穹窿管内油水两相流流动特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要针对穹窿管内油水两相流流动特性问题,首先进行了数值模拟,初步认识穹窿管内的油水两相流,然后设计了阵列电导探针测量和平行弦丝电导探针测量相结合的方法来检测穹窿管中油水两相流流型和相含率,对弦丝探针电导信号进行了统计分析,采用非线性分析方法研究了穹窿管内油水两相流的流动特性,并提取了穹窿管内不同位置处的含水率,得到以下结论:
     1.采用CFD方法对穹窿管内油水两相流中分层流和分散流进行了数值模拟。结果表明,对于穹窿管内的分层流,在穹窿管的上升段油相堆积,持水率较小,在穹窿管的下降段水相堆积,持水率较大,穹窿管的顶部为持水率由小到大的过渡阶段;对于穹窿管内的分散流,在穹窿管内各处都是分散的,当含水率小于20%或大于80%时,可以观察到较为清晰的油泡边界或水泡边界,即分散流的瞬态数值模拟效果较好。
     2.进行了穹窿管内油水两相流动态实验,对于管内油水两相流不同流型,弦丝探针输出信号波形呈现出不同的特点,从而依据各弦丝探针信号波动特征,实现了对油水两相流流型的有效辨识。通过实验观察和弦丝探针信号分析,可以清晰的说明穹窿管内油水两相流的流动特点和CFD瞬态数值模拟结果较为一致,表明CFD方法是可靠的,有助于对油水两相流流动过程的研究,也证明了弦丝探针敏感于油水两相流流动的变化,可用于油水两相流的研究中。
     3.采用混沌吸引子形态描述的方法对穹窿管内油水两相流进行了研究,对不同流型的吸引子形态进行了描述,应用二维吸引子形态特征量对油水两相流流型进行了分类,结果表明,利用二维特征量能够较好的将各种流型区分开。
     4.基于穹窿管内油水两相流弦丝探针测量结果,总结了提取油水两相流持水率的方法,并提取了管内不同位置持水率,从另一侧面反映了穹窿管内油水两相流的流动特性。
Aiming at the oil-water two-phase flow characteristic problems in the serpentine channel, firstly, we carry the numerical simulation to initially understand the oil-water two-phase flow, and then, design the mini-conductance array probes and parallel wire conductivity probes measurement method to detect the flow pattern and volume fraction of the oil-water two-phase flow in the serpentine channel, analyze the conductance signals of parallel wire conductivity probe, study the flow characteristics of the oil-water two-phase flow using nonlinear analysis, extracted the volume fraction at different locations of the serpentine channel, and achieve the following conclusions:
     1. We use the CFD method to simulate the stratified flow and dispersed flow of the oil-water two-phase flow in the serpentine channel. The results show that regarding the stratified flow, the oil phase accumulates, and the holdup of water is small in the ascent part; the water phase accumulates ,and the holdup of water is big; the holdup of water transits from small to big on the top of the serpentine channel. Regarding the dispersed flow, each phase is scattered, when volume fraction is less than 20% or greater than 80%, a clearer oil boundary or blister boundary can be observed, which means the simulation of the dispered flow is better.
     2. We conduct a oil-water two-phase flow dynamic experiment in the serpentine channel. Different two phase flows have different output signal waveforms. So, flow patterns can be identified through the different conductance fluctuating signals of the parallel wire conductivity probes. Based on the experimental observation and the analysis of the probe signals, we can conclude that the results of experiment and CFD simulation are very similar and consistent, and the CFD simulation has been proven to be reliable for the research of the oil-water two-phase flow. Also, parallel wire conductivity probe is proved to be sensitive to the changes of the oil-water two-phase flow, so it can be used for the study of oil-water two-phase flow.
     3. We study the oil-water two-phase flow by the method of chaotic attractor morphological description, classify the different flow patterns by the attractor morphological characteristic quantity in two dimensions. The results show that the method of attractor morphological description has a good identification of two-phase flow patterns.
     4. Base on the different conductance fluctuating signals of the parallel wire conductivity probes, we summarize the different methods of the volume fraction measurement, and extract the volume fraction at the different positions of the channel.
引文
[1]郑之初,吴应湘,李东晖,海底管道油气混输关键设备的实验研究,中国海上油气(工程),1999,11:24~27
    [2]郭烈锦,高晖,国际多相流流动的研究动向,第2届国际多相流动与传输现象学术会议,2000:54~58
    [3]李海青,多相流测试技术现状及趋势,多相流检测技术进展(第五届全国多相流检测技术学术会议论文集),杭州:石油工业出版社,1996
    [4] Russell T W F, Hodgson G W, Govier G W, Horizontal pipeline flow of mixtures of oil and water, Canadian Journal of Chemical Engineering, 1959, 37(1): 9~17
    [5] Trallero J L, Brill J P, A study of oil-water flow patterns in horizontal pipes, SPE 36609, 1996
    [6] Nadler M, Mewes D, Flow induced emulsification in the flow of two immiscible liquids in horizontal pipes, International Journal of Multiphase Flow, 1997,23(1): 55~68
    [7] Angeli P, Hewitt G F, Pressure gradient in horizontal liquid-liquid flows, International Journal of Multiphase Flow, 1998, 24: 1183~1203
    [8] Angeli P, Hewitt G F, Flow structure in horizontal oil-water flow, International Journal of Multiphase Flow, 2000, 26: 1117~1140
    [9] Brauner N, The prediction of dispersed flows boundaries in liquid-liquid and gas-liquid systems, International Journal of Multiphase Flow, 2001, 27: 885~910
    [10] Brauner N, Ullmann A, Modelling of phase inversion phenomenon in two-phase pipe flow, International Journal of Multiphase Flow, 2002, 28: 1177~1204
    [11]陈杰,于达,严大凡,油-水两相流流型转换研究,水动力学研究与进展,2003,18(3):355~364
    [12]陈杰,于达,严大凡,水平管内油-水两相流动压降规律的实验研究,实验力学,2001,16 (4):402~408
    [13] Liu W H, Guo L J, Wu T J, et al, An experimental study on the flow characteristics of oil-water two-phase flow in horizontal straight pipes, Chinese J. Chem. Eng., 2003, 11(5): 491~496
    [14]顾汉洋,高晖,郭烈锦,水平管油水两相分层紊流流动的数值研究,工程热物理学报,2003,24(5):810~812
    [15] Gao H, Gu H Y, Guo L J, Numerical study of stratified oil-water two-phase turbulent flow in a horizontal tube, International Journal of Heat and Mass Transfer, 2003, 46: 749~754
    [16]吴铁军,郭烈锦,刘文红等,水平管内油水两相流流型及其转换规律研究,工程热物理学报,2002,23 (4):491~494
    [17] Govier G.W., Sullivan G.A. and Wood R.K. The Upward Vertical Flow of Oil-Water Mixtures. The Canadian Journal of Chemical Engineering, 1961, April, 67~75
    [18] Jose G Flores, X Tom Chen, Cem Sarica, James P Brill:Characterization of oil-water flow patterns in vertical and deviated wells, SPE56108, 1999
    [19]钟兴福,黄志尧,吕鹏举等,125mm垂直圆管中油水两相流流型辨识研究,石油学报,2001,22(5):89~94
    [20]金宁德,聂向斌,任玉英等.垂直上升管中油水两相流流型辨识,工程热物理学报,2003,24(5):793~796
    [21] Lin R.H., Tavlarides L.L.,. Flow patterns of n-hexadecane-CO2 liquid-liquid two-phase flow in vertical pipes under high pressure. International Journal of Multiphase flow, 2009, 35: 566~579
    [22] Taitel Y , Shoham O. & Brill J.P. Transient two-phase flow in low velocity hilly terrain pipelines. Int. J. Multiphase flow, 1990, 16(1): 69~77
    [23] G Zheng, J P Brill & Y Taitel. Slug flow Behavior in a hilly terrain pipeline. Int. J. Multiphase Flow, 1994, 20(1): 63~79
    [24] Donata M. Fries, Severin Waelchli , Philipp Rudolf von Rohr. Gas–liquid two-phase flow in meandering microchannels. Chemical Engineering Journal, 2008,135: 37~45
    [25] D.M. Kirpalani , T. Patel , P. Mehrani , A. Macchi. Experimental analysis of the unit cell approach for two-phase flow dynamics in curved flow channels. International Journal of Heat and Mass Transfer, 2008, 51: 1095~1103
    [26] Hakan Dogan , Selman Nas , Metin Muradoglu. Mixing of miscible liquids in gas-segmented serpentine channels. International Journal of Multiphase Flow, 2009,35: 1149~1159
    [27]王妍,王树众等,地形诱导的弹状流生成特性研究,油气储运, 2003,22(11):49~52
    [28]苏新军,张修刚,王栋等,起伏管线中的多相流液弹发展特性研究,工程热物理学报,2003, 24(5):804~806
    [29]韩方勇,周晶等,多起伏地形下油气混输管道的水力特性,油气储运,2007,26(11):23~26
    [30]梁宏,起伏管路二相弹状流流动特性研究,硕士学位论文,天津大学,2003
    [31] Russell, et al, Horizontal pipeline flow of mixtures of oil and water, Canadian Journal of Chemical Engineering, 1959, 37(1):9~17
    [32] M. E. Charles, G. W. Govier, G. W. Hodgson, The horizontal pipeline flow of equal density oil-water mixture, Canadian Journal of Chemical Engineering, 1961, 39(2):27~36
    [33] S. Arirachakaran, K. D. Oglesby, M. S. Malinowski, An analysis of oil/waterphenomena in horizontal pipes, SPE Productions Operations Symp, SPE 18836, 1989
    [34]吴铁军,郭烈锦,刘文红等,水平管内油水两相流流型及其转换规律研究,工程热物理学报,2002,23(4):491~494
    [35]姚海元,宫敬,水平管内油水两相流流型转换特性,化工学报,2005,56(9):1649~1653
    [36]马龙博,张宏建,周洪亮等,基于Hilbert-Huang变换和支持向量机的油水两相流流型识别,化工学报,2007,58(3):617~622
    [37] P. Angeli, G. F. Hewitt, Flow structure in horizontal oil- water flow, International Journal of Multiphase Flow, 2000, 26:1117~1140
    [38] H. Shi, J. Cai, W. P. Jepson, Oil-water two-phase flows in large-diameter pipelines, Transactions of the ASME, 2001, 123(12):270~276
    [39]陈杰,孙红彦,梁志鹏等,水平管内油水两相流流型的实验研究,油气储运,2000,19(12):27~31
    [40] P. Angeli, G. F. Hewitt, Pressure gradient in horizontal liquid-liquid flows, International Journal of Multiphase Flow, 1998, 24:1183~1203
    [41] J. Lovick, P. Angeli, Droplet size and velocity profiles in liquid–liquid horizontal flows, Chem. Eng. Sci., 2004, 59(15):3105~3115
    [42] O. C. Jones, N. Zuber, Statistical methods for measurement and analysis in two-phase flow, 5th Int, Heat Transfer Conf, Science Council[C], Japan, 1974
    [43] M. G. Hubbard, A. F. Dukler, The characterization of flow regimes for horizontal two-phase flow, Proceedings of the Heat Transfer and Fluid Mechanics Institute, 1966, 100~121
    [44]郑桂波,金宁德,两相流流型多尺度熵及动力学特性分析,物理学报,2009, 58(7): 4485~4492
    [45]孙斌,周云龙,水平管内空气-水两相流流型的混沌特征,哈尔滨工业大学学报,2006,38(11):1963~1967
    [46]孙斌,张宏建,岳伟挺,HHT与神经网络在油气两相流流型识别中的应用,化工学报,2004,55(10):1723~1727
    [47]金宁德,刘兴斌等,垂直上升管中油水两相流流型表征,化工学报,2001,52(10):907~915
    [48]宗艳波,金宁德,吕剑等,油水两相流流型混沌吸引子形态特性,化工学报,2008,59(4):851~858
    [49]赵鑫,金宁德,李伟波,油水两相流相含率的软测量方法,化工学报,2005, 56(10):1875~1879
    [50] Hirt C. W. and Nichols D. B.. Volume of fluid(VOF) method for the dynamics of free boundaries. J. Comput. Phys., 1981, 39: 201~225
    [51] Noh W F, Woodward P. SLIC in van Dooren A I and Zandberger P J. Lecture Notes in Physics, 1982, 59:273~285
    [52] Cook M, Behnia M. Bubble motion during inclined initermittent flow. International Journal of Heat Flow, 2001, 22:543~551
    [53] Puckett E G, Almgren A S, Bell J B. A high-order projection method for tracking fluid interface in variable density incompressible flows. Compute Phys, 1997, 130:269~282
    [54] Youngs D L. Time-dependent multi-material flow with large fluid distortion. New York:Academic, 1982:273~285
    [55] Ubbink O, Issa R I. A method for capturing sharp fluid interfaces on arbitrary meshes. Compute Phys, 1999, 153:26~50
    [56] Hong F W. A new free surface reconstruction method in VOF. Journal of Ship Mechanics, 1999, 3(3):8~13
    [57]沙海飞,周辉,多孔溢洪道泄流三维数值模拟,水利水电技术,2005,10:45~49
    [58]李然,李宏,李嘉,气液两相流理论在明渠水气界面计算中的应用,水动力学研究与进展,2002 ,17 (1):77~83
    [59]李维仲,赵大勇等竖直流道宽度对气泡运动行为影响的数值模拟,计算力学学报,2006, 2:70~75
    [60]姚朝辉,叶宏开,王学芳,空泡溃灭水锤的VOF计算方法[J ],原子能科学技术,1995,29 (1):20~26
    [61] Launder B E, Spalding D B, Lectures in Mathematical Models of Turbulence. London: Academic Press, 1972
    [62]吕宇玲,陈振瑜,杜胜伟等,电导探针测量气液两相流持液率的研究,计量测试,2003,208~211
    [63] Jana A.K, Das G, Das P.K, Flow regime identification of two-phase liquid-liquid upflow through vertical pipe, 2006, 61:1500~1515
    [64]王海琴,水平管油-水两相和油-汽-水三相流动特性研究:[博士学位论文],山东;中国石油大学,2008
    [65] Takens F., Determing strang attractors in turbulence [J].Lecture note in Math, 1981, 898:361~381
    [66] Annunziato, M., Abarbanel, H.D.I., 1999. Nonlinear dynamics for classification of multiphase flow regimes, Proceedings of International Conference on Soft Computing, SOCO, Genova, Italy
    [67] F.X. Llauro,M.F. Llop Characterization and classification of fluidization regimes by non-linear analysis of pressure fluctuations, International Journal of Multiphase Flow 32 ,2006 ,1397~1404
    [68]肖楠,金宁德,基于混沌吸引子形态特性的两相流流型分类方法研究,物理学报,2007,56(9):5149~5156
    [69]宗艳波,金宁德,吕剑等,油水两相流流型混沌吸引子形态特性,化工学报,2008,59(4):851~858
    [70] M.Fossa,Design and performance of a conductance probe for measuring the liquid fraction in two-phase gas-liquid flows. Flow Measurement and Instrumentation, 1998, 9: 103~109
    [71] M.Merilo.et al, Void fraction measurements with a rotating electric field conductance gauge, J.Heat Transfer, 1977, 99: 330~332
    [72] J.C.Asali.et al, Interfacial drag and film height for vertical annular flow. AICHE J, 1985, 31: 895~902
    [73] G.P.Lucas, J.C.Cory, R.C.Waterfall, A six-electrode local probe for measuring solid velocity and volume fraction profiles in solid-water flows, Meas.Sci.Technol, 2000, 11: 1498~1509
    [74]薛国民,沈毅,电容、短波发测量三相流含水率研究,油气田地面工程,2008,27(10):11~12
    [75] Maytinee Vatanakul, Ying Zheng(Canada), Michel Couturier, Application of Ultrasonic Technique in Multiphase Flows, Ind. Eng. Chem. Res. 2004, 43: 5681~5691
    [76]刘继承,刘兴斌,庄海军等,非集流油水两相含率超声波测量方法的实验研究,测井技术,2005,29(5):453~456
    [77]邢荣亮,基于差压测量方法的油水两相流流动特性研究:[硕士学位论文],天津;天津大学,2006
    [78]王宝春,利用压差式密度计确定含水率的方法,大庆石油地质与开发,1984,3(2):285~290

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700