氨喷雾相变冷却传热特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
喷雾相变冷却作为高效的强化换热方式,通过喷嘴或喷嘴阵列将冷却工质破碎成大量粒径介于几十至几百微米的微小液滴以高速冲击换热面形成薄液膜,依靠介质相变蒸发带走大量热量的一种相变冷却技术。其具有换热性能强、热流密度大、工质需求量少、冷却均匀等优点,被广泛认为是大功率固态激光器及集成电路元件最有效、最有前景的冷却方式。尤其在航天航空、激光技术以及国防工业这些具有高热流密度散热需求的前沿技术领域中逐渐成为不可缺少的冷却手段,尤其对当前高功率激光器阵列散热条件的苛刻要求,喷雾相变冷却不仅能满足冷却表面温度低,而且温度分布均匀性要好。喷雾相变冷却过程是一个极其复杂的能质传输过程,对传热机理有待进一步的研究。本文主要针对高热流密度大功率固体激光器二极管阵列的散热需求,搭建喷雾相变冷却实验系统,实验段采用压力式双喷嘴阵列和气助式单喷嘴,以液氨作为冷却工质,氮气作为辅助气体,对25 mm×12 mm的冷却热表面进行喷雾相变冷却实验研究。设计搭建了包括单液式回路和气、液两相回路的实验系统,设计加工了加热棒加热器和薄膜电阻加热器作为模拟热源。采用换热面积内接于喷雾底面圆条件下,喷嘴口与换热面的垂直距离作为各工况下的喷淋高度,分析了不同喷淋流量下冷却表面传热特性以及温度分布规律;通过调节背压阀改变喷淋室压力,重点研究了在高热流密度散热需求下,不同液氨饱和蒸发压力下的喷雾相变冷却传热特性;以及在较高相变冷却饱和蒸发压力,进口流量对喷雾冷却传热特性的影响,并与常压条件下进行对比分析;进一步研究了不同结构的微小槽道对喷雾相变冷却的传热特性的影响,分析了不同流量、饱和蒸发压力和不同微槽结构表面的对喷雾换热性能的影响,并与光滑表面实验进行了对比分析。最后分析了气助式单喷嘴的雾化特性;当气相压力、流量一定时,研究了通过改变液相流量从而改变气液配比对氨喷雾相变冷却传热特性的影响,并与压力式单喷嘴实验进行对比分析,并研究了微结构强化对传热性能的影响。
     通过本文的研究所取得的主要研究成果如下:
     ①设计搭建了液氨作为冷却工质、氮气作为辅助气体,包括单液相和气液两相回路的喷雾冷却实验系统,设计和加工了满足高热流密度实验要求的两种模拟热源,即薄膜铂电阻加热器和加热棒加热器。
     ②在改变制冷剂流量而实验其它工况不变的条件下,当流量较大时,热传递的形式主要以强迫对流换热为主,温度低且分布均匀;随着流量减小,换热形式由强迫对流换热逐渐过渡到以沸腾换热为主的形式,热表面温度分布均匀性降低。
     ③随着液氨饱和蒸发压力增大,液氨汽化潜热降低有利于喷雾相变在较低热流密度下由单相强制对流换热向核态沸腾换热转变;在同一热流密度下,随着液氨饱和压力增加,热表面温度升高,过热度降低,换热系数增大,冷却能力得到大幅度提高。
     ④维持较高的饱和蒸发压力有利于传热系数提高,过热度降低;在流量较低时,有利于传热形式更早的进入核态沸腾换,在同一流量下,换热系数比常压条件下提高了51%。
     ⑤毛细微槽结构表面与光滑表面在同一工况条件下相比,能明显增强换热效果,喷嘴进口流量、饱和蒸发压力、微槽结构尺寸等因素对换热特性影响较大。
     ⑥采用气雾喷嘴,在气助力作用下喷雾相变冷却换热特性明显增强,气、液相配比对喷雾相变冷却换热特性影响较大;气相流量不变,随着液相流量增加,热表面温度降低,临界热流密度值增大。喷嘴种类及雾化特性对喷雾相变冷却换热特性影响较大,当实验工况维持不变时,气助式喷嘴与压力喷嘴相比冷却效率增大。在单相强迫对流换热过程中,毛细矩形微槽结构表面由于辅助氮气层的存在增加了传递过程的阻力,使单相强迫对流换热过程减弱,与光滑表面相比换热削弱。
Spray cooling is an efficient cooling technique by using the pressure/air atomizing nozzle to force a liquid stream through a small orifice, which produce a great dispersion of fine droplets. These droplets then impact a heated surface and take away large amounts of heat relying on evaporate. Spray cooling offer several advantages, such as strong heat transfer performance, high heat flux, less coolant, uniform temperature distribution, and so on. Spray cooling has been widely considered as the most effectivecooling technology for high-powered laser and integrated electronic component, furthermore, Spray cooling gradually became indispensable to aerospace, laser technology and defense industry demaned high heat flux cooling cutting-edge technology fields, especially in high power laser array cooling condition, which not only satisfy the low cooling surface temperature but better temperature distribution uniformity. Heat transfer mechanism of spray cooling is an extremely complex process and it needs to investigate further. In the present study, mainly aiming for the high-power solid laser diode array cooling demand, experiments have been performed to investigate the heat transfer of spray cooling with using ammonia as coolantant. The pressure atomization nozzles array and the gas-assisted single atomization nozzle were adopted to spray on the 25 mm×12 mm test surface, respectively. The main researches include: The system of spray cooling consists of the gas circuit and the liquid circuit thin-film resistors heater and cartrigde heaters act as the heating source. Experiments were performed to investigate heat transfer characteristics and surface temperature distribution for pressure atomization nozzle array at spray height of 10 mm. The heat transfer characteristics of the spray cooling were investigated under different ammonia saturation pressures, the effects of saturated vapor pressure and inlet flow rate on heat transfer characteristics were studied in detail. Furthermore, experiments were performed to evaluate heat transfer characteristics on micro-channel surface at low flow rate, different saturated evaporation pressure and micro-channel size, compared with the smooth surface experiment. The characteristics of the air atomization nozzle were estimated by using correlative theory research and experimental research. Experiments were performed to investigate heat transfer characteristics by changing the liquid flow, and gas phase flow remain unchanged, compared with the pressure single atomization experiment, Completed the micro-channel improved heat transfer surface experiment.
     The main research results are as follows:
     ①Spray cooling experimental system including gas and liquid circuit was constructed, using ammonia as coolantant and nitrogen as assisted gas. The thin film resistor and cartigde heater acted as the heater source to meet the experimental requirements of high heat flux level respectively.
     ②When keeping the lower heating power and spray height were constant, the heat transfer meachnism was mainly dominated by forced convective, and high inlet flow rates of liquid ammonia resulted in low surface temperature and uniform temperature distribution. The dominant heat transfer mechanism for spray cooling gradually converted forced convective heat transfer to the boiling with increasing heat flux, with the inlet volumetric flow decreasing, resulting in decreasing the uniform temperature distribution of heat transfer surface .
     ③Latent heat of ammonia decreased with the increasing saturation pressure, it was useful to promote the single-phase convection to convert to the nucleate boiling at the lower superheat temperature. The surface temperature and heat transfer coefficient increased with increasing the saturation pressure of ammonia, but the variation trend of the superheat reversed.
     ④Heat transfer coefficient was enhanced while superheat was reduced, when a high saturated vapor pressure was applied in the cooling system. A noticeable transition from forced convection heat transfer to nucleate boiling heat transfer was observed under lower flow rate. The heat transfer coefficient was 51% higher than that obtained under constant pressure.
     ⑤Micro-channel surface can significantly enhance the heat transfer coeffeicent compared with a smooth surface at the same conditions. Inlet flows of nozzle, saturated evaporative pressure and micro-structure sizes have great influence on the heat transfer characteristics.
     ⑥Performance of spray cooling wth using the gas-assisted single atomization is obviously increased by the gas assisted atomization to enhance the droplets speed and impact force. The surface temperature reduced and the critical heat flux values increased with the liquid flow increasing, when gas phase flow remained constant. When the experimental conditions remain unchanged, the spray cooling efficiency of using gas-assisted single atomization was superior to using the pressure atomization. In single-phase forced convective heat transfer process, more nitrogen kept stay in the bottom of the microchannel by the capillary force to form a thick gas layer which increased the heat transfer resistance, and led to the performance of spray cooling on the micro structure surface was worse than the performance of spray cooling on a smooth surface.
引文
[1]武德勇,高松信,吕文强等.激光二极管高效铜微通道冷却器设计[J].强激光与粒子束, 2004 , 16 (7) : 840-842.
    [2] Sehmbey M., Chow L., Pais M., et al. High heat flux spray cooling of electronics[C], In: 12th symposium on space nuclear power and propulsion, January 8–12, Albuquerque, NM, AIP conference proceedings, 1995, pp: 903-909.
    [3] Mudawar I..Assessment of high-heat-flux thermal management schemes[J], IEEE Transactions on Components and Packaging Technologies,2001(2): 122-141.
    [4]陶毓伽,淮秀兰,李志刚等.大功率固体激光器冷却技术进展[J].激光杂志, 2007 , 28 (2) : 11-12.
    [5] Lee D.J. Bubble Departure Radius under Mierogravity[M], Chem Eng Comm,1988, 175-189.
    [6] M. Janicki ,A. Napieralski ,Modelling electronic circuit radiation cooling using analytical thermal model[J] ,Microelectronics Journal ,2000 ,31 : 781-785.
    [7]马梦林,郭劲,杨高峰.高功率激光器光学元件冷却技术的研究[J].红外与激光工程, 2007 , 36 (1) : 86-88.
    [8] Yang J., Chow L. C., Pais M. R.. Nucleate Boiling Heat Transfer in Spray Cooling[J]. Journal of Heat Transfer, 1996,118:668-671.
    [9] Li B.Q.,Cader T.,Schwarzkopf J.,et al.Spray Angle Effect during Spray Cooling Of Microelectronics:Experimental Measurements and Comparison with Inverse Calculations[J]. Applied Thermal Engineering,2006,(26):1788-1795.
    [10] L. C. Chow , M. S. Sehembey , M. R. Pais. High heat fluxspray cooling [J] . Annul . Rev . Heat Trans f er , 1997 , ( 8 ) :291-318.
    [11]王霄,张惠中,丁国民等.聚丙烯塑料激光透射焊接工艺[J].中国激光, 2008 ,35 (3):466-471.
    [12] J . Kim. Spray cooling heat t ransfer : The state of t he art [ J ] .Int . J . Heat Flui d Flow , 2006 , 28 (4) : 753-767.
    [13]王亚青,刘明侯,刘东等.倾斜喷射时喷雾冷却无沸腾区换热特性[J].化工学报,2009,60(8):1912-1917.
    [14] Visaria M.,Mudawar I.Application of Two-phase Spray Cooling for Thermal Management of Electronic Devices[C].ITHERM 2008,275-283.
    [15] Tuckerman D.B.,Peace R.F.W.High-performance heat sinking for VLSI[J].IEEE Electron Device Lett.1981,2:126-129.
    [16] Pfhaler J,Harley J,Bau H et al.Gas and Liquid flow in small channels[J]. Micromechnicalsensors,actuator and Systerms.1991,DSC 32:49-60.
    [17] Pfhaler J,Harley J,Bau H.Liquid transport in micron and submicron channels[J]. Sensors Actuators.1990, 21-23.
    [18] Mala G M,Li D.Flow characteristics of water in microtubes[J].Int.J.Heat Mass Transfer.1999,20:142-148.
    [19] Papautsky I,Brazzle J,Ameel T et al.Laminar fluid behavior in microchannels using micropolar fluid theory [J],Sensors and Actuators,1999,73:101-108.
    [20] Ren L,Qu W,Li D.Interfacial electrokinetic effects on liquid flow in microchannels[J].Int.J Heat Mass Transfer.2001,44(31):25-34.
    [21] Jumemo Koo, clement Kleinstreuer.Liquid flow in microchannels: experimental bservations and computational analyses of microfluidics effects [J].J.Micromech. Microeng, 2003, 13:568-579.
    [22] X. F. Peng ,B. X. Wang. Forced convection and flow boiling heat transfer for liquid flowing through micro - channels [J], Int . J .Heat Mass Transfer , 1993 ,36 :3421-3427.
    [23] Youssef Rageey M.Modeling the Effect of a Spray on a Liquid Film on a Heated Surface[D].Morgantown West Virginia,2007,1.
    [24] Satish G.Kandlikar,Akhilesh V.Bapat.Evaluation of Jet Impingement,Spray and icrochannel Chip Cooling Options for High Heat Flux Removal[J].Heat Transfer Engineering, 2007,2(811): 911-923.
    [25] Fabbri,M.,Jiang et al.Experimental Investigation of Single-Phase Micro Jets Impingement Cooling for Electronic Applications[C]. ASME Summer Heat Transfer Conference, 2003,7:461-468.
    [26] M.R. Pais, M.J. Chang, M.J. Morgan and L.C. Chow. "Spray Cooling of High Power Laser Diodes." Paper presented at the 1994 SAE Aerospace Atlanta Conference & Exposition. Dayton, Ohio. SAE, 1994. SAE Paper 94-183.
    [27] R.K. Sharma, C.E Bash, C.D. Patel. "Experimental Investigation of Heat Transfer Characteristics of Inkjet Assisted Spray Cooling"[C]. ASME Heat Transfer/Fluid Eng,Summer Con f. HT-FED04-56183. Ed. Hp. labs. Charlotte, NC, US: ASME, 2004.
    [28] Daniel.Rini. Advanced Liquid Cooling of Electronics Workshop. PPT ,May 13, 2003
    [29] Kim J.Spray Cooling Heat Transfer:The State of The Art[J].International Journal of Heat and Fluid Flow,2007,Vol.28(4):753-767.
    [30] Bar C.,A.,Arik M.,Ohadi M.Direct Liquid Cooling of High Flux Micro and Nano Electronic Components[J].Proceedings of the IEEE,2006,Vol.94(8):1549-1570.
    [31] Kim Jungho.Spray Cooling Heat Transfer:The State of The Art[J]. International Journal of Heatand Fluid Flow,2007,28(4):753-767.
    [32] F.P.Incropera,D.P Dewitt. Fundamentals of Heat & Mass Transfer [C]. 5th ed. New York:John Wley & Sons,2002.
    [33] Kaveh Azar.”Advanced Cooling Concepts and Their Challenges.”Ed. WWW.qats.com.2002. Advanced Thermal Solutions,Inc.
    [34] Mudawar, I., Bowers, M.B., Ultra-high critical heat flux (CHF) for subcooled water flow boiling - I: CHF data and parametric effects for small diameter tubes, International Journal of Heat and Mass Transfer[J]. 1999 (8):1405-1428.
    [35] Hall, D.D., Mudawar, I., Ultra-high critical heat flux (CHF) for subcooled water flow boiling - II: High-CHF database and design equations, International Journal of Heat and Mass Transfer[J]. 1999 (8):1429-1456.
    [36] Tuckerman, D.B., Pease, R.F.W.. HIGH-PERFORMANCE HEAT SINKING FOR VLSI, Electron device letters[J]. 1981 (5):126-129.
    [37] Qiu Y.-H., Liu Z.-H.. Critical heat flux of steady boiling for saturated liquids jet impinging on the stagnation zone[J]. International Journal of Heat and Mass Transfer, 2005, (21-22):4590-4597.
    [38] Kamata, C., Experimental study on boiling heat transfer with an impinging jet on a hot block[J], Heat Transfer - Asian Research. 1999,(5):418-427.
    [39] J. Yang, L. Chow, M. Pais, Nucleate boiling heat transfer in spray cooling[J]. ASME J. Heat Transfer, 1996,118: 668-671.
    [40] Mudwar I.,Estes K.A.Optimizing and Predicting CHF in Spray Cooling of a Square Surface[J].International Journal of Heat Transfer,1996,111:672-679.
    [41] Lin L.,Ponapean R. . Heat Transfer Characteristics of Spray Cooling in a Closed Loop[J].International Journal of Heat and Mass Transfer,2003,46:3737-3746.
    [42] J.S.Coursey, J.Kim, K.T.Kiger. SPRAY COOLING OF HIGH ASPECT RATIO OPEN MICROCHANNELS[C].Thermal and Thermomechanical Phenomena in Electronics Systems, 2006. ITHERM '06. The Tenth Intersociety Conference, 2006,188-194.
    [43] D.P.Rini, J.P.Kizito, L.C.Chow. SPRAY COOLING WITH AMMONIA ON MICRO-STRUCTURED SURFACES[C]. Thermal and Thermomechanical Phenomena in Electronic Systems, 2008. ITHERM 2008. 11th Intersociety Conference on. 2008,290-295.
    [44] E.A.Silk, J.Kim, and K.Kiger. Spray Cooling of Enhanced Surfaces: Impact of Structured Surface Geometry and Spray Axis Inclination[J].International Journal of Heat and Mass Transfer, 2006, 49(25-26): 4910-4920.
    [45] J.R.Rybicki, I.Mudawar. Single-Phase and Two-Phase Cooling Characteristics ofUpward-Facing and Downward-Facing sprays[J]. International Journal of Heat and Mass Transfer, 2006, 49(1-2): 5-16.
    [46] K.A.Estes, I.Mudawar. Correlation of Sauter Mean Diameter and Critical Heat Flux for Spray Cooling of Small Surfaces[J]. International Journal of Heat and Mass Transfer, 1995, 38(16): 2985-2996.
    [47] C.C.Hsieh, S.C.Yao. Evaporative Heat Transfer Characteristics of a Water Spray on Micro-Structured Silicon Surfaces[J].International Journal of Heat and Mass Transfer, 2006, 49(5-6): 962-974.
    [48]朱卫英,李维仲.液滴撞击固体表面的可视化实验研究[J].制冷及低温工程.大连:大连理工大学, 2007.62.
    [49] Francois M, Shyy W. COMPUTATIONS OF DROP DYNAMICS WITH THE IMMERSED BOUNDARY METHOD, PART 2: DROP IMPACT AND HEAT TRANSFER[J]. Numerical Heat Transfer, Part B: Fundamentals 2003,44:119-143.
    [50] Chen R.H., Chow L.C., Navedo J.E.. Effects of spray characteristics On critical heat flux in subcooled water spray cooling[J]. International Journal of Heat and Mass Transfer,2002, 45:4033-4043.
    [51] I.Mudawar K.A.Estes.Optimizing and Prediction CHF in spray Cooling of a Square Surface[J]. Journal of heat transfer ,1996,118-121.
    [52] Kim J.. Spray cooling heat transfer: The state of the art[J]. Int. J. Heat Fluid Flow,2007,28(4):753-767.
    [53] Schwarzkopf, J., Cader, T., Okamoto, K., Li, B.Q., Ramaprian, B., 2004.Effect of spray angle in spray cooling thermal management of electronics[C]. In: Proceedings of the ASME Heat Transfer/Fluids Engineering Summer Conference, Charlotte, NC, pp. 423-431.
    [54] Eric A. Silk et al..Spray cooling of enhanced surfaces: Impact of structured surface geometry and spray axis inclination[J]. International Journal of Heat and Mass Transfer ,2006,49:25-26.
    [55] A Marcos, Louis C Chow, Jian-Hua Du. Spray Cooling At Low System Pressure[C]. 18th IEEE SEMI-THERM Symposium, 2002, 18:169-175.
    [56] Grissom W M, Wierum F A. Liquid Spray Cooling of a Heated Surface[J]. International Journal of Heat and Mass Transfer, 1981, 24:261-271.
    [57] L Lin , R Ponnappan. Heat transfer characteristics of evaporative spray cooling in a closed loop[J]. International Journal of Heat and Mass Transfer, 2003, 46:3737-3746.
    [58] Kelly Michael. "New Power Technologies Clear Path to Tactical Directed Energy Weapons" [M].AFMC News Service Release. 8/July 2003. 2/4/2005.
    [59] Rini. " Design and Fabrication of an Apparatus to Measure the Effects of Large Accelerationson Two-Phase Spray Cooling"[D]. Masters Thesis. UCF, 1997.
    [60] NAVED J.E.. Parametric effects of spary characteristics on spray cooling heat transfer Department of Mechanical Engineering[D]. University of Central Florida, orlando, 2000.
    [61] Toda, S.. STUDY OF MIST COOLING - 2. THEORY OF MIST COOLING AND ITS FUNDAMENTAL EXPERIMENTS[J]. Heat Transfer - Japanese Research,1974,(1):1-44.
    [62] Toda, S.. STUDY OF MIST COOLING (1ST REPORT: INVESTIGATION OF MIST COOLING)[J].Heat Transfer - Japanese Research, 1972,(3):39-50.
    [63] Monde, M.. CRITICAL HEAT FLUX IN THE SATURATED FORCED CONVECTION BOILING ON A HEATED DISK WITH IMPINGING DROPLETS[J]. Heat Transfer–JapaneseResearch, 1979,(2):54-64.
    [64] D. E.Tilton, C., L. C.; Mahefkey, E. T. High Power Density Evaporative Cooling[C].AIAA, Thermophysics Conference 22nd, Honolulu, HI, 1987.
    [65] NAVED, J.E..Parametric effects of spary characteristics on spray cooling heat transfer Department of Mechanical Engineering[D]. University of Central Florida, orlando, 2000.
    [66] Rini, D.P., Chen, R.-H., and Chow, L.C. Bubble Behavior and Nucleate Boiling Heat Transfer in Saturated FC-72 Spray Cooling[J]. Journal of Heat Transfer, 2002,124:63-72.
    [67] Yoon-ho Kim.Chihwan Choi. Kyu-jung Lee ?.Donghyouck Han. Experimental study of spray cooling performanceon micro-porous coated surfaces[J]. Heat Mass Transfer ,2009, 45:1285-1292.
    [68] J.H.Kim,S.M.You,Stephen U.s.Choi. Evaporative spray cooling of plain and microporous coated surfaces[J].International Journal of Heat and Mass Transfer,2004,47: 3307-3315.
    [69] Huseyin Bostanci, Benjamin A. Saarloos, Daniel P. Rini. Spray cooling with ammonia on micro-structured surfaces[J].IEEE,2008,290-295.
    [70] Huseyin Bostanci, Benjamin A. Saarloos, Daniel P. Rini. Spray Cooling With Ammonia on Microstructured Surfaces:Performance Enhancement and Hysteresis Effect[J].Journal of Heat Transfer,2009, 14(1):1-9.
    [71]孙少鹏,王宏等人.喷淋高度对氨喷雾相变冷却特性的影响[J].工程热物理学报, 2010, 31(4):675-278.
    [72] Sehmbey M.S., Pais M.R., Chow L.C.. Effect of surface material properties and surface characteristics in evaporative spray cooling[C]. In: AIAA/ASME 5th Joint Thermo-physics and Heat Transfer Conference, 1990,AIAA 90,17-28.
    [73] Coursey J., Kim J., Kiger K.T.. Spray cooling of high aspect ratio open micro channels[C]. In: Proceedings of ITHERM ,2006, San Diego, CA.
    [74] Kim J.H., You S.M., Choi U.S.. Evaporative spray cooling of plain and micro porous coatedsurfaces[J]. International Journal of Heat and Mass Transfer,2004,47:3307-3315.
    [75] Stodke C., Stephan P..Spray cooling heat transfer on micro structured surfaces. In: 6th World Conference on Experimental Heat Transfer[C], Fluid Mechanics and Thermodynamics, Matsushima, Miyagi, Japan,2005.
    [76] Hsieh C.C., Yao S.C.. Evaporative heat transfer characteristics of a water spray on micro-structured silicon surfaces[J]. International Journal of Heat and Mass Transfer,2006,49:962-974.
    [77] Amon C., Yao S.C., Wu C.F., Hsieh C.C.. Micro -electromechanical system-based evaporative thermal management of high heat flux electronics[J]. Journal of Heat Transfer ,2005,127:66-75.
    [78]余其挣.辐射换热原理[M].哈尔滨,哈尔滨工业大学出版社,2000, 3-15.
    [79] J.C. Maxwell, A Treatise on Electricity and Magnetism[M]. Claredon Press, Oxford, 1873, 365-369.
    [80] J. P. O,Connor,S. M. You,D. C. Price.A.Dielectric Surface Coating Technique to Enhance Boiling Heat Transfer from High Power Microelectronics[J].IEEE Transactions on Components,1995,18(3):656-663.
    [81] J.Y.Chang, S.M.You.Enhanced Boiling Heat Transfer from Micro-porous Surfaces:Effects of a Coating Composition and Method[J].Int.J.Heat Mass Transfer,1997,40(18):4449-4460.
    [82] Bostanci, H., Saarloos, B.A., Rini, D.P., et al.. Spray cooling with ammonia on micro-structured surfaces: Performance Enhancement and Hysteresis Effect[J]. J .Heat Mass Transfer , 2009 ,131(7):1-7.
    [83] Glassman B S. Spray cooling for land, sea, air and space based applications: a fluid management system for multiple nozzle spray cooling and a guide to high heat flux heater design[D]. Florida:University of Central Florida Orlando, 2004, 86-90.
    [84]杨世铭,陶文铨,编著.传热学[M].高等教育出版社,1998.20-21.
    [85] Moffat, R.J.. DESCRIBING THE UNCERTAINTIES IN EXPERIMENTAL RESULTS, Experimental[J] Thermal and Fluid Science[J]. 1988(1):3-17.
    [86] M.Ghodbane, J.P.Holman.Experimental study of spray cooling with Freon-113[J] .International Journal of Heat and Mass Transfer,1991,34(4/5):1163-1174
    [87] Qiao.Y.M.,Chandra.S.Spray Cooling Enhancement by Addition of A Surfactant [J].Journal of Heat transfer,1998,Vol.120:92-98.
    [88] Gorenflo D., Chandra U., Kotthoff C., Luke A. Influence of thermophysical properties on pool boiling heat transfer of refrigerants[J]. Int. J. Refrigeration, 2004, 27:492-502
    [89] http://cn.spray.com/[EB/OL].

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700