竖管内溴化锂溶液降膜蒸发传热性能的数值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为直接高效利用低温烟气余热驱动溴化锂吸收式制冷机,需要强化烟气侧和溶液侧对流传热系数,竖管内降膜式发生器可同时满足这两个要求。一方面,通过在传热管外加装翅片强化烟气侧对流传热;另一方面,溶液呈膜状在管内流动,传热系数远高于池内沸腾。降膜式发生器烟气侧传热系数可以通过已有的实验关联式进行计算,本文采用数值方法对液膜侧传热性能进行分析。
     本文在定热流加热情况下,根据溴化锂水溶液液膜在层流状态下流动、传热的特点,建立了溴化锂水溶液竖管内降膜蒸发过程的速度、温度和浓度分布方程,用外节点法对流动区域进行离散,用有限差分法对方程进行离散,用三对角矩阵法对方程进行求解,得到了降膜管入口溶液流量、浓度、热流密度等参数对降膜蒸发传热性能的影响。
     在模拟范围内,溴化锂水溶液层流降膜蒸发传热系数随降膜管入口溶液的流量、浓度的增大而降低、加热热流密度和操作压力的增大而增大,其中入口溶液的流量即液膜的厚度对蒸发传热系数的影响最为显著;水蒸汽质量流量随热流密度和管长的增大而增大,溶液入口浓度、操作压力对水蒸气质量流量和放汽范围的影响不明显。
     通过对影响降膜蒸发传热的因素的量纲分析,结合数值计算的结果,拟合得到在Re≤1000时,无量纲传热系数表达式: h * = 0.5039Re~(-0.258) Pr~(0.215)
     模拟得到的传热系数比Chun采用单一成分工质降膜蒸发得到的结果小20%左右,一方面是由于传质不利于液膜的传热,另一方面由于模拟中忽略了液膜表面波动对传热强化作用,导致传热系数偏低。
     对热负荷相同的降膜式和沉浸式发生器进行热力计算,其中,降膜式发生器液膜侧传热系数采用拟合得到的关联式进行计算。性能对比表明,降膜式发生器在传热系数、传热管重量上有显著的优势。
For making the absorption refrigeration system driven directly by low temperature waste gas heat more efficient. The heat transfer coefficient on both gas and solution sides should be enhanced, these two conditions can be satisfied by vertical in-tube falling film generator. On the one hand, by installing fins on outside of heat transfer tube, the convective heat transfer coefficient of gas side was enhanced; on the other side, the heat transfer coefficient of falling film is higher than pool evaporation. The heat transfer coefficient of gas side can be calculated by existing experimental correlation, and the heat transfer coefficient was analyzed by numerical method in this thesis.
     In this thesis, the heat flux is assumed to be constant, based on flow and heat transfer characters of laminar lithium bromide solution falling film, the temperature, velocity and concentrition distribution equations were established. The discrete methods of the falling film cross section and equation are outer node method and finite difference method, TDMA method was used to solve the difference equation. The influence of inlet solution mass flux, concentrition and heat flux et al on heat transfer coefficient was analyzed.
     Heat transfer coefficient increases with the increasing of inlet solution mass flux, heat flux and operation pressure, and the heat transfer coefficient decreases with the increasing of inlet solution concentrition. The thickness of the falling film is main factor which influence on heat transfer coefficient. Steam mass flux increase with the increase of heat flux and tube length, the influence of inlet solution concentration and presassure on steam mass flux and deflation ratio is not obvious.
     By dimensional analysis of the factors which influence on heat transfer coefficient and combining the results of mathematical calculation, using multiple linear regression method, an experimental correlation of falling film heat transfer coefficient is obtained, h * = 0.5039Re~(-0.258) Pr~(0.215)
     The simulation result is about20% less than the result obtained by Chun. The main reasons are as follows, on the one hand, heat transfer is restricted by mass transfer; on the other hand, the film surface wave which can enhance the heat transfer coefficient is neglected.
     The average temperature difference method was used to do thermodynamic calculation on falling film generator and submerged generator. The heat load of falling film generator is equal to submerged generator. Based on thermodynamic calculation results, the comparison of falling film generator with immersed tube generator on heat transfer coefficient, weight of heat transfer component shows that the falling film generator has great advantages.
引文
[1]董素霞,岳用亮,黄贺,吸收式制冷机在节能减排形势下的应用[J],制冷与空调,2008, 8(3):99-104.
    [2]王中铮,郑实,开发利用工业余热于溴化锂吸收式制冷[J],节能,1997,6:28-30.
    [3]陶玉灵,金苏敏.柴油机废烟气驱动的热管LiBr制冷剂的火用分析[J],南京工业大学学报,2002.24(3):38-41.
    [4]刘振乾,吸收式制冷机[M],北京,机械工业出版社,1993:106.
    [5]谢仲华.吸收式制冷机的原理及应用[M],北京,水利电力出版社,1993:76.
    [6] Nusselt, W. Die. Oberflachen kodensation des Wasserdamqfes[J]. Zeitschrift Verein Deutscher ingenieure, 1916, 60:541-546 and 569-575.
    [7] Slesarenko V N, Thermal desalination of seawater in thin film plants[J]. Desalination, 1983, 45:295-302.
    [8] H Struve, Heat Transfer to an evaporating falling refrigerant film[C]. 12th Congress of the International Institute of Refrigeration. Madrid. 1967.
    [9] K. R. Chun, R. A. Seban. Heat transfer to evaporating liquid film[J]. ASME Journal of Heat transfer, 1971, (9):371-396.
    [10] Fujita T, T Ueda. Heat transfer to evaporation liquid films[J]. Journal of Heat Transfer, 1971, (93):391-396.
    [11] N. E. Fagerholm et. al, Int. Energy Eng[J]. Helsinki Uni. Tech. Finland.1985.3.
    [12] J. A. Shmerler and I. Mudawwar.Local heat transfer coefficient in wavy free-falling turbulent liquid films undergoing uniform sensible heating[J]. International. Journal. of Heat and Mass Transfer, 1988, 31(1):67-77.
    [13] Damman.J.Dissertation Braunschweig[J].International. Journal. of Heat and Mass Transfer.,1973, 81:482.
    [14] A.Miyara, Numerical analysis on flow dynamics and heat transfer of falling liquid films with interfacial waves[J], Heat and Mass Transfer 1999(35):398-306.
    [15] A E Dukler, Characterization effects and modeling of wavy gas-liquid interface[J], Progress in Heat and Mass Transfer, 1972(6):207-234.
    [16] M. EI Haj Assad, Markku J. Lampinen, Mathematical modeling of falling liquid film evaporation process[J], International Journal of Refrigeration, 2002(25):985-991.
    [17] Seong Ho Kil, Sang Soo Kim, Seung Kap Lee, Wave characteristics of falling liquid film on a vertical circular tube[J], International Journal of Refrigeration, 2001(24):500-509.
    [18] G. Schnabel, E. U. Schlunder. J. Heat Transfer[J]. ASME.1974, 96: 253.
    [19] A. Asblad and T. Berntsson. Surface evaporation of turbulent of falling films[J] .Int.J. Heat Mass Transfer. 1991.34(3): 835-841.
    [20] Schlunder, E. U. Heat transfer in nucleate boiling of mixtures[J], International Journal of Chemical Engineering, 1983, 23(4):589.
    [21] A Asad, T Berntsson[J], International Journal of Heat and Mass Transfer, 1992,34:835.
    [22] K M Berntsson, Dissertation, Chalmer[M] Uni. Tech, Swedan,1986:251.
    [23] Feng Zhang, Dong-Lei Tang, Jiao Geng, Zhi-Xiang Wang, Zhi-Bing Zhang, Study on the temperature distribution of heated falling liquid films[J], PHYSICA D, 2008 (237):867-872.
    [24]师晋生,施明恒,恒热流竖壁降膜发展段流动换热分析[J],热能动力工程, 1998, 75:93-195.
    [25]师晋生,施明恒,下降液膜层流换热发展段中的积分分析[J], 2000(17):54-59.
    [26]赵起等.化学工学论文集[C].1980.6(5): 481.
    [27]孙平,林载祁,引入蒸汽对垂直管内降膜蒸发传热及流动的影响[J],化学工程, 1993.21(5):15-19.
    [28]邓鸿,林载祁.垂直管内降膜蒸发传热系数[C].中国海水淡化与水的利用学会第三届论文报告会.1987.
    [29]叶学民,阎维平,切应力下的层流饱和蒸发降膜流动和传热模型[J].华北电力大学学报,2007.34(3):41-44.
    [30]叶学民,阎维平,切应力下的层流饱和蒸发降膜的传热特性[J].中国电机工程学报,2007. 27(11):68-72.
    [31]刘升,郝英立,竖直管内降膜流动气液两相运动数值模拟[J],热科学与技术, 2008, (7):5-10.
    [32] U. Gropp, G. Schnabel and E.U. Schlunder, Effect of liquid-side mass transfer resistance on selectivity during partial evaporation of binary mixtures in a falling film[J], International Chemical Engineering, 1983, 23(1) :11–17.
    [33] Palen J W, Qi Wang, et al. Falling film evaporation of binary mixture[J], AICHE Journal,1994,(40):207.
    [34]齐和发,沈吟秋,影响水平管降膜蒸发传热性能的因素[J],高校化学工程学报, 1995.9(3):270-274.
    [35]廖运文,赵玉萍,热管式降膜吸收器波动降膜传热传质过程模拟[J].西华师范大学学报(自然科学版),2004, 25(4): 429-433.
    [36] RU Y and B A D. A numerical solution of the wavy motion on a falling liquid film[J], J of Chem. Eng, 1991, 69(6):723-728.
    [47]杨景昌,张国喜,党洁修.热管式降膜吸收器的传热传质[J].高校化学工程学报,1997,11(2):126-130.
    [38]新川正.化学工学论文集[C].1991.6 (5): 481.
    [39] Hoke, Bryan. C., John. C., Mass transfer in evaporating falling liquid film mixtures[J]. AICHE Journal. 1992. 38(5): 781-787.
    [40]王永福,周荣琪,段占庭.二元混合物降膜蒸发的数值模拟[J],化工学报, 2002(53):946-950.
    [41]王长庆,陆震,降膜式发生器的传热传质研究[J],同济大学学报2001, 29(8):907-913.
    [42]王长庆,陆震,溴化锂降膜式发生器的强化传热研究[J],流体机械, 2000.28.5, 57-60.
    [43]王长庆,虞洁莉,用螺旋槽管强化溴化锂降膜式发生器传热传质的研究[J],制冷与空调, 2004, 4(6):23-26.
    [44]胡慧丽,竖管内二元溶液降膜蒸发传热传质数值研究[D],重庆大学,2006:37.
    [45]徐灿君,竖管内溴化锂溶液降膜蒸发传热性能数值模拟及实验研究[D],重庆大学,2007:42.
    [46]宫世吉,不同浓度溴化锂溶液层流降膜传热性能实验研究[D],重庆大学,2008:28-41.
    [47]贾明生,溴化锂水溶液的几个主要物性参数计算方程[J],湛江海洋大学学报.2002,22(3):52-58.
    [48]刘晖,康勇,新的水饱和压力与饱和温度计算方法[J],压缩机技术,2005,6:26-28.
    [49]阮复昌,陈烈强,罗运禄,邓颂九,溴化锂水溶液分子扩散系数的理论求算[J],制冷,1992, 2:15-18.
    [50] Hartley D E, Murgatroyd W. Criteria for the break-up of thin liquid layers flowing isothermally over a solid surface[J], International Journal Heat Mass Transfer. 1964, 38(7):1003-1008.
    [51] Erich.et.al,Flow dynamics and heat transfer of a condensate film on a vertical wall---I.Numberical analysis and flow dynamics[J], International Journal of Heat and Mass Transfer,Vol.36,No.6,pp1677-1688.
    [52]王建平,朱天复,谢仲华.溴化锂水溶液小雷诺数下降膜吸收的传热传质[J].浙江大学学报,1985,19(4):71-82.
    [53] T. Ueda and H. Tanaka, Measurements of velocity, temperature and velocity fluctuation distributions in falling liquid films[J], International Journal of Multiphase Flow, 1975, 2:261-272.
    [54] Arijit Bose, Harvey J. Palmer. Influence of heat and mass transfer resistances on the separation efficiency in molecular distillations[J]. Ind. Eng. Chem. Fundam. 1984. 23:459-465.
    [55]李德虎,垂直管降膜蒸发传热研究回顾[J],化工装备技术,1994,15(3):44-47.
    [56]杨世铭,陶文铨,传热学[M],北京,高等教育出版社,2007, 315.
    [57] Stephan Leuthner, Alexander Harun Maun, Heat and mass transfer in wavy falling films ofbinary mixtures[J],Int. J. Therm. Sci.1999, 38, 937–943.
    [58] Minton.P.E, Handbook of Evaporation Tecnology[M], Noyes Publications, Park Ridge,NJ(1986).
    [59]吴存真,刘光铎,热管在热能工程中的应用[M],北京:水利电力出版社,1993:111.
    [60]戴永庆,溴化锂吸收式制冷技术及应用[M],北京:机械工业出版社,2001:94.
    [61]李春胜,黄德斌.金属材料手册[M],化学工业出版社,2005:587-588. .

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700