Frontera, J. L. Garcia-Munoz, et al., Structural and magnetic study of PrBaCo2O5+δ (δ?0.75) cobaltite. Physical Review B, 2004, 70: 184428
    13. K. Asai, O. Yokokura, et al., Neutron-scattering study of the spin-state transition and magnetic correlations in La1-xSrxCoO3 (x=0 and 0.08). Physical Review B, 1994, 50: 3025
    14. O. Toulemonda, N. N’Guyen, F. Studer and A. Traverse, Electrical Behavior of New Orthophosphates Na2M3(PO4)3 (M3=GaMn2, GaCd2, InMn2 and FeMnCd) with Alluaudite-Like Structure. Journal of Solid State Chemistry, 2001, 168: 208
    15. M. Mochizuki and M. Imada, Orbital physics in the perovskite Ti oxides. New Journal of Physics, 2004, 6: 154
    16. I. V. Solovyev, Lattice distortion and magnetism of 3d-t2g perovskite oxides. Physical Review B, 2006, 74: 054412
    17. A. Aharony, O. E.-Wohlman et al., The cubic Kugel–Khomskii model for triply degenerate t2g electrons. New Journal of Physics, 2005, 7: 49
    18. Zu-Fei Huang, Fei Du, Chun-Zhong Wang, Deng-Pan Wang, Gang Chen Low-spin Mn3+ ion in rhombohedral LiMnO2predicted by first-principles calculations. Physical Review B 2007 75: 054411
    19. 黄祖飞 博士论文. 2006
    20. H. Meskine, H. K?nig, S. Satpathy, Orbital ordering and exchange interaction in the manganites. Physical Review B, 2001, 64: 094433
    21. S. Okamoto, S. Ishihara, S. Maekawa, Orbital structure and magnetic ordering in layered manganites: Universal correlation and its mechanism. Physical Review B, 2001, 63: 104401
    22. J. E. Greedan, Geometrically frustrated magnetic materials. Journal of Materials Chemistry, 2001, 11: 37-53
    23. Nobuko Hamaguchi, Taku Matsushita, et al., Low temperature phases of the pyrochlore compound Tb2Ti2O7. Physical Review B, 2004, 69: 132413
    24. J. S. Gardner, B. D. Gaulin, A. J. Berlinsky, et al., Neutron scattering studies of the cooperative paramagnet pyrochlore Tb2Ti2O7. Physical Review B, 2001, 64: 224416
    25. M. J. Harris, S. T. Bramwell, et al., Liquid-Gas Critical Behavior in a Frustrated Pyrochlore Ferromagnet. Physical Review Letters, 1998, 81: 4469
    26. G. C. Lau, R. S. Freitas, B. G. Ueland, and et al., Geometrical magnetic frustration in rare-earth chalcogenide spinels. Physical Review B, 2005, 72: 054411
    27. http://www.chemistry.mcmaster.ca/greedan/research2.htm
    28. N. Tristan, J. Hemberger, A. Loidi, et al., Geometric frustration in the cubic spinels MAl2O4 (M=Co, Fe, and Mn). Physical Review B, 2005, 72: 174404
    29. Satoshi Fujimoto, Geometrical Frustration Induced Metal to Insulator Transition. Physical Review Letters, 2002, 89: 226402
    30. J. Sugiyama, H. Nozaki, J. H. Brewer, Frustrated magnetism in the two-dimensional triangular lattice of LixCoO2. Physical Review B, 2005, 72: 144424
    31. Xu Li, Yingjin Wei, Gang Chen, Characterizations on the structural and electrochemical properties of LiNi1/3Mn1/3Co1/3O2 prepared by a wet-chemical process. Solid State Ionic, 2008, 178: 1969
    32. Y. –I Jang, F. C. Chou, Y. –M. Chiang, Spin-glass behavior in LiMn2O4 spinel. Applied Physics Letters, 1999, 74: 2504
    33. A. A. Belik, M. Azuma, et al., Crystal structure and properties of phosphate PbCu2(PO4)2 with spin-singlet ground state. Physical Review B, 2006, 73: 024429
    34. G. Cao, R. P. Guertin, et al., Magnetic and transport properties of single-crystal Ca2RuO4: Relationship to superconducting Sr2RuO4. Physical Review B, 1997, 56: R2916
    35. H. Fukazawa, Y. Maeno, Magnetic ground state of the pyrochlore oxide Y2Nb2O7. Physical Review B, 2003, 67: 054410
    36. J. D. Bryan, Bo B. Iversen, Magnetic phase diagram of Eu4Ga8Ge16 by magnetic susceptibility, heat capacity, and M?ssbauer measurements. Physical Review B, 2003, 68: 174429
    37. J. Q. Yan, J. S. Zhou, J. B. Goodenough, Opposing spin-canting mechanism in single-crystal LuVO3 and YVO3. Physical Review B, 2005, 72: 094412
    38. Y. Ren, T. T. M. Palstra, D. I. Khomskii, et al., Magnetic properties of YVO3 single crystals. Physical Review B, 2000, 62: 6577
    39. H. Yoshida, Y. Muraoka, T. S?rgel, et al., Spin-1/2 triangular lattice with orbital degeneracy in a metallic oxide Ag2NiO2. Physical Review B, 2006, 73: 020408
    40. J. P. Joshi, R. Gupta, C. N. R. Rao, et al., Temperature dependent electron paramagnetic resonance studies of charge-ordered Nd0.5Ca0.5MnO3. Physical Review B, 2001, 65: 024410
    41. B. Martinez, X. Obradors, L. Balcells, A. Rouanet, and C. Monty, Low Temperature Surface Spin-Glass Transition in γ- Fe2O3 Nanoparticles. Physical Review Letters, 1998, 80: 181
    42. A. Falqui, N. Lampis, A. G.-Lehmann, G. Pinna, Low-Temperature Magnetic Behavior of Perovskite Compounds PbFe1/2Ta1/2O3 and PbFe1/2Nb1/2O3. Journal of Physical Chemistry B, 2005, 109: 22967
    43. J. A. Mydosh, Spin Glasses: An Experimental Introduction. Taylor & Francis London, 1993
    44. S. Chatterjee and A. K. Nigam, Spin-glass-like behavior in Y1-xSrxMnO3 (x=0.5 and 0.6). Physical Review B, 2002, 66: 104403
    45. M. Gruyters, Spin-Glass-Like Behavior in CoO Nanoparticles and the Origin of Exchange Bias in Layered CoO/Ferromagnet Structures. Physical Review Letters, 2005, 95: 077204
    46. F. Wang, J. Zhang, Y.-F. Chen, et al., Spin-glass behavior in La(Fe1-xMnx)11.4Si1.6 compounds. Physical Review B, 2004, 69:094424
    47. Y-Q Liang, N-L Di, et al., Charge disproportionation induced magnetic glassy behavior in La0.5Ca0.5FeO3. Physical Review B, 2005, 72: 134416
    48. R. Mathieu, P. Nordblad, D. N. H. Nam, et al., Short-range ferromagnetism and spin-glass state in Y0.7Ca0.3MnO3. Physical Review B, 2001, 63: 174405
    49. E. Chappel, M. D. Nunez-Regueiro, S. de Brion, and G. Chouteau, Interlayer magnetic frustration in quasi- stoichiometric Li1-xNi1+xO2. Physical Review B, 2002, 66: 132412
    50. J. N. Reimers, J. R. Dahn, J. E. Greendan, et al., Spin Glass Behavior in the Frustrated Antiferromagnetic LiNiO2. Journal of Solid State Chemistry, 1993, 102: 542
    51. Y.-I Jang, F. C. Chou, and Y.-M. Chiang, Magnetic properties of monoclinic phase LiAl0.05Mn0.95O2. Journal of Physics and Chemistry of Solids, 1999, 60: 1763-1771
    1. G. Keller, K. Held, V. Eyert, D. Vollhardt, and V. I. Anisimov, Electronic structure of paramagnetic V2O3: Strongly correlated metallic and Mott insulating phase. Physical Review B, 2004, 70: 205116
    2. K. Held, G. Keller, et al., Mott-Hubbard Metal-Insulator Transition in Paramagnetic V2O3: An LDA+DMFT(QMC) Study. Physical Review Letters, 2001, 86: 5345
    3. F. Mila, R. Shiina, et al., Orbitally Degenerate Spin-1 Model for Insulating V2O3. Physical Review Letters, 2000, 85: 1714
    4. S. –K. Mo, J. D. Denlinger, et al., Prominent Quasiparticle Peak in the Photoemission Spectrum of the Metallic Phase of V2O3. Physical Review Letters, 1999, 90: 186403
    5. S. Yu. K. R. Gorny, et al., Electron Mediated Spin-spin coupling and electron correlations in YBa2Cu3O7. Physical Review Letters, 1999, 83: 3924
    6. S. Kondo, D. C. Johnston, et al., LiV2O4: A Heavy Fermion Transition Metal Oxide. Physical Review Letters, 1997, 78: 3729-3732
    7. C. Urano, M. Nohara, et al., LiV2O4 Spinel as a Heavy-Mass Fermi Liquid: Anomalous Transport and Role of Geometrical Frustration. Physical Review Letters, 2000, 85: 1052
    8. O. Chmaissem, J. D. Jorgensen, Structure and Thermal Expansion of LiV2O4: Correlation between Structure and Heavy Fermion Behavior. Physical Review Letters, 1997, 79: 4866
    9. V. I. Anisimov, M. A. Korotin, et al., Electronic Structure of theHeavy Fermion Metal LiV2O4. Physical Review Letters, 1999, 83: 364
    10.D. C. Johnston, Heavy fermion behaviors in LiV2O4. Physica B, 2002, 281&282: 21-25
    11. S.-H Lee, Y. Qiu, et al., Spin Fluctuations in a Magnetically Frustrated Metal LiV2O4. Physical Review Letters, 2001, 86: 5554
    12. J. Hopkinson, P. Coleman, LiV2O4: Frustration Induced Heavy Fermion Metal. Physical Review Letters, 2002, 89: 267201
    13. D. C. Johnston, et al., Dynamics of Magnetic Defects in Heavy Fermion LiV2O4 from Stretched Exponential 7Li NMR Relaxation. Physical Review Letters, 2005, 95: 176408
    14. 冯端, 金国钧, 凝聚态物理学(上卷). 高等教育出版社, 2003
    15. Y. Ueda, Chemistry of Materials, 1998, 10: 2653; Private communication Tokyo, Japan, 2004
    16. H. Smolinski, C. Gros, et al., NaV2O5 as a Quarter-Filled Ladder Compound. Physical Review Letters, 1998, 80: 5164
    17. A. N. Vasilev, V. V. Pryadun, et al., Anomalous Thermal Conductivity of NaV2O5 as Compared to Conventional Spin-Peierls System CuGeO3. Physical Review Letters, 1998, 81: 1949
    18. C. Gros, R. Valenti, Magnon Splitting Induced by Charge Ordering in NaV2O5. Physical Review Letters, 1999, 82: 976
    19. H. Nakao, K. Ohwada, et al., X-Ray Anomalous Scattering Study of a Charge-Ordered State in NaV2O5. Physical Review Letters, 2000, 85: 4349
    20. A. Damascelli, D. van der Marvel, et al., Direct Two-MagnonOptical Absorption in α′-NaV2O5: ‘Charged’ Magnons. Physical Review Letters, 1998, 81: 918
    21. L. –C. Duda, T. Schmitt, et al., Low-Energy Excitations in Resonant Inelastic X-Ray Scattering of α′-NaV2O5. Physical Review Letters, 2004, 93: 169701
    22. Y. F. Revurat, M. Mehring, et al., Charge-Order-Driven Spin-Peierls Transition in α′-NaxV2O5. Physical Review Letters, 2000, 84: 4176
    23. E. Dagotto, Experiments on ladders reveal a complex interplay between a spin-gapped normal state and superconductivity. Reports on Progress in Physics, 1999, 62: 1525
    24. Kiyoshi Ozawa, Lianzhou Wang, et al., Single crystal growth and characterization of nearly stoichiometric LixVyO2 (x=0.8 and y=0.8). Journal of Electrochemical Society, 2006, 153(1): A117-A121
    25. Fei Du, Zu-Fei Huang, Chun-Zhong Wang, Xing Meng, Gang Chen, Yan Chen, Shou-Hua Feng Spin-glass-like behavior in rhombohedral Li(Mn,Cr)O2. Journal of Applied Physics 2007 102: 113906
    26. Yan Chen, Hongming Yuan, Ge Tian, et al., Hydrothermal synthesis and magnetic properties of RMn2O5 (R=La, Pr, Nd, Tb, Bi) and LaMn2O5. Journal of Solid State Chemistry, 2007, 180: 167-172
    27. W. Li, J. N. Reimers, J. R. Dahn, Crystal structure of LixNi2-xO2 and a lattice-gas model for the order-disorder transition. Physical Review B, 1992, 46: 3236
    28. J. Morales, C. Perez Vicente, J. L. Tirado, Cation distributionand chemical deintercalation of Li1-xNi1+xO2. Materials Research Bulletin, 1990, 25: 623-630
    29. L A de Picciotto, M. M. Thackeray, Structural characterization of delithiated LiVO2. Materials Research Bulletin, 1984, 19: 1497-1506
    30. K-F. Zhang, X-Z. Sun, et al., A new method for preparing V2O3 nanopowder. Materials Letters, 2005, 59: 2729
    31. D. Yin, N. Xu, J. Zhang, X. Zheng, Journal of Physics D-Applied Physics, 1996, 29: 1051
    32. G. A. Savatzky, D. Post, X-ray photoelectron and Auger spectroscopy study of some vanadium oxides. Physical Review B, 1979, 20: 1546
    33. N. Alov, D. Kutsko, et al., XPS study of vanadium surface oxidation by oxygen ion bombardment. Surface Science, 2006, 200: 1628
    34. Christmann, B. Felde, W. Niessner, D. Schalch, A. Schrmann, Mixed-valence vanadium oxides studied by XPS. Thin Solid Films, 1996, 287: 134
    35. Cailing Xu, Lan Ma, Xiang Liu, Wenyuan Qiu, Zhangxing Su, A novel reduction–hydrolysis method of preparing VO2 nanopowders. Materials Research Bulletin, 2004, 39: 881-886
    36. 吴代鸣, 固体物理基础. 高等教育出版社, 2007
    37. T. G. Castner, Variable-range hopping in the critical regime. Physical Review B, 2000, 61: 16596
    38. C. C. Wang, L. W. Zhang, Polaron relaxation related to localized charge carriers in CaCu3Ti4O12. Applied Physics Letters, 2007, 90: 142905
    39. C. Leighton, I. Terry, P. Becla, Metallic conductivity near the metal-insulator transition in Cd1-xMnxTe. Physical Review B, 1998, 58: 9773
    40. V. Ichas, J. C. Griveau, et al., High-pressure resistance of PuTe up to 25 GPa. Physical Review B, 2001, 63: 045109
    41. P. Majumdar, S. Kumar, et al., Anderson-Mott Transition Driven by Spin Disorder: Spin Glass Transition and Magnetotransport in Amorphous GdSi. Physical Review Letters, 2003, 90: 237202
    42. P. S. Prabhu, U. V. Varadaraju, et al., Effect of 3d ion substitution in the RBa2Cu3-xMxO7 system: Implications of R ion dependence and disorder. Physical Review B, 1996, 53: 14637
    43. K. W. Kim, J. S. Lee, et al., Metal-insulator transition in a disordered and correlated SrTi1–xRuxO3 system: Changes in transport properties, optical spectra, and electronic structure. Physical Review B, 2005, 71: 125104
    44. D. Belitz, T. R. Kirkpatrick, The Anderson-Mott transition. Reviews of Modern Physics, 1994, 66: 261
    45. C. J. Zhang, J. S. Kim, B. H. Kim, and Y. W. Park, Phase separation in La1.85?1.5xSr0.15+1.5xCu1?xMnxO4. Physical Review B, 2004, 70: 024505
    46. R. Kumar, R. J. Choudhary, M. Wasi Khan, et al., Structural, electrical transport and x-ray absorption spectroscopy studies of LaFe1–xNixO3. Journal of Applied Physics, 2005, 97: 093526
    47. P. Tong, Y. P. Sun, X. B. Zhu, and W. H. Song, Strong spin fluctuations and possible non-Fermi-liquid behavior in AlCNi3.Physical Review B, 2006, 74: 224416
    48. P. M. Shand, C. C. Stark, D. Williams, M. A. Moeales, T. M. Pekarek, D. L. Leslie-Pelecky, Journal of Applied Physics, 2005, 97: 10J505
    49. J. M. Hill, D. C. Johnston, and L. L. Miller, Decomposition of the spin-1/2 Heisenberg chain compound Sr2CuO3 in air and water: An EPR and magnetic susceptibility study of Sr2Cu(OH)6. Physical Review B, 2002, 65: 134428
    50. X. L. Chen, L. Bauernfeind, and H. F. Braun, Na0.5La0.5RuO3: Structure and electronic properties. Physical Review B, 1997, 55: 6888
    51. J. Perez-Cacho, J. Blasco, J.Garcia, and J. Stankiewicz, Electronic and magnetic phase diagram of SmNi1-xCoxO3. Physical Review B, 1999, 59: 14424
    52. V. Ichas, J. C. Griveau, J. Rebizant, and J. C. Spirlet, High-pressure resistance of PuTe up to 25 Gpa. Physical Review B, 2001, 63: 045109
    52. S. Srinath, M. Mahesh Kumar, M. L. Post, and H. Srikanth, Magnetization and magnetoresistance in insulating phases of SrFeO3–δ. Physical Review B, 2005, 72: 054425
    53. Athena S. Sefat, J. Greedan, G. M. Luke, M. Niewczas, Anderson-Mott transition induced by hole doping in Nd1–xTiO3. Physical Review B, 2006, 74: 104419
    54. K. W. Kim, J. S.Lee, T. W. Noh, et al., Metal-insulator transition in a disordered and correlated SrTi1?xRuxO3 system: Changes in transport properties, optical spectra, and electronic structure. Physical Review B, 2005, 71: 125104
    1. V. S. Kargl, PhD Thesis, 2006
    2. A. Shengelaya, G. T. Meijer, J. Karpinshi, et al., Spontaneous Magnetization and Antiferromagnetic Correlations of the CuO2 Chains in Sr0.73CuO2, Physical Review Letters, 1998, 80: 3626-3629
    3. S. A. Cater, B. Batlogg, T. M. Rice, et al., Hole Doping of the CuO2 Chains in (La,Sr,Ca)14Cu24O41. Physical Review Letters, 1996, 77: 1378-1381
    4. Alexei A. Belik, Masaki Azuma, and Mikio Takano, Short-Range and Long-Range Magnetic Ordering in SrCuP2O7 and PbCuP2O7. Inorganic Chemistry, 2003, 42: 8572-8578
    5. J. Rossat-Mignod, Neutron and synchrotron radiation for condensed matter studies. Springer Verlag Berlin, 1994
    6. J. G. Bednorz and K. A. Müller, Possible high Tc superconductivity in the Ba-La-Cu-O system. Zeitschrift Fur Physik B, 1986, 64: 198
    7. Y. Mizuno, T. Tohyama, S. Maekawa, T. Osafune, et al., Electronic states and magnetic properties of edge-sharing Cu-O chains. Physical Review B, 1998, 57: 5326-5335
    8. M. Matsuda and K. Katsumata, Observation of a dimerized state in the S=1/2 quasi-one-dimensional antiferromagnet Sr14Cu24O41. Physical Review B, 1996, 53: 12201
    9. 冯端, 金国钧, 凝聚态物理学(上卷), 高等教育出版社, 2003
    10. H. Bethe, The theory of metals. I. Specific values and function of linear atomic chains. Zeitschrift Fur Physik, 1931, 71: 205
    11. J. des Cloiseaux and J. J. Pearson, Spin-Wave Spectrum of theAntiferromagnetic Linear Chain. Physical Review, 1962, 128: 2131
    12. L. Faddeev, Antti J. Niemi, Magnetic Geometry and the Confinement of Electrically Conducting Plasmas. Physical Review Letters, 2000, 85: 3416
    13. I. Affeck, Exact correlation amplitude for the S=1/2 Heisenberg antiferromagnetic chain. Journal of Physics A-Mathematical and General, 1998, 31: 4573
    14. A. H. Bougourzi, et al., Exact two-spinon dynamic structure factor of the one-dimensional Heisenberg-Ising antiferromagnet. Physical Review B, 1998, 57: 11429
    15. T. Barnes, J. Riera, and D. A. Tennant, S=1/2 alternating chain using multiprecision methods. Physical Review B, 1999, 59: 11384
    16. T. Barnes, Boundaries, cusps, and discontinuities in the multimagnon continua of one-dimensional quantum spin systems. Physical Review B, 2003, 67: 024412
    17. A. B. Harris, Alternating Linear Heisenberg Antiferromagnet: The Exciton Limit. Physical Review B, 1973, 7: 3166
    18. G. S. Uhrig, H. J. Schulz, Magnetic excitation spectrum of dimerized antiferromagnetic chains. Physical Review B, 1996, 54: R9624
    19. J. C. Bonner, M. E. Fisher, Linear Magnetic Chains with Anisotropic Coupling. Physical Review, 1964, 135: A640
    20. S. Eggert, I. Affeck, and M. Takahashi, Susceptibility of the spin 1/2 Heisenberg antiferromagnetic chain. Physical Review Letters, 1994, 73: 332
    21. M. Matsuda, K. Katsumata, Observation of a dimerized state in the S=1/2 quasi-one-dimensional antiferromagnet Sr14Cu24O41. Physical Review B, 1996, 53: 12201
    22. James W. Hall, Wayne E. Marsh, et al., Exchange coupling in the alternating-chain compounds. Inorganic Chemistry, 1981, 20: 1033-1037
    23. F. C. Zhang, and T. M. Rice, Effective Hamiltonian for the superconducting Cu oxides. Physical Review B, 1988, 37: 3759
    24. A. Hayashi, B. Batlogg, and R. J. Cava, Ca4Cu5O10: Copper oxide chains highly occupied by Zhang-Rice singlets. Physical Review B, 1996, 58: 2678
    25. A. V. Prokofiev, I. G. Vasilyeva, V. N. Ikorskii, et al., Structure, stoichiometry and magnetic properties of the low-dimensional structure phase LiCuVO4. Journal of Solid State Chemistry, 2004, 177: 3131-3139
    26. H.-A. Krug von Nidda, L. E. Svistov, M.V. Eremin, et al., Anisotropic exchange in LiCuVO4 probed by ESR. Physical Review B, 2002, 65: 134445
    27. Ch. Kegler, N. Burrgen, H.-A, Krug von Nidda, et al., Magnetic resonance on LiCuVO4. European Physical Journal B, 2001, 22: 321-326
    28. D. Dai, H.-J. Koo, and M.-H. Whangbo, Investigation of the Incommensurate and Commensurate Magnetic Superstructures of LiCuVO4 and CuO on the Basis of the Isotropic Spin Exchange and Classical Spin Approximations. Inorganic Chemistry, 2004, 43: 4026
    29. A. N. Vasil'ev, M. Isobe, and Y. Ueda, et al., Magnetic andresonant properties of quasi-one-dimensional antiferromagnet LiCuVO4. Physical Review B, 2001, 64: 024419
    30. C. Kegler, N. Büttgen, H. –A. Krug von Nidda, et al., NMR study of lineshifts and relaxation rates of the one-dimensional antiferromagnet LiCuVO4. Physical Review B, 2006, 73: 104418
    31. R. Kanno, Y. Kawamoto, Y. Takeda, et al., Structure and phase transition in the spinel system Li1?xCuVO4 (0≤x≤0.2), with one-dimensional cooperative Jahn-Teller ordering. Journal of Solid State Chemistry, 1992, 96: 397-407
    32. V. B. Shiroko, Yu. I. Yuzyuk, et al., Vibration Spectra and the Valence Force Field of the LiCuVO4. Crystal Physics of the solid state, 2005, 47: 539-546
    33. 赵丽竹,陈岗,张丽娟, 锂电池正极材料 Li1.06Mn0.8Cr0.14O2的水热合成及光谱研究, 高等学校化学学报,2006,27(10): 1815
    34. Y. J. Wei, L. Y. Yan, C. Z. Wang, et al., Effect of Ni Doping on [MnO6] Octahedron in LiMn2O4. Journal of Physical Chemistry B, 2004, 108: 18547-18551
    35. DC. Yin, NK. Xu, JY. Zhang, et al., Vanadium dioxide films with good electrical switching property. Journal of Physics D-Applied Physics, 1996, 29: 1051
    36. G. van der Laan, C. Westra, C. Haas, et al., Satellite structure in photoelectron and Auger spectra of copper dihalides. Physical Review B, 1981, 23: 4369
    37. D. A. Z atsepin, V. R. Galakhov, et al., Valence states of copper ions and electronic structure of LiCu2O2. Physical Review B,1998, 57: 4377
    38. Zu-Fei Huang, Fei Du, et al Low-spin Mn3+ ion in rhombohedral LiMnO2 predicted by first-principles calculations. Physical Review B 2007 75: 054411
    39. A. Hayashi, B. Batlogg, R. J. Cava, Ca4Cu5O10: Copper oxide chains highly occupied by Zhang-Rice. Physical Review B, 1998, 58: 2678-2683
    40. Z. Hiroi, S. Amelinckx, et al Microscopic origin of dimerization in the CuO2 chains in Sr14Cu24O41. Physical Review B, 1996, 54: 15849
    41. N. Motoyama, T. Osafune, T. Kakeshita, H. Eisaki, S. Uchida, Effect of Ca substitution and pressure on the transport and magnetic properties of Sr14Cu24O41 with doped two-leg Cu-O ladders. Physical Review B, 1997, 55: R3386
    42. M. Isobe, Long-time tail of the velocity autocorrelation function in a two-dimensional moderately dense hard-disk fluid. Physical Review B, 2008, 77: 021201
    43. W. Geertsma, and D. Khomshii, Influence of side groups on 90° superexchange: A modification of the Goodenough Kanamori Anderson rules. Physical Review B, 1996, 54: 3011
    44. P. W. Anderson, edited by G. T. Rado and H. Suhl, Academic Press, in Magnetism, Vol. 1, 1963
    45. J. Kanamori, Journal of Physical Chemical Solids, 1959, 10: 87
    46. J. B. Goodenough, Theory of the Role of Covalence in the Perovskite-Type Manganites [La, M(II)]MnO3. Physical Review, 1955, 100: 564
    1. J. Vergara, R. J. Ortega-Hertogs, et al., Effect of disorder produced by cationic vacancies at the B sites on the electronic properties of mixed valence manganites. Physical Review B, 1999, 60: 1127
    2. F. Rivadulla, M. A. Lopez-Quintela, et al., Effect of Mn-site doping on the magnetotransport properties of the colossal magnetoresistance compound La2/3Ca1/3Mn1-xAxO3(A=Co,Cr; x<~0.1). Physical Review B, 2000, 62: 5678
    3. E. Granado, A. Garcia, et al., Magnetic ordering effects in the Raman spectra of La1-xMn1-xO3. Physical Review B, 1999, 60: 11879
    4. J. A. Souza, R. F. Jardim, Magnetoresistivity in the clustered state of La0.7–xYxCa0.3MnO3 manganites. Physical Review B, 2005, 71: 054404
    5. M. Kriener, C. Zobel, et al., Structure, magnetization, and resistivity of La1-xMxCoO3 (M=Ca, Sr, and Ba). Physical Review B, 2004, 69: 094417
    6. S.-T. Myung, S. Komaba, et al., Preparation of layered LiMnxCr1?xO2 solid solution by emulsion drying method as lithium intercalation compounds. Electrochemistry Communications, 2002, 4: 397
    7. J. Xiao, H. Zhan, et al., Synthesis of layered-structure LiMn1?xCrxO2 for lithium-ion batteries by the rheological phase method. Materials Letters, 2004, 58: 1620
    8. R. Chitrakar, H. Kanoh, et al., Synthesis of Layered-Type Hydrous Manganese Oxides from Monoclinic-Type LiMnO2.Journal of Solid State Chemistry, 2001, 160: 69
    9. John E. Greedan, Geometrical frustrated magnetic materials. Journal of Materials Chemistry, 2001, 11: 37-53
    10. M. J. Harris, S. T. Bramwell, et al., Geometrical Frustration in the Ferromagnetic Pyrochlore Ho2Ti2O7. Physical Review Letters, 1997, 79: 2554
    11. J. Snyder, P. Schiffer, et al., Low-temperature spin freezing in the Dy2Ti2O7 spin ice. Physical Review B, 2004, 69: 064414
    12. O. A. Petrenko, M. R. Lees, et al., Magnetization process in the spin-ice compound Ho2Ti2O7. Physical Review B, 2003, 68: 012406
    13. J. D. Champion, A. S. Wills, et al., Order in the Heisenberg pyrochlore the magnetic structure of Gd2Ti2O7. Physical Review B, 2001, 87: 047205
    14. R. Fichtl, V. Tsurkan, P. Lunkenheimer, J. Hemberger, et al., Orbital Freezing and Orbital Glass State in FeCr2S4. Physical Review Letters, 2005, 94: 027601
    15. Y.-II Jang, F. C. Chou, and Y. –M. Chiang, Spin-glass behavior in LiMn2O4 spinel. Applied Physics Letters, 1999, 74: 2504
    16. N. Buttgen, J. Hemberger, V. Fritsch, A. Krimmel, et al., Orbital physics in sulfur spinels: ordered, liquid and glassy ground states. New Journal of Physics, 2004, 6: 191
    17. F. Orsini, E. Baudrin, S. Denis, L. Dupont, et al., ‘Chimie douce’ synthesis and electrochemical properties of amorphous and crystallized LiNiVO4 vs. Li. Solid State Ionic, 1998, 107: 123
    18. S. Chitra, P. Kalyani, B. Yebka, T. Mohan, et al., Synthesis,characterization and electrochemical studies of LiNiVO4 cathode material in rechargeable lithium batteries. Materials Chemistry and Physics, 2000, 65: 32-37
    19. C. Gonzalez, M. Gaitan, C. Pico, et al., Journal of Materials Science, 1994, 29: 2458-3460
    20. 吴代鸣, 固体物理基础, 高等教育出版社, 2007
    21. Richard L. Carlin, Magnetochemistry. Springer-Verlag Berlin Heidelberg. 1986
    22. Fei Du, Zu-Fei Huang, Chun-Zhong Wang, Xing Meng, Gang Chen, Yan Chen, Shou-Hua Feng,Spin-glass-like behavior in rhombohedral Li(Mn,Cr)O2. Journal of Applied Physics 2007 102: 113906
    23. Janhavi P. Joshi, C. N. R. Rao, et al., Temperature-dependent electron paramagnetic resonance studies of charge-ordered Nd0.5Ca0.5MnO3. Physical Review B, 2001, 65: 024410
    24. 黄昆, 韩汝琦, 固体物理学, 高等教育出版社, 2001
    25. G. C. Lau, B. G. Ueland, R. S. Freitas, M. L. Dahlberg, P. Schiffer, and R. J. Cava, Magnetic characterization of the sawtooth-lattice olivines ZnL2S4. Physical Review B, 2006, 73: 012413
    26. H. Karunadasa, Q. Huang, B. G. Ueland, J. W. Lynn, P. Schiffer, K. A. Regan, and R. J. Cava, Modification of the spin structure of chromium by an interface effect in Cr(011)/Sn multilayers. Physical Review B, 2005, 71: 44414
    27. E. Chappel, M. D. Nunez-Regueiro, S. de Brion, G. Chouteau, V. Bianchi, D. Caurant, N. Baffier, Interlayer magnetic frustration in quasistoichiometric Li1-xNi1+xO2. Physical ReviewB, 2002, 66: 132412
    28. M. Rosenberg, P. Stelmaszyk, V. Klein, S. Kmmler-Sack, LiNiO2: Quantum liquid or concentrated spin glass? Journal of Applied Physics, 1994, 75: 6813
    29. A. Bajpai, A. Banerjee, Superparamagnetism in polycrystalline Li0.5Ni0.5O samples: Low-field susceptibility measurements Physical Review B, 2000, 62: 8996

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700