液态金属及纳米流体流动和传热特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着传热技术和材料应用的发展,人们对于材料传热性能的要求逐渐提高,寻找传热性能好的载热材料已经成为必然的趋势。液态金属较好的流动和传热特性,已经成为了解决此问题的关键之一,而由于纳米流体的广泛应用,作为当代的高新技术之一,纳米流体有较广泛的应用前景。但是在强化传热和复杂流动中的机理仍没有进行过深入的研究,在实际应用中还有一定的困难。
     鉴于纳米技术表现出的强大生命力和在热科学领域中潜在的广阔应用前景,本文主要研究了以液态金属及其纳米流体为换热介质,运用商业软件,考虑运用单相流体模型、DPM模型和E-E模型,研究其在强制对流、自然对流情况下的流动和换热效果。
     在强制对流的工况条件下,经模拟计算表明:液态金属镓的流动和传热特性明显的高于相同条件下水的流动和传热特性,而加入了纳米级颗粒的液态金属纳米流体流动和传热的特性也明显的高于相同条件下的液态金属流体,其中选用不同的模型如单相流体模型、DPM模型、E-E模型得到的流动和传热结果仍有一定的区别。
     在自然对流的工况条件下,经模拟计算表明:液态金属流体三维的流动和换热的特性与简化的二维的模型模拟的流动和换热的特性基本一致,而加入纳米级颗粒的纳米流体流动和换热的基本特性与纯液态金属的流动和换热特性其趋势是基本一致的,而且在一定条件下传热效果明显增加,随着格拉晓夫数的增加,他们的流动和换热的特性也有较大幅度的变化,由开始以导热为主,变为对流换热占据了较大的比例。
With the development of heat transfer and material application, it has been a trend that we need a kind of material with a good heat carrying ability. Liquid metal has a good heat transfer characteristic, so it has been a key point to this problem. However, the research, especially the investigation on flow and heat transfer characteristics of nanofluids is just at its outset and far from being understood.
     In view of the fact that the power of the nanotechnology and its many potential applications in the thermal science, the flow and heat transfer characteristics of nanofluids are numerically investigated under the forced convection and natural convection conditions with a commercial software using the single phase model, DPM model and E-E model in this thesis.
     Under the forced convective condition, the results show that the characteristic of liquid metal fluid is better than water in flow and heat transfer under the same condition. Moreover, the characteristic of liquid metal nanofluids is more better than liquid metal fluid in flow and heat transfer. At the same time using the single phase model, DPM model and E-E model, the results are a bit different.
     Under the natural convective condition, we obtained the flow field, vector field and temperature field in 2D and 3D models. Both results are almost identical. Therefore we can perform the simulation work using a 2D model instead of a 3D model. For the liquid metal nanofluid, it has a similar trend in the flow and heat transfer characteristic, but it can enhance the natural convective heat transfer under a special condition. With increasing the Gr number, the flow and heat transfer characteristics of the fluids change greatly from conduction to convection.
引文
1马坤全,刘静.纳米流体研究的新动向.物理. 2007,36(4): 295-300
    2 S. LEE, S. U. S. Choi, S. LI. Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles. Journal Heat Transfer.1999, 121: 280-289
    3谢华清,奚同庚,王锦昌.纳米流体介质导热机理初探.物理学报. 2003, 52(6): 1444-1449
    4戴闻亭,李俊明,王补宣.细圆管内氧化铜颗粒悬浮液流动与对流换热的实验研究.工业加热. 2002, 31(5): 1-4
    5宣益民,余凯,吴轩等.基于Lattice-Boltzmann方法的纳米流体流动与传热分析.工程热物理学报. 2004, 5(6): 1021-1024
    6蔡艳华,马冬梅,王金刚.纳米流体的制备及传热性能研究的现状.材料研究与应用. 2007, 12(4): 275-276
    7宣益民,李强.纳米流体强化传热.工程热物理学报. 2000, 21(4): 467-469
    8吴金星,曹玉春,李泽.纳米流体技术研究现状与应用前景.化工新型材料. 2008, 10(10): 10-11
    9宣益民,李强.纳米流体强化传热研究.中国工程热物理学会传质传热学学术会议论文集.镇江, 1999: 60-65
    10吴轩,宣益民.基于晶格-Boltzmann的纳米流体的流动和传热模型.中国工程热物理学会传质传热学学术会议论文集.上海, 2002: 100-115
    11 Z. S. Hu,J. X. Dong. Study on Antiwear and Reducing Friction Additive of Nanometer Titanium Oxide. Wear. 1998, 216: 92-96
    12谢华清,奚同庚,王锦昌.纳米流体介质导热机理初探.物理学报. 2003, 52(6): 1444-1449
    13谢华清,奚同庚.纳米流体导热系数研究.上海第二工业大学学报. 2006, 26(3): 200-203
    14宣益民,李强.纳米流体强化传热研究.工程热物理学报. 2000, 2l(4): 466-470
    15 J. A. Eastman,S. U. S. Choi, S. LI. Enhanced Thermal Conductivity through the Development of Nanofluids.Ma-ter Res Soc Symp Proc. 1997, 475: 3-11
    16李强.纳米流体强化传热机理研究.南京理工大学博士学位论文. 2004: 10-15
    17 P. Keblinski, S. R. Phillpot, S. U. S. Choi. Mechanisms of Hear Flow in Suspensions of Nanosized Particles(Nanofluids). Inrernational Journal of Heat and Mass Transfer. 2002, 45: 855-863
    18 J. A. Eastman, S. U. S. Choi, S. Li, S. Lee. Enhanced Thermal Conductivity through the Development of Nanofluids. Nanophase and Nanocomposite Materials Pittsburgh. 1997: 3-11
    19 S. Lee, S. U. S. Choi, S. Li, J. A. Eastman. Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles. J. of Heat Transfer. 1999, 121: 280-289
    20 J. A. Eastman, S. U. S. Choi, S. Li. Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles. Applied Physics Letters. 2001, 78(6): 718-720
    21 B. C. Pak, Y. L. Cho. Hydrodynamic and Heat Transfer Study of Dispersed Fluids with Submicron Metallic Oxide Particles. Experimental Heat Transfer. 1998, 11(2): 51-70
    22 X. W. Wang, X. F. Xu, S. U. S. Choi. Thermal Conductivity of Nanoparticle-Fluid Mixture. Journal of Thermophysics and Heat Transfer. 1999, 13(4): 474-480
    23 P. Keblinski, S. R. Phillpot, S. U. S. Choi, J. A. Eastman. Mechanisms of Heat Flow in Suspensions of Nano–Sized Particles(Nanofuids). J Heat Mass Transfer. 2002, 45(4): 855-863
    24刘辉,李茂德.纳米流体传热强化技术.应用能源技术. 2007, 10: 32-36
    25刘静,周一欣.中国发明专利. 02131419.5. 2002
    26 http://www.chinamaterials.net/News_ Print.asp NewsID =673
    27 http:// info.ec.hc360.com /HTML /001 /66290-2.htm
    28 S. Burns. Metal-Cooled Computing. Technology Review. 2005, 6(22): 50-61
    29 W. Knight. Hot Chips Chilled with Liquid Metal. New Scientist. 2005, 11(21): 80-91
    30 K. Q. Ma, J. Liu. Physics. LettersA. 2007, 361: 252
    31 Y. R. He, Y. B. Men, Y. H. Zhao. Numerical Investigation into the Convective Heat Transfer of TiO2 Nanofluids Flowing through a Straight Tube under the Laminar Flow Conditions. Applied Thermal Engineering. 2009, 29(10): 1965-1972.
    32于勇. Fluent入门与进阶教程.北京理工大学出版社. 2008: 36-43
    33陶文铨.数值传热学(第二版).西安交通大学出版社. 2001: 10-24.
    34周陆军,宣益民,李强.纳米流体多相流动的多尺度模拟方法. 2009, 11: 850-854
    35冯踏青.液态金属高温热管的理论和试验研究.浙江大学博士学位论文. 1998:
    36 D. Gidaspow. Multiphase flow and fluidization: continuum and kinetic theory description. Academic Press. San Diego. 1994
    37徐哲.纳米流体在内燃机冷却系统中的应用.大连理工大学硕士论文. 2007: 30-35
    38 B. X. Wang, L. P. Zhou, X. F. Peng. A Fractal Model for Predicting the Effective Thermal Conductivity of Liquid with Suspension of Nanoparticles. Int J Heat Mass Transfer. 2003, 46: 2665-2672
    39 W. Yu, S. U. S. Choi. The Role of Interfacial Layers in the Enhanced Thermal Conductivity of Nanofluids: a Renovated Hamilton-Crosser Model. J Nanoparticle Res. 2004, 6: 355-361
    40 Y. Xuan, Q. Li, W. Hu. Aggregation Structure and Thermal Conductivity of Nanofluids. AICHE J. 2003, 49: 1038-1043
    41 D. H. Kumar, H. E. Patel, V. R. R. Model for Heat Conduction in Nanofluids. Phys. Rev.Lett.2004, 93: 4301-4304
    42 W. Yu, S. U. S. Choi. The Role of Interfacial Layers in the Enhanced Thermal Conductivity of Nanofluids:A Renovated Hamilton-Crosser Model. J Naoparticle Res. 2004, 6: 355-361
    43 S. M. S. Murshed, K. C. Leong, C. Yang. Effective Thermal Conductivity and Viscosity of Nanofluids. 4th Integrated Nanosystems: Design, Synthesis and Applications Conf, Berkeley California, USA, 2005: 14-16.
    44 Q. Z. Xue. Model for Effective Thermal Conductivity of Nanofluids. Phys.Lett.A. 2007, 307: 313-317
    45 W. E. Langlois. Buoyancy-Driven Flows in Crystal-Growth Melts. Ann Rev. Fluid Mech. 1985, 17: 119-125
    46张华俊,陈浩,王俊等.冷、热端温度对半导体热电堆发电性能影响的初步研究.太阳能学报. 2001, 22(2): 148-152
    47 B. Pan, M. S. Thesis. Louisiana State University. 1997: 30-35
    48 S. Chandrasekhar. Hydrodynamic and Hydromagnetic Stability. Dover. New York. 1981: 32-40
    49 B. Xu, B. Q. Li. Hot-Film Measurement of Temperature Gradient Induced Natural Convection in Liquid Gallium. Experimental Thermal and Fluid Science. 2005, 29: 697-704
    50 B. Pan, D. Y. Shang, B. Q. Li. Magnetic Filed Effects on G-jitter Induced Flow andSolute Transport. International Journal of Heat and Mass Transfer. 2002, 45: 125-144
    51 J. I. D. Alexander, J. Ouazzani, F. Rosenberger. Analysis of the Flow Gravity Toleration of Bridgman-Stockbarger Crystal GrowthⅡ: Transient and Periodic Accelerations. J Cryst Growth. 1989, 97: 285-302
    52杨世铭,陶文铨.传热学.高等教育出版社. 1998: 178-190
    53 M. G. Braunsfurth, A. C. Skeldon, A. Juel. Free Convection in Liquid Gallium. J Fluid Mech. 1997, 342: 295-314
    54 G. Barkos, E. Mitsoulis. Natural Convection Flow in a Square Cavity. Int J Numerical Methods in Fluids. 1994, 18: 695-701

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700