转炉双联法脱磷炉石灰溶解行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
面对国际铁矿石价格不断上涨带来的成本压力,开采国内贮量丰富的高磷铁矿已经成为我国钢铁企业走可持续发展道路的重要选择。转炉双联冶炼工艺是一项高效脱磷的现代钢铁生产新工艺,为冶炼高磷铁矿提供了一项重要途径。该工艺流程中脱磷转炉体系温度低,冶炼周期短,为达到高效脱磷的目的,同时考虑到高磷渣的综合利用,石灰在高磷、无氟、低碱度初期渣中的快速溶解形成具有良好脱磷能力的炉渣起着关键作用,目前这方面的研究相对较少。为此,本文针对双联法冶炼中高磷铁水工艺流程的特点,开展双联法脱磷炉中石灰溶解行为研究,对于优化转炉双联脱磷工艺,促进脱磷转炉快速成渣具有一定的理论指导意义。
     本文采用高温静态溶解试验法和动态旋转试验法研究了熔渣组成、温度、相对速度对石灰在高磷渣中的溶解行为的影响,分析了石灰溶解的限制性环节,并借助矿相显微镜及扫描电子显微镜(SEM+EDS)观察分析了石灰溶解过程微观界面行为,探讨了石灰的溶解机理,主要研究成果如下:
     ①采用正交组合设计方法研究了R、Fe_2O_3、P_2O_5、Al_2O_3和Na_2O对石灰溶解行为的影响,得出石灰溶化率与组分的关系,认为高磷渣不利于石灰的溶解。
     ②在FetO-SiO_2-CaO-P_2O_5-5%MnO-5%MgO系高磷渣中,CaO在液相中的传质是石灰溶解的限制性环节,回归出石灰溶解速度与相对速度的关系式以及j因子方程,得到CaO的传质系数为3.03×10~(-4)-8.97×10~(-4)cm/s,并通过实验获得石灰溶解活化能约为160.32 kJ/mol。
     ③在FetO-SiO_2-CaO-P_2O_5-5%MnO-5%MgO-X渣系中,添加剂CaF_2、Na_2O、Al_2O_3对石灰溶解促进作用顺序为:CaF_2>Na_2O>Al_2O_3,从高磷渣综合利用方面考虑,可以采用Na_2O和Al_2O_3作为CaF_2的替代剂使用,但用量应加以限制。
     ④基于对石灰在高磷渣中溶解机理分析,认为石灰基体表面附近形成的(Fe,Mn)O-CaO层是促进石灰溶解的关键所在,而(Fe,Mn)O-CaO层外的含有3CaO·P_2O_5 -2CaO·SiO_2固溶体的固液共存区域则对石灰的溶解起到抑制作用。
Facing the cost pressure brought by price rising of the international iron ore, it has been an important choice for domestic steel industries to explore high phosphorus iron ore in order to pursue Sustainable Development Path. The converter duplex process is a modern and new technology for dephosphorization, which provides an important way to cost the high phosphorus iron ore. Considering the low temperature and short melting cycle of dephosphorization converter and the comprehensive utilization of high phosph- orus slag, the rapid dissolution of lime to form slag with good dephosphorization ability plays a key role in the initial slag with high-P2O5, fluorine-free and low-R. At present, the research on this aspect is relatively rare. Therefore, the dissolution behavior of lime was studied based on the characteristics of converter duplex process, which has certain theoretical meaning for optimizing dephosphorization technology and promoting slag forming speed.
     In the paper, the effect of slag compositions, temperature, relative speed on dissol- ution behavior of lime were studied by static erosion method and dynamic rotation experiment method, and the restrictive step of lime dissolution was discussed. Meantime, the interfacial microstructure were observed and analyzed by mineralogical microscope and scanning electron microscopy (SEM+EDS) to disscuss the dissolution mechanism of lime. The main research results are as follows:
     ①The effect of R, Fe_2O_3 content, P_2O_5 content, Al_2O_3 content, and Na_2O content on lime dissolution behavior was studied by quadratic regression orthogonal combination design method.The regression equation between lime melting rate and slag composition was gained. It is bad for lime dissolution in high P_2O_5 slags.
     ②In FetO-SiO_2-CaO-P_2O_5-5%MnO-5%MgO slag series with high P_2O_5, the CaO dissolution rate is controlled by CaO diffusion mass in molten slags, and The relationship between lime dissolution rate and the relative speed was returned out, and j factor equation was gained. The CaO mass transfer coefficients is about 3.03×10~(-4)-8.97×10~(-4)cm/s, and the dissolved activation energy is about 160.32 kJ/mol.
     ③In FetO-SiO_2-CaO-P_2O_5-5%MnO-5%MgO-X slags, CaF_2, Na_2O and Al_2O_3 can promote the lime dissolution rate, and the promotion order is CaF_2>Na_2O>Al_2O_3. Therefore, Na_2O and Al_2O_3 can be used as the substitution agent for CaF_2, but the content should be controlled, considering the comprehensive utilization of high phosp- horus slag,
     ④Based on the analysis of the dissolution mechanism of lime, the (Fe,Mn)O-CaO layer with high FeO next to the lime plays a key role in dissolution of lime, but the area of liquid-solid coexistence containing 3CaO·P_2O_5-2CaO·SiO_2 solid solution next to (Fe,Mn)O-CaO layer reduces the lime dissolution rate.
引文
[1]汪大洲.钢铁生产中的脱磷[M].北京:冶金工业出版社, 1986.
    [2]张荣生.钢铁生产中的脱硫[M].北京:冶金工业出版社, 1986.
    [3]田志红.超低磷钢炉外钢液深脱磷的工艺和理论研究[D].北京科技大学博士学位论文, 2005.
    [4] M. Swinnerton, Be(Hons). The Influence of Slag Evolution on BOF Dephosphorisation[D]. Master dissertation, University of Wollongong, 2005.
    [5]黄希祜.钢铁冶金原理第三版[M].北京:冶金工业出版社, 2002.
    [6] G. W. Healy. A New Look at Phosphorus Distribution[J]. J. Iron Steel Institute, 1970, 208(7): 664-668.
    [7] X. F. Zhang, L. D. Sommerville and J. M. Tiger. An Equation for the Equilibrium Distribution of Phosphorus Between Basic Slags and Steel[J]. ISS Trans., 1985, 6(1): 29-34.
    [8] E. T. Turkdogan. Slag Composition Variations Causing Variations in Steel Dephosphorisation and Desuiphurisation in Oxygen Steelmaking[J]. ISIJ International, 2000, 40(9): 827-832.
    [9] E. T. Turkdogan. Assessment of P2O5 Activity Coefficients in Molten Slags [J]. ISIJ International, 2000,40(10): 964-970.
    [10] N. Sen. Studies on Dephosphorisation of Steel in Induction Furnace [J]. Steel Research Int., 2006,77(4): 242-249.
    [11]吴伟.复吹转炉冶炼中高磷铁水的应用基础研究[D].东北大学博士学位论文, 2003.
    [12] D. R. Gaskell. On the Correlation between the Distribution of Phosphorus between Slag and Metal and the Theoretical Optical Basicity of the Slag [J]. Transactions ISIJ, 1982, 22(12): 997-1000.
    [13]潘贻芳,王振峰.转炉炼钢功能性辅助材料[M].北京:冶金工业出版社, 2003.
    [14]张信昭.喷粉冶金基本原理[M].北京:冶金工业出版社, 1988.
    [15]王承宽.铁水脱磷技术的发展概况[J].炼钢, 2002, (12): 46-50.
    [16] A. Henrandez, R. D. Morales, A. Romero, et al. Dephosphorization Pretreatment of Liquid Iron [A]. Ironmaking Conference Proceeding [C], Pittsburgh, March 24-27, 1996, 55: 27-33.
    [17]石峰.鱼雷罐车中铁水的脱磷处理.武钢技术[J], 1993, (8): 23-29.
    [18]铃木健史,中户参,腾井澈也,等.用单管喷枪同时喷入氧气和氧化铁进行铁水脱磷方法的开发[J].国外钢铁, 1997, (5): 28 -33.
    [19] T. Ohnishi, H. Takagi and T. Ogura. Pretreatment Technique of Hot Metal by Newly Developed Refining Furnace [J]. Kobe Res. Dev., 1986, 34(1): 9-13.
    [20] T. Matsuo, I. Yamazaki, S. Masuda, K. Yoshida, A. Mori and S.Fukagawa. Proc. of 73rd Steelmaking Conf,ISS, Warrendale, PA, 1990: 115.
    [21] T. Ueki, K. Fujiwara, N. Yamada, S. Saeki and T. Tanioku.Proc. Of 10th Japan-China Symp. on Science and Technology of Iron and Steel, ISIJ, Tokyo, 2004:116.
    [22] M. Ina. Metallurgical Characteristics of LD Type Hot Metal Pretreatment[J]. CAMP-ISIJ, 1991, 4(4): 1154.
    [23] H.Tanabe and M.Nakada.Steelmaking Technologies Contribution to Steel Industries[J]. NKK Technical Report, 2003, 88: 18-27.
    [24]康复,陆志新,等.宝钢BRP技术的研究与开发[J].钢铁, 2005, 40(3): 25-28.
    [25]潘秀兰,王艳红,等.转炉双联法炼钢工艺的新进展[J].鞍钢技术, 2007, 5: 5-10.
    [26]火文.日本转炉炼钢的最新进展(一)[EB/01]. http://naicai.mysteel.com/10/0607/08/FC350 B1B1916E8AA.html, 2010-06-07.
    [27] Y. Ogawa. Development of the Continuous Dephosphorization and Decarbonization Process Using BOF [J]. Tetsu-to-Hagane, 2001, 87(1): 21-28.
    [28]火文.日本转炉炼钢的最新进展(三)[EB/01]. http://tech.mysteel.com/10/0612/07/DA2 14961B27AFA02.html, 2010-06-12.
    [29]孙礼明.转炉双联法冶炼工艺及其特点[J].上海金属, 2005, 27(2): 44-47.
    [30]王新华.钢铁冶金技术国际发展动向-日本钢铁企业考察访问汇报. 2006炼钢年会大会报告.
    [31]施卫国,彭大奇,马心玲. 15t顶底复吹转炉成渣路线研究[J].钢铁, 1991, 26(2): 18-21.
    [32]于景坤,刘世洲.鞍钢180t转炉复吹造渣工艺的分析[J].炼钢, 1991, 7(5): 1-5.
    [33]卜庆元,唐敬爱.复吹转炉成渣过程机理分析[J],炼钢, 1987, 3(3): 8-22.
    [34]戴云阁,李文秀,龙腾春.现代转炉炼钢[M] .沈阳:东北大学出版社, 1998.
    [35]王新华.钢铁冶金—炼钢学[M].北京:高等教育出版社, 2007.
    [36]吴伟,邹宗树,郭振和,等.复吹转炉最佳成渣路线的探讨[J].钢铁研究学报, 2004, 16(1): 21-24.
    [37]王学斌,冯明霞,邹宗树,等.复吹转炉预直炼法成渣路线分析[J].钢铁, 2009, 44(1): 23-26.
    [38] L. Zhong, K. Mukai, M. Zeze, et al. In-situ Observation of Penetration of Molten Slag into Solid Lime at High Temperature [J]. Steel Research Int., 2007, 78(3): 234-240.
    [39] S. Amini, M. Brungs and O. Ostrovski. Effect of Additives and Temperature on Dissolution Rate and Diffusivity of Lime in Al2O3-CaO-SiO2 Based Slags [J]. Metallurgical and Materials Transactions B, 2006, 37(5): 773-780.
    [40] M. S. Lee and P. V. Barr. Production and Properties of Burnt Lime Coated with DicalciumFerrite [J]. Ironmaking and Steelmaking, 2002, 29(2): 96-100.
    [41] T. S. Tribe, P. W. Kingston, J. B. MacDonald and W. F. Caley.Reduction of fluorspar consumption in secondary steelmaking[J]. Ironmaking Steelmaking, 1994, 21(2): 145-149.
    [42] B. N. Singh, Y. F. Ravat, A. Chatterjee and P. K. Chakravarty: Ironmaking Steelmaking, 1977, (4):170.
    [43] S.Amini,M. Brungs et al. Dissolution of Dense Lime in Molten Slags under Static Condition[J]. ISIJ International, 2007, 47(1): 32-37.
    [44] T. Hamano, M. Horibe and K. Ito.The Dissolution Rate of Solid Lime into Molten Slag Used for Hot-metal Dephosphorization[J]. ISIJ International, 2004, 44(2): 263-267.
    [45]孟金霞.宝钢石灰和白云石的最佳煅烧条件和在转炉初渣中溶化速率的研究[D].北京科技大学硕士论文, 2006.
    [46] J. Yang, M. Kuwabara, T. Asano, et al. Effect of Lime Size on Melting Behavior of Lime-containing Flux [J]. ISIJ International, 2007, 47(10): 1401-1408.
    [47] M. Matsushima, S. Yadoomaru, K. Mori, et al. Fundamental Study on the Dissolution Rate of CaO into Liquid Slag [J]. Tetsu- to- Hagane, 1976, 62(2): 182-190.
    [48]李远洲,李晓红,孙亚琴,等.固体石灰在CaO-MgO(=7.4%~8.0%)-FetO-SiO2渣系中的溶解速度实验研究[J].钢铁, 1993, 28(10): 18-23.
    [49] M. Umakoshi, K. Mori and Y. Kawai. Dissolution Rate of Burnt Dolomite in Molten FetO- CaO-SiO2 Slags [J]. Transactions ISIJ, 1984, 24(7): 532-539.
    [50] T. Hamano, S. Fukagai,et at.Reaction Mechaanism between Solid CaO and FeOx-CaO-SiO2 -P2O5 Slag at 1573K[J]. ISIJ International, 2006, 46(4): 490-495.
    [51] Y. Xiao, H.Matsuura,et al. Formation Behavior of Phosphorous Compound at the Interface between Solid 2CaO·SiO2 and CaO-SiO2-FeO-P2O5 Slag at 1673K[J]. Tetsu-to-Hagané,2009, 95(3): 268-274.
    [52] R.Sarro, H.Matsuura,et at. Microscopic Formation Mechanisms of P2O5-containing Phase at the interface between Solid CaO and Molten Slag[J]. Tetsu-to-Hagané, 2009, 95(3): 258-267.
    [53]何姜毅,周平,庄故章,等.某高磷铁矿提质降磷工艺研究[J],矿业工程, 2008, 6 (2): 29- 32.
    [54]郝先耀,戴惠新,赵志强.高磷铁矿石降磷的现状与存在问题探讨[J],金属矿山, 2007,1: 7-10
    [55]王承宽,王勇,李中金,等.铁水脱磷技术的发展概况[J].炼钢, 2002, 18(6): 46-50
    [56]弗朗兹·奥特斯著,倪瑞明等译.刚冶金学[M].北京:冶金工业出版社. 1996.
    [57] K. C. Mills and S. Sridhar. Viscosities of ironmaking and steelmaking slags [J]. Ironmaking and Steelmaking, 1999, 26(4): 262-268.
    [58]李远洲,范鹏,沈新民,等.固体石灰在转炉渣中的溶解动力学[J].钢铁, 1989, 24(11): 22-28.
    [59]孙毅杰,熊银成.炼钢用复合造渣剂的开发与利用[J].炼钢, 2001, 17(5): 28-31.
    [60]马洪德.转炉化渣剂在济钢的应用[J].天津冶金, 2010, (2): 3-4.
    [61]黄志勇,袁庭伟,颜根发,施一新,许茂清. MnO基无氟复合造渣剂应用的试验研究[J].钢铁研究, 2007, 35(2): 48-52.
    [62]安志平,董尉民,王海霞.铝矾土渣化工艺的试验研究及应用[J].河南冶金, 2008, 16(4): 14-15.
    [63]孟劲松,姜茂发,朱英雄.复吹转炉应用无氟造渣剂——铁矾土的生产实践[J].炼钢, 2005, 21(2): 1-3.
    [64]张钟铮,接宏伟,费鹏,等.氧气顶吹转炉无氟造渣新工艺[J].鞍钢技术, 2000, (5): 5-7.
    [65]王永红,谢兵,刁江,郭戌.氟对脱磷渣中磷的赋存形式及枸溶性的影响.中国稀土学报(增刊)[J]. 2010, 28: 684-687.
    [66]陈伟庆.冶金工程实验技术[M].北京:冶金工业出版社, 2004.
    [67]肖兴国,谢蕴国.冶金反应工程学基础[M].北京:冶金工业出版社, 2008.
    [68] N. Dogan, G. A. Brooks and M. A. Rhamdhani. Kinetics of Flux Dissolution in Oxygen Steelmaking [J]. ISIJ International, 2009, 49(10): 1474-1482.
    [69] M. Miwa, S. Asai and I. Muchi. Mathematical Model of LD Converter Process Taken Account of Oxidation of Phosphorus and Manganese of Rate of Lime Solution. [J]. Tetsu- to- Hagane, 1970, 56(13): 1677-1686.
    [70]林东,赵成林,张贵玉,邹宗树.转炉冶炼脱磷过程数学模型[J].材料与冶金学报, 2008, 7(2):85-88.
    [71]冯捷,张红文.转炉炼钢生产[M].北京:冶金工业出版社, 2006.
    [72]毛裕文.冶金熔体[M].北京:冶金工业出版社, 1994.
    [73] M. Kowalski, P. J. Spencer and D. Neuschütz. Phase Diagrams [M]. in Slag Atlas, 2nd Edition, edited by Verein Deutscher Eisenhüttenleute (VDEh), Verlag Stahleisen GmbH, Düsseldorf, Germany, 1995.
    [74]李辽沙,于学峰,余亮,等.转炉钢渣中磷元素的分布[J].中国冶金, 2007, 17(1): 42-45.
    [75]李辽沙,于学峰,武杏荣,等.不同稳定化处理转炉钢渣中磷元素的分布[J].金属矿山, 2006, 10: 78-89.
    [76] H. Suito and R. Inoue. Behavior of Phosphorous Transfer from CaO–FetO–P2O5–(SiO2) Slag to CaO Particles[J]. ISIJ International, 2006, 46(2):1 80-187.
    [77] S. Fukagui, T. Hamano and F. Tsukihashi. Formation Reaction of Phosphate Compound in Multi Phase Flux at 1573K[J]. ISIJ International, 2007, 47(1): 187-189.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700