钛合金低成本氧化物陶瓷型壳熔模精密铸造技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对钛合金的低成本熔模精密铸造技术进行了研究,通过对粘结剂、面层涂料及型壳各种性能的研究、型壳干燥与焙烧工艺的研究,确定了低成本氧化物陶瓷型壳的制备工艺;研究了钛合金与低成本氧化物陶瓷型壳的界面反应、钛合金的显微组织与力学性能;对熔模精密铸造充型与凝固过程进行了数值模拟,设计了浇注系统,优化了熔炼与浇注工艺参数,为实际浇注打下基础;开展了典型薄壁复杂铸件的熔模精密铸造离心浇注实验,制备出合格的铸件,并对铸件的质量和性能进行了测试,结果表明采用低成本氧化物陶瓷型壳在离心力场下能够浇注出质量和性能优良的铸件。
     对低成本熔模精密铸造面层涂料中的耐火粉料进行了粒度级配,并对采用级配粉制备的涂料的流变性能进行了研究。研究结果表明:随着粉液比的增大,涂料粘度增大;相同粉液比情况下,当细粉含量为40%的时候,涂料具有较低的粘度;粉液比为2.4、细粉含量为40%的涂料具有较好的流变性能。
     型壳的干燥时间随着环境温度的升高而缩短,随着环境湿度的增加而增加,当相对湿度大于70%时,型壳干燥时间显著增加;在一定范围内,空气流速的增加能够明显缩短型壳的干燥时间,当空气流速大于5m/s时,对干燥速度影响不大。
     完全粗粉时型壳的强度最低,随着细粉含量的增加,型壳的湿强度是增加的,当细粉含量达到40%时型壳具有最大的强度,随后型壳的强度又有所降低,并且型壳断裂时的位移也变小了;型壳焙烧后的强度随着焙烧时间的延长而增大,随着焙烧温度的升高,面层型壳的抗弯强度逐渐增加。
     根据实验结果,确定了低成本氧化物陶瓷型壳的制备工艺为:在环境温度为25℃-30℃,湿度40%-50%,空气流速2.5m/s-3m/s,干燥时间为8-10小时。型壳干燥干燥后进行焙烧,焙烧工艺为:升温至150℃后保温30分钟后迅速升温至600℃保温1小时,然后升至950℃保温2-3小时。
     通过Miedema模型和Kohler公式,推导了三元系钛合金中各元素活度的计算公式;计算了合金元素的含量对钛合金中各元素活度的影响,发现随着Al含量的增加,Al的活度增大,而Ti和Zr的活度是减小的。而Zr含量的增加则使Ti的活度增大,使Al的活度减小;计算了熔体温度对钛合金中合金元素活度的影响规律,发现随着温度的升高,Al元素的活度是减小的,Zr元素和Ti元素的活度是增加的。
     研究了钛合金与低成本氧化物陶瓷型壳的界面反应,结果表明,粒度级配和粉液比优化对减轻型壳与钛合金的界面反应、获得规则界面是有贡献的,特别是当粉液比为2.4、涂料中细粉含量为40%时,效果最为明显。采用XRD和XPS手段对钛合金表面相组成与生成物进行了研究,结果表明,钛合金的表面主要由型壳中的Al_2O_3和SiO_2组成,并且存在少量的Ti、Si化合物。从界面反应结果和XRD、XPS结果都显示出由于合金元素的添加降低了Ti的活度,Ti-Al-Zr合金与型壳的界面反应和扩散程度都比纯钛合金的要轻。
     针对大型薄壁复杂钛合金铸件,设计了三种浇注系统;分别对三种浇注系统熔模精密铸造充型过程的充型时间、温度场和速度场进行了数值模拟与分析,优选出合理的浇注系统;特别针对优选出的浇注系统的熔模精密铸造过程进行了凝固过程的数值模拟,分析了凝固过程中的温度场。
     对蜡模的制备工艺进行了研究,制备出了高表面光洁度的蜡模,表面粗糙度平均值达到Ra=1.04μm;采用低成本氧化物陶瓷型壳的制备技术,进行了钛合金铸件的型壳的制备,并在离心力场下采用水冷铜坩埚真空感应凝壳熔炼炉成功地浇注出了大型薄壁复杂钛合金铸件;对浇注出的铸件进行了显微组织、力学性能与质量检测。结果表明,采用本文研究的钛合金熔模精密铸造用低成本氧化物陶瓷型壳的制备技术及相应的离心浇注工艺,能够浇注出质量优良的大型薄壁复杂钛合金铸件。
A novel low cost investment cast technology was developed for titanium alloy and was investigated in this thesis. The properties of binder, face coat slurry and mould shell were studied in detail, which help determine the technology of preparing mould shell including drying and baking technologies. The interface reaction between titanium alloys and the developed low cost oxide ceramic mould shell were studied. Microstructures and mechanical properties of the cast titanium alloys were studied as well. Numerical simulations of melt filling and solidification processes were carried out for the investment cast of titanium alloy, including designing pouring system, optimizing process parameters of melting and pouring, establishing theoretical basis for practical casting process. The large-size thin-wall complex-shape components were cast successfully by centrifugal investment cast. The quality and property tests of the casts verified that the newly developed low cost oxide ceramic mould shell is good enough to produce high quality titanium alloy cast in centrifugal force field.
     Size-grade distribution was investigated on the refractory powder of the low cost investment face coat slurry, and the rheological properties of slurry were studied. The results showed that the viscosity of slurry increased with increasing S/L ratio. A lowest slurry viscosity was found when the fine powder was 40% at the same S/L ratio. Better rheological properties of slurry were reached when S/L ratio was 2.4 and the content of fine powder was 40%.
     The drying time of mould shell was shortened with rising ambient temperature, but prolonged with increasing ambient humidity, particularly when ambient humidity was more than 70% the drying time was prolonged remarkably. Increasing air flow velocity could evidently shorten drying time, but an air flow velocity more than 5m/s did not change drying time much.
     A smallest bending strength of mould shell was obtained when the powder of slurry was composed of full coarse powder, and increasing the content of fine powder increased the bending strength. The bending strength of mould shell increased with increasing baking time and rising baking temperature as well.
     Based on the above results, the processing technology of preparing novel low cost oxide ceramic mould shell was determined to be: ambient temperature, 25℃-30℃; ambient humidity, 40%-50%; air flow velocity, 2.5m/s-3m/s; and drying time, 8-10 hours. The mould shell baking is with the following steps: holding for 30min at 150℃, holding for 1hour at 600℃followed by holding for 2-3hours at 950℃.
     The chemical activities of various elements in ternary titanium alloy system were computed on the basis of Miedema model and Kohler formula, and their activity coefficients were calculated. The simulation results showed that the increasing Al content results in an increase of activity coefficient of Al and a decrease of activity coefficients of Ti and Zr. Increasing Zr content increased the activity coefficient of Ti and reduced the activity coefficient of Al. It was also found that the activity coefficient of Al decreased with rising temperature and that the activity coefficients of Zr and Ti increased with rising temperature.
     The interface reaction between titanium alloys and the low cost oxide ceramic mould shell was studied. The results showed that the powder size grade distribution and optimized S/L contributed to weakening the interface reaction to obtain regular interface with an optimum state at an S/L of 2.4 and the content of fine powder of 40%. XRD and XPS analysis on the surface of cast titanium alloys showed that the surface of cast titanium alloy was composed of Al_2O_3,SiO_2 and little amount of Ti-Si compound. The results of interface reaction investigation and analysis of XRD and XPS confirmed that adding alloy elements into Ti alloy decreased the activity coefficient of Ti.
     To understand the characteristics of investment casting of large-size thin-wall complex-shape component, different runner systems were design and the cast filling time, temperature field and viscosity field were simulated during the processes of cast filling and solidification of titanium alloy.
     The processing technology of preparing wax patterns was investigated. The high surface finish wax patterns could be prepared using current technology, with an average roughness of about 1.04μm. The large-size thin-wall complex-shape titanium alloys casts were successfully cast in centrifugal force field using a water-cooling crucible vacuum induction skull melt (ISM) furnace. The experimental results showed that with the currently developed technology of preparing low cost oxide ceramic mould shell, ISM and centrifugal pouring technology, the good quality large thin-wall complex titanium alloy cast could be cast successfully.
引文
1 TK. Krone, H.G. Luelfing, H. Rodehueser. TTitanium Investment Castings:Manufacture and Properties. TAFS International Cast Metals Journal. 1977,2(1): 37-40
    2 S. Tamirisakandala, R.B. Bhat, J.S. Tiley, D.B. Miracle. Grain refinement ofcast titanium alloys via trace boron addition. Scripta Materialia. 2005, 53:1421-1426
    3 E.O. Ezugwu, Z.M. Wang. Titanium alloys and their machinability-a review.Journal of materials Processing Technology. 1997, 68: 262-274
    4 S. Veeck, D. Lee, T. Tom. Titanium Investment Castings. AdvancedMaterials and Processes. 2002, 160(1): 59-62
    5 谢成木. 钛及钛合金铸造. 机械工业出版社, 2005: 117-120
    6 N. Suansuwan, M.V. Swain. Adhesion of Porcelain to Titanium and aTitanium Alloy. Journal of Dentistry. 2003, 31: 509-518
    7 R.R. Boyer. An Overview on the Use of Titanium in Aerospace Industry.Materials Science and Engineering A. 1996, 213: 103-114
    8 R.R. Boyer, J.C. Willianms, N.E. Paton. Evolving Aerospace Applicationsfor Ti Alloys. Titanium ’99: Science and Technology, CRISM”Prometey”, St.Peters-burg, Russia. 2000, 1007-1016
    9 D. Eylon, S.R. Seagle. State of Titanium in the USA-the First 50 Years. Intitanium ’99: Science and Technology, CRISM”Prometey”, St. Peters-burg,Russia. 2000, 37-41
    10 F.H. Fores. Developments in Titanium Applications. Light Metal Age. 1995,(10): 6-8
    11 M. Peters. Titanium Alloys for Aerospace Applications. Titanium World.1995, (2): 15-17
    12 M. Peters, R. Braun. Light Alloys for Aerospace Applications. 4th EuropeanConference on Advanced Materials and Processes-EUROMAT 95,Associazione Italiana di Metallurgia, Milano. 1995: 55-64
    13 J.C. Willianms. Alternative Materials Choices-some Challenges to theIncreased use of Ti Alloys. Materials Science and Engineering A. 1999, 263,107-111
    14 P. J. Winkler, M. A. Daubler, M. Peters. Applications of Titanium Alloys in the European Aerospace Industry. Titanium 92’: Science and Technology. TMS, Warrendale, PA. 1993, 2877-2890
    15 周彦邦, 甘敬林. 国外钛合金铸造技术的发展. 现代铸造. 1981, (1): 61-66
    16 谢成木. 国外钛合金熔模铸造. 国外铸造. 1979, (1): 45-47
    17 Paul A. Titanium Alloy Development. Advanced Materials and Process. 1996, (10): 35-37
    18 J. H. Hans. Titanium-A Space Age Metal. Light Metal Age. 1995, (10): 6-8
    19 罗国珍. 钛的研究发展评述. 稀有金属材料与工程. 1993, (6): 19-27
    20 R.B. Rodney. Aerospace Applications of Beta Titanium. Journal of the Minerals Metals and Materials Society. 1997, (7): 20-23
    21 马济民, 曹春晓. 航空用钛合金的新进展. 稀有金属. 1997, 21(Suppl.): 1-9
    22 冯颖芳. 钛合金的精铸技术进展及应用现状. 特种铸造及有色合金. 2001, (2): 72-75
    23 D.C. Jams. Titanium Alloys on the F-22 Fighter Airframe. Advanced Materials and Processes. 2002, (5): 23-28
    24 J. Klepeisz, S. Veeck. The Production of Large Structural Titanium Castings. Journal of the Minerals Metals and Materials Society. 1997, 49(11): 18-20
    25 南海, 谢成木. 国外铸造钛合金及其铸件的应用与发展. 中国铸造装备与技术. 2003, (6):1-3
    26 J.R. Wood. Recent Titanium Developments in the USA. Ti-2003 Science and Technology, Proceeding of the 10th World Conference on Titanium. Hamburg: Wiley-VCH. 2004:1-11
    27 J.C. Williams, E.A.S. Jr. Progress in Structural Materials for Aerospace Systems. Acta Materialia. 2003, 51(19): 5775-5799
    28 南海, 谢成木. 高强度模料的研制及在大型薄壁钛合金精铸件上的应用.机械工程材料. 2002, 26(3): 15-17
    29 Y. Takada, O. Okuno, H. Nakajima, T. Okabe. Evaluation of Binary Metastable-titanium Alloys for Dental Applications. Journal of Dental Research. 1997, 76:402
    30 Y. Masanobu, T. Konno, Y. Takada. Bond Strength of Binary Titanium Alloys to Porcelain. Biomaterials. 2001, 22: 1675-1681
    31 C.M. Sabinash, S.M.L. Satry, K.L. Jerina. High-temperature Deformation of Titanium Aluminide Alloys. Materials Science Engineering A. 1995, 192/193: 837-847
    32 E. Donald. J. Larsen. Status of Investment Cast Gamma Titanium Aluminides in the USA. Materials Science Engineering A. 1996, 213: 128-133
    33 R. Yang, Y.Y. Cui, L.M. Dong, Q. Jia. Alloy Development and Shell Mould Casting of Gamma TiAl. Journal of Materials Processing Technology. 2003, 135: 179-188
    34 S.Y. Sung, Y.J. Kim. Alpha-case Formation Mechanism on Titanium Investment Castings. Materials Science Engineering A. 2005, 405: 173-177
    35 C. Ohkuboa, T. Hosoia, J.P. Ford. Effect of Surface Reaction Layer on Grindability of Cast Titanium Alloys. Dental Materials. 2006, 22: 268-274
    36 S. Tamirisakandala, R.B. Bhat, J.S. Tiley. Grain Refinement of Cast Titanium Alloys via Trace Boron Addition. Script Materialia. 2005, 53:1421-1426
    37 D.E. Macdonald, B.E. Rapuano, N. Deo. Thermal and Chemical Modification of Titanium-Aluminum-Vanadium Implant Materials: Effect on Surface Properties, Glycoprotein Adsorption, and MG63 Cell Attachment. Biomateials. 2004, 25: 3135-3146
    38 X.H. Wu. Review of Alloy and Process Development of TiAl Alloys. Intermetallics. 2006, 14: 1114-1122
    39 Lirones. Precision Mold and Method of Fabrication. United States Patent. 1966, No.3241200
    40 Lirones. Ceramic, Multilayer Graphite Mold and Method of Fabrication. United States Patent. 1966, No.3256574
    41 Drones. Method of Preparing an Investment Mold for Use in Precision Casting. United States Patent. 1967, No.3296666
    42 Brown. Investment Shell Molds for the High Integrity Precision Casting of Reactive and Refractory Metals, and Methods for their Manufacture. United States Patent. 1970, No.3537949
    43 Brown. Investment Shell Mold for Use in Casting of Reacting and Refractory Metals. United States Patent. 1976, No.3994346
    44 Basche. Tungsten Impregnated Casting Mold. United States Patent. 1979, No.4135030
    45 Richerson. Ceramic Composition and Crucibles and Molds Formed Therefrom. United States Patent. 1977, No.4040845
    46 Lda K. Effect of Magnesia Investments in the Dental Casting of Pure Titanium Alloys. Dental Materials.1982, (1) :1
    47 J. Takahashi. Casting Pure Titanium into Commercial Phosphate-bonded SiOB2B Investment Moulds. Journal of Dental Research. 1990, 69(1): 800
    48 Iasalle. Inert Calcia Facecoats for Investment Casting of Titanium and Titanium Aluminide Alloys. United States Patent. 1998, No.5766329
    49 D. Eliopoulos, S. Zinelis, T. Papadopoulos. The Effect of Investment Material Type on the Contamination Zone and Mechanical Properties of Commercially Pure Titanium Castings. Journal of Prosthetic Dentsitry. 2005, 94(6): 539-548
    50 机械工业部沈阳铸造研究所钛精铸组. 钛合金熔模铸造制壳材料及工艺的研究. 铸造. 1986, (3):13-17
    51 徐发, 张俭. 钛铸件水玻璃锆砂铸型的研究. 铸造. 1987, (5):16-19
    52 彭规绵. 钛合金铸造技术. 铸造. 1991, (7):40-42
    53 崔广智, 徐振宗. 钛合金熔模铸造粘结剂二醋酸锆的制备方法. 材料工程. 1996, (3):14-16
    54 周彦邦等. 新型钛精铸氧化物陶瓷型壳工艺研究. 材料工程. 1995, (5): 43-45
    55 戴介泉. 钛精铸陶瓷型壳用新耐火材料研究. 材料工程. 1996, (12): 20-22
    56 王惠光,田竟,卢玉红,齐秀梅,罗文茜,李丰,陈玉勇. 钛合金用氧化物陶瓷型壳的研究. 材料科学与工艺. 1999, (7): 128-131
    57 D. Eylon, J.R. Nweman, J.K. Thone. Titanium and Titanium alloy Casting Technology. Journal of Metals. 1983, (7): 801-804
    58 王惠光, 彭德林, 王友仁. 高尔夫球杆头的熔模精密铸造. 特种铸造及有色合金. 1999, (suppl1): 101-102
    59 B.Y. Chou, E. Chang. Plasma-sprayed Hydroxyapatite Coating on TitaniumAlloy with ZrOB2B Second Phase and ZrOB2B Intermediate Layer. Surface andCoatings Technology. 2002, 153: 84-92
    60 王惠光, 陈玉勇, 田竟等. 精铸Ti-Al-Zr合金的显微组织和力学性能. 中国有色金属学报. 2000, 10(suppl.1): 165-167
    61 陈玉勇, 齐秀梅, 田竟. 钛熔模精铸用氧化物陶瓷型壳制壳工艺的研究.材料工程. 1999, (8): 37 – 40
    62 贾清, 崔玉友, 杨锐. 钛合金精密铸造用陶瓷模壳研究. 金属学报. 2004,40(11): 1170-1174
    63 樊铁船译. 钛及钛合金精密铸造. 国外金属加工. 1994, (2): 20-27
    64 李邦盛, 蒋海燕, 李志强. 新型钛精铸用粘结剂及型壳制备工艺的研究.铸造. 1998, (7): 4-6
    65 B.C. Weber, W. M. Thompson, H.O. Bielstein. Ceramic Crucible for MeltingTitanium. Journal of American Ceramic Society. 1957, 40(11): 353-373
    66 R.A. Brown. United States Patent. 1973, No.3743003
    67 R.D. Williams. Comparision of Titanium Investment and Rammed GraphiteCastings. Titanium Net Shape Technology. 1984: 31-35
    68 R.C. Feagin. Casting of Reactive Metals into Ceramic Molds. EuropeanPatent Application. 1986, No.0204574
    69 R.L. Saha. T.K. Nandy, R.D.K. Misara. On the Evaluation of Stability ofRare Earth Oxides as Face Coats of Investment Casting of Titanium.Metallurgical Transactions B. 1990, 21B(6):559-566
    70 贾清,崔玉友,杨锐. 钛合金精密铸造用陶瓷模壳研究. 金属学报. 2004,40(11): 1170-1174
    71 陈玉勇, 齐秀梅, 查维强. 不同面层材料对钛合金薄壁精铸件质量的影响. 金属学报. 1999, 35(增刊1): S569-S573
    72 M.G. Kim, S.K. Kim and Y.J. Kim. Effect of Mold Material and Binder onMetal-Mold Interfacial Reaction for Investment Castings of Titanium Alloys.Materials Transactions. 2002, 43(4): 745-750
    73 K.J. Pulkonik, R.D. Regan. W.E. Lee. Manufacturing Process for PremiumQuality Titanium Casting. AD486842, 1966: 5-7
    74 L. Wictirin, N. El-Mahallawy, M.A. Taha. Metallorgraphic Studies of CastTitanium-an Experimental Study of Metal/Mould Reaction. Cast Metals.1992, 4(4): 83-88
    75 古河洋文, 渡边潔, 前田正澄. チタン及びチタン合金の精密鋳造. 鋳锻造と热处理. 1992, (7): 10-18
    76 D. Mukherji, R.L. Saha, Cr. Chakravorty. Titanium Casting in Zircon Sand Mould. Transactions of the Indian Institute of Metals. 1985, 38(6): 465-471
    77 Chen-Cheng Hung, Guey-Lin Hou, Chi-Cheng Tsai. Pure Titanium Casting into Zirconia-Modified Magnesia-Based Investment Molds. Dental Materials. 2004, 20: 846-851
    78 佐藤敬, 松本升, 米田保夫. 石灰を耐火物に用ぃたチタン鋳物の制造. 鋳物. 1990, 62(9): 732-737
    79 内田省寿. 镰田勤也, 出川通. (有)米田铸造のチタン精密鋳造. チタンゥムジルコニゥム. 1990, 38(2): 87-93
    80 S. Prigent, J. Debuigne. A New Calcia Technology for Investment Casting of Titanium Alloys with the Lost Wax Process. Titanium’92 Science and Technology. The TMS. 1993:1519-1526
    81 T. Degawa, K. Kamata, Y. Yoneda. Melting and Precision Casting Ti Using Calcia. The 6th World Corference on Titanium, France. 1988: 707-713
    82 小林慶三, 高柳猛, 三輪謙治. Ti-34mass%Al合金溶湯とYB2BOB3B-ZrOB2B系耐火材料との反应. 鋳物. 1993, 65(1): 3-7
    83 黄东, 谢成木, 南海. 国外钛合金熔模铸造耐火材料的研究. 特种铸造及有色合金. 2004, (3): 47-50
    84 S.R. Lyon, S. Inouye. The Interaction of Titanium with Refractory Oxides. R.I. Jaffee, H. M. Burte. Titanium Science and Technology, New York. 1973: 271-284
    85 K. Suzuki, K. Nishikawa, S. Watakabe. Stability of Yttria for Titaniu Alloy Precision Casting Mold. Materials Transaction, JIM. 1997, 38(1): 54-62
    86 R.D. Waldron. United States Patent. 1977, No.4104706
    87 M. Garfinkle, H.M. Davis. Reaction of Liquid Titanium with some Refractory Compounds. Transactions of the ASM. 1965, 58: 521-530
    88 A.J. Reeves. The Effect of Interfacial Reaction Layer Thickness on Fracture of Titanium-SiC Particulate Composites. Metallurgical Transactions A. 1992, 3(23A): 977-988
    89 Lirones. Graphite Mold and Fabrication Method. United States Patent. 1966, No. 3266106
    90 Lirones. Method of Preparing an Investment Mold for Rse in Pprecision Casting. Unite States Patent. 1966, No. 3296666
    91 Lirones. Method of Ppreparing an Investment Mold for Use in Precision Casting. United States Patent. 1966, No. 3296666
    92 E.D. Calvert. An Investment Mold for Ti Casting. Bureau of Mines Report of Investigations. 1981: 43-45
    93 M. Koike, Z, Cai, H. Fujii. Corrosion Behavior of Cast Titanium with Reduced Surface Reaction Layer Made by a Face-coating Method. Biomaterials. 2003, 24: 4541-4549
    94 张延生. 钛及钛合金铸件的生产及技术概况. 钛工业进展. 2004, 21(3): 30-31
    95 谢成木. 铸造钛合金及其铸造技术的发展和应用. 金属学报. 1999, (35): 550-556
    96 乔冬福. 钛合金大型薄壁壳体结构件的精密铸造. 材料工程. 1989, (2): 19-23
    97 肖树龙, 陈玉勇, 朱洪艳, 田竟, 吴宝昌. 大型复杂薄壁钛合金铸件熔模精密铸造研究现状及发展. 稀有金属材料与工程. 2006, 35(5): 678-691
    98 南海, 谢成木, 魏华胜, 林汉同. 大型复杂薄壁类钛合金精铸件的研制. 中国铸造装备与技术. 2001, (2): 12-14
    99 张文毓. 钛精铸高尔夫球头的现状及发展趋势. 钛工业进展. 2004, 21(5): 5-7
    100 宁兴龙, 王国宏. 钛合金的凝壳熔炼. 钛工业进展. 1997, (6): 30-31
    101 卢新昌. 钛及钛合金熔模的感应凝壳铸造法. 铸造, 2005, 54(5): 425-428
    102 蒋炳玉. 冷坩埚感应熔炼活性金属的发展与应用. 稀有金属材料与工程. 1993, 22(2): 1-6
    103 Mark Hull. Reactive Titanium pPowder Manufacture. Powder Metallurgy. 1990, 33(3): 178-179
    104 黄淑梅, 韩明臣. 钛的悬浮熔炼与铸造. 金属学报. 2002, 38(9): 334-336
    105 A.N. Kalinyuk, N.P. Trigub, V.N. Zamkov. Microstructure, Texture, and Mechanical Properties of Electron-beam Melted Ti-6Al-4V. Materials Science and Engineering A. 2003, 346: 178-188
    106 张文林, 孙涛, 李娟莹. 电子束熔炼及其设备. 冶金设备. 2003, (4): 32-35
    107 邹建新. 国内外钛及钛合金材料技术现状、展望与建议. 宇航材料工艺. 2004, (1): 23-25, 37
    108 中国有色金属工业协会钛业分会. 钛行业"十一五"科技发展规划(草案). 钛工业进展. 2005, 22(2): 8-9
    109 G.K. Upadhya, S. Das. Modelling the Investment Casting Process: a Novel Approch for View Factor Calculationgs and Deffect Prediction. Applied Mathematical Modelling. 1995, 19: 354-362
    110 S.V. Shepel, S. Paolucci. Numerical Simulation of Filling and Solidification of Permanent Mold Casting. Applied Thermal Engineering. 2002, 22: 229-248
    111 S.M.H. Mirbagheri, H.Esmaeileian. Simulation of Melt Flow in Coated Mould Casting in the Casting Process. Journal of Materials Processing Technology. 2003, 142: 493-507
    112 J. Christophe, Gebelin. Modeling of the Investment Casting Process. Journal of Materials Processing Technology. 2003, 135: 291-300
    113 D.Z. Li, J. Campbell. Filling System for Investment Cast Ni-base Turbine Blades. Journal of Materials Processing Technology. 2004, 148: 310-316
    114 王君卿. 国内外铸造工艺过程计算机数值模拟的发展. 第九届中国铸造学术会议论文集. 1997
    115 王文清, 李响. 铸造过程计算机数值模拟技术. 重型机械科技. 2001, (1,2): 14-18
    116 H.J. Lin, W.S. Huang. Combined Fluid Flow and Heat Rransfer Analysis for the Filling of Castings. AFS Trans. 1988, 96: 447-458
    117 Y. Jiang, Y.P. Zhang. Development of Numerical Simulation of Filling Processes of Castings. Hot Working Technology. 2006, 35(1): 70-72
    118 K.I. Suzuki, K. Nishikawa, S. Watakabe. Mold Filling and Solidification during Centrifugal Precision Casting of Ti-6Al-4V Alloy. Materials Transaction, JIM. 1996, 37(12): 1793
    119 M. Wu, M. Augthun, I. Wagner. Casting of Ti Prostheses and Implants with the Aid of Numerical Simulation. Journal of the Minerals Metals and Materials Society. 2001, 53:36-38
    120 C. Beckermann. Moldelling of Future Needs Macrosegregation: Applicationand Futrue Needs. International Materials Reviews. 2002, 47: 243-261
    121 W.J. Boettinger, M.E. Williams, S.R. Coriell. Alpha Case Thickness Modeling in Investment Castings. Metall Material Transaction B. 2000, 31B: 1419-1427
    122 D. Mahoney, D.J. Browne. Use of Experiment and an Inverse Method to Study Interface Heat Transfer during Solidification in the Investment Casting Process. Experimental Thermal and Fluid Science. 2000, 22: 111-122
    123 徐达鸣, 李鑫. 铸造, 钛合金离心精密铸造充型过程计算机模拟. 2002, 51(1): 39-43
    124 Y. Zhang, W. Liu, H. Wang. Cast Filling Simulations of Thin-walled Cavities. Computer Methods in Applied Mechanics Engineering. 1995, 128(3-4): 199-230
    125 梁作俭, 许庆彦, 李俊涛, 李世琼, 张继, 柳百成, 仲增墉. γ-TiAl增压涡轮熔模铸造过程数值模拟研究. 稀有金属材料与工程. 2003, 32(3): 164-169
    126 S. Malinov, W. Sha. Software Products for Modelling and Simulation in Materials Science. Computational Materials Science. 2003, 28: 179-198
    127 J.C. Gebelin, M.R. Jolly. Modelling of the Investment Casting Process. Journal of Materials Processing Technology. 2003, 135: 291-300
    128 G.K. Upadhya, S. Das, U. Chandra. Modelling the Investment Casting Process- a Novel Approach for View Factor Calculations and Defect Prediction. Applied Mathematical Modelling. 1995, 19(7): 354-362
    129 R.C. Atwood, P.D. Lee, R.V. Curtis. Modeling the iInvestment Casting of a Titanium Crown. Dental Materials. 2007, 23: 60-70
    130 R.C. Atwooda, P.D. Leea, R.V. Curtisb. Modeling the Surface Contamination of Dental Titanium Investment Castings. Dental Materials. 2005, 21: 178-186
    131 Ti-6Al-4V熔模精密铸造充型及凝固过程计算机模拟. 材料科学与工艺. 1999, 7(增刊): 6-12
    132 宫克强主编. 特种铸造. 机械工业出版社, 1986:121-125
    133 王新英, 黄东, 赵嘉琪.钛合金熔模精密铸造中常见缺陷及其预防措施. 材料工程. 2003, (增刊): 235-236,242
    134 Chronister D J, Scott S W, Stickle D R. Induction Skullmelting of Titanium and other Reactive alloys. Journal of the Minerals Metals and Materials Society. 1986, 38(9): 51-54
    135 丁宏升. 钛及钛合金与铸型的界面反应研究. 哈尔滨工业大学博士学位论文. 1999: 27-29
    136 A.S. Ramos, C.A. Nunes, G.C. coelho. On the Peritectoid Ti3Si Formation in Ti-Si Alloys. Materials Characterization. 2006, 56: 107-111
    137 E.C.T. Ramos, G. Silva, A.S. Ramos, C.A. Nunes, C.A.R.P. Baptista. Microstructure and Oxidation Behavior of Ti-Si-B Alloys. Material Science Engineering A. 2003, 363: 297-306
    138 劳金海摘译. 离心力对钛合金精密铸造时凝固的影响. 钛合金信息. 1997, (3): 6-10
    139 J. Campbell. Castings, Second Edition, Oxford. B. H. 2003, 20-31
    140 包彦堃, 谭继良, 朱锦伦编著. 熔模铸造技术. 浙江大学出版社, 1997: 169
    141 王桂生. Ti-6Al-2Zr-1Mo-1V合金组织与性能的研究. 稀有金属. 1995, 19(5): 352-356,372
    142 李梁, 孙健科, 孟祥军. 钛合金的应用现状及发展前景. 钛工业进展. 2004, 21(5): 19-25
    143 Б.А. Колачев, И.С. Полькин, В. Д. Талалаев. Титановые Сплавы Разных Стран Москва. ВИЛС. 2000: 291
    144 魏寿庸, 何瑜, 王青江, 刘羽寅. 俄航空发动机用高温钛合金发展综述. 航空发动机. 2005, 31(1): 52-58
    145 王宝善, 马文革, 刘广义. 近β锻造在BT20合金上的应用. 金属学报. 2002, 38(增刊): 385-388
    146 杨延清, 张晶宇, 温力. BT20钛合金大锻件的热处理. 钛工业进展. 2003, (2): 14-17
    147 曹京霞, 黄旭, 孙贵东. 一种Ti-6Al-2Zr-1Mo-1V合金锻件的宏观与微观组织特征分析. 钛工业进展. 2004, 21(2): 23-27
    148 舒滢, 曾卫东, 周军. BT20合金高温变形行为的研究. 材料科学与工艺. 2005, 13(1): 66-69
    149 王金友. 航空用钛合金. 上海科学技术出版社, 1985: 325-330

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700