单个气泡在静水中近壁区域运动规律的图像测量研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水气两相流动是自然和工程领域中一种重要的流动现象,水利及许多工业及工程领域若干关键问题都涉及近壁水气两相流动的研究。然而由于测量手段的限制,对气泡在静水中近壁附近运动规律的研究还很不充分,本文结合高等学校博士学科点专项科研基金项目,应用数字图像处理与分析技术,研究上升气泡与倾斜壁面的相互作用问题,初步探讨了气泡的变形,气泡在壁面附近的反弹,滑移,黏附的特性和规律。主要研究内容和成果有:
     (1)设计了试验系统。为了获得高质量的图像,通过对白炽灯、发光二极管、卤素灯和激光等多种光源的分析和实拍比较,确定采用发光二极管作为光源,设计和制作了二极管阵列光源板。通过设置大的稳压气胎和微调节阀,成功实现了等间隔释放均匀气泡。
     (2)分析比较了多种数字图像处理方法的优缺点,结合气泡图像的特点,为符合常规首先对气泡图像求反,图像的预处理确定采用静止背景析出法,即将气泡求反后的图像减去利用静止背景析出法生成的背景后得到的图像,在图像预处理时利用静止背景析出法生成的背景比以往使用相机拍摄直接得到的背景要好;而图像的处理即气泡的提取则采用作者所编程序,利用最大类间方差阈值分割法对图像进行阈值分割。最大类间方差阈值分割法不受气泡图像的直方图是否具有明显双峰的影响,为自动取阈值法,同时从分割的实际效果来看,最大类间方差阈值分割法也比其他方法要好,因此,本文最终选定最大类间方差阈值分割法为本文阈值确定方法对图像进行二值化处理。
     (3)试验获得了气泡的变形、气泡的运动轨迹、气泡沿倾斜壁面切向的上升速度以及在倾斜壁面法向上的反弹速度等参数。分析了气泡在壁面上黏附、滑移和反弹的特性和规律。
     (4)结果表明:当壁面水平放置时,气泡黏附在壁面上;气泡在壁面倾斜角度大于零时即开始沿壁面滚动滑移。当气泡沿倾斜壁面运动时,其形状和大小不断改变,当气泡质心与壁面的距离小于其半径时,此时气泡的变形随着壁面倾斜角度的增大而减小,气泡与同一壁面碰撞前后的变形随时间的变化是先由小到大然后再减小直至形状基本恢复;气泡沿倾斜壁面切向的上升速度随着倾斜角度的增大而单调增大,气泡在倾斜壁面上的反弹速度变化幅度也随着倾斜角度的增大而单调增大。
Two-phase flow is an important flow phenomenon in nature and engineering field, several key issues are involved about two-phase flow in near-wall region with water conservancy and many industry and engineering field. However, limited by means of measurement, the research on the bubble motion law in near-wall region in stationary water is for from enough. Combined with Research Fund for the Doctoral Program of Higher Education, the interaction with rising bubble and inclined wall is studied by the use of digital image processing technique and analysis, preliminary study on the condition and regularity of bubble deformation、bubble adhesion、sliding and rebound along wall is done. The main contents of the studies and achievements are as follows:
     (1) The design of experimental system. In order to obtain high quality image, light emitting diode was selected as light source after a lot of analysis and test such as incandescent lamp、light emitting diode、halogen lamp and laser, then the diode array light plate was designed and manufactured .By setting big steady voltage air tire and micro regulation valve, the equal time-interval releasing of uniform bubble was successful.
     (2) Combined with the characteristics of bubble image ,advantages and disadvantages of a series of digital image processing method was analyzed and compared. The complementary operation of bubble image was applied in order to accord with the custom firstly, Application of static background liberation method was used in Pre-process of image, the complementary operation image is subtracted by the background which was produced by static background liberation method. It is better to use the background which was produced by static background liberation method than the background which was picture by using digital camera when doing image pretreatment; and the existed program is adopted for bubble extracting, maximum between-class variance method was used in algorithm of image segmentation. maximum between-class variance method was not effected by image histogram with double peak. It is called maximum-square-error method. Meanwhile, it has a better effect than other in actual application result. Finally maximum between-class variance method was applied to segment image in this paper.
     (3) From the test, some parameters such as bubble deformation、bubbles movement tracks、bubble rising velocity slipping along inclined wall tangential and rebounded speed in normal direction were obtained. The condition and regularity of bubble adhesion、sliding and rebound along wall is analyzed.
     (4) The results showed that: the bubble adhered to the wall when the wall placed horizontally; it began to roll and slide when the wall was inclined, meanwhile, the bubble size and shape changed unceasingly. When the distance of its center to the walls is less than its radius, the deformation reduced with the increasing of inclination angle. The variations of deformation of bubble hitting the same wall with time was first decrease and then increase, then decrease again and recovered to the normal at last; The variations of rising velocity of bubble along inclined wall was increased with the increasing of inclination angle. The variations of rebounded velocity of bubble along inclined wall was increased with the increasing of inclination angle.
引文
[1]周睿,冯顺山.气泡帷幕对水中冲击波峰值压力衰减特性的研究[J].工程爆破,2001,7(2):13-17.
    [2]郭殿杰.多相流测量在石油工业中的应用前景[J].国外仪器仪表,1997,(2):5-9.
    [3]陈先朴,西汝泽,邵东超,柴恭纯.掺气减蚀研究的新方向[J].水利水电技术,2001,32(10):13-16.
    [4]纪延俊,王洪刚,齐爱学.水中气泡半径测量的理论推导[J].滨州师专学报,2003,19(2):51-53.
    [5]Malic N A,Dracos Th,Papantoniou D A.Particle tracking velocimetry in three dimensional flows,PartⅡ[J].Experimenting fluids,1993,15(4-5):279-294.
    [6]许联锋,廖伟丽,陈刚,李建中.稀疏气泡流动的粒子跟踪测速技术研究[J].水利学报,2005,36(7):825-829.
    [7]Y.Murai,Y.Matsumoto,F.Yamamoto,Three-Dimensional Maesurement of Void Fraction in a Bubble Plume using Statistic Stereoscopic Image Processing[J].Experiments in Fluids,2001,30(1):11-21.
    [8]Chen Gang,Xu Lian-feng,Shao Jian-bin,Yang yong-quan,Dai Guang-qing:Digial Image Measurement of Bubble Motion in Aerated Water Flows[J].Journal of Hydrodynamics,Ser.B.2002,14(3):44-48.
    [9]C.Crowe,M.Sommerfeld,Y.Tsuji,Multiphase Flows with Droplets and Particles[M].CRC Press,1998.
    [10]槐文信,童汉毅,邹东明.关于气泡羽流积分模型中的两个问题[J].武汉水利电力大学学报,2000,33(3):38-42.
    [11]许唯临,王韦,谭立新,杨永全.水工水气两相流的数值模拟[J].水动力学研究与进展,2001,16(2):225-229.
    [12]王海云,戴光清,杨永全等.高水头泄水建筑物侧墙掺气减蚀特性研究[J].四川大学学报(工程科学版),2006,38(1):38-43.
    [13]刘超,杨永全.龙抬头明流泄洪洞反弧段下游边墙防蚀探讨[J].水利水电技术,2003,34(9):26-28.
    [14]Kodama Y,et al.A Full-Scale Experiment on Microbubbles for Skin Friction Reduction Using Seiun-Maru,Partl:The Preparatory Study[J].SOC of Naval Architects of Japan,2002,192:1-13(in Japanese).
    [15]E E Zukoski.Influence of Viscosity,Surface Tension,and Inclination Angle on the Motion of Long Bubbles in Closed Tubes[J].Fluid Mech.,1966,25(4):821-837.
    [16]Maxworthy T.Bubble Rise Under an Inclined Plate[J].Fluid Mech.,1991,22(9):659-674.
    [17]J Masliyah,R Jauhari,M Gray.Drag Coefficients for Air Bubbles Rising Along an Inclined Surface[J].Chem.Eng.Sci.,1994,49(12):1905-1911.
    [18]H K Tsao,D L Koch.Observations of High Reynolds Number Bubbles Interaction with a Rigid Wall[J].Phys.Fluids,1997,9(1):44-56.
    [19]Shosho C E,Ryan M E.An Experimental Study of the Motion of Long Bubbles in Inclined Tubes[J].Chem.Eng Sci.,2001,56(60):2191-2204.
    [20]Ashihara M,Kitagawa A,Mural Y,et al.Discussion on Wall Inclination Effect on Drag of Single Wall-Sliding Bubble[R].Osaka:81st Fluid Mechanics Section Symposium of JSME,2003:208.
    [21]章毓晋.图象工程上册-图象处理和分析[M].清华大学出版社,1999.
    [22]马椿年.摄影用光实践[M].北京:中国摄影出版社,1999:7.
    [23]陈祖茂,郑冲,冯元鼎.用于测定多相流体系内气泡特性的微型电导测针[J].石油化工,1994,23(1):46-50.
    [24]T Brattberg,H Chchanson,L Toombes.Experimental investigations of free-surface aeration in the developing flow of two-dimensional water jets[J].Journal of Fluids Engineering.1998,120(4):738-744.
    [25]连桂森.多相流动基础[M].杭州:浙江大学出版社,1989.
    [26]Yassin A.Hassan,Javier Ortiz-Villafuerte,William D.Schmidl.Three-dimensional measurement of single bubble dynamics in a small diameter pipe using stereoscopic particle image velocimetry[J].??International Journal of Multiphase Flow,2001,27(5):817-842.
    [27]郭烈锦.两相和多相流体动力学[M].西安:西安交通大学出版社,2003.
    [28]盛森之,徐月亭等.九十年代的流动测量技术[M].北京:北京大学出版社,1993.
    [29]E Delnoij,J A M Kuipers,W P M van Swaaij,J Westerwee.Measurement of gas-liquid two-phase flow in bubble columns using ensemble correlation PIV[J].Chemical Engineering Science,2000,55(17):3385-3395.
    [30]阮晓东,宋向群,山本富士夫.基于BICC算法的PIV技术[J].试验力学,1998,13(4):514-519.
    [31]王希麟,张大力,常辙,何裕.两相流场粒子成像测速技术(PTV-PW)初探[J].力学学报,1998,30(1):121-125.
    [32]李会雄,周芳德,陈学俊.水平管内气水两相旋流的速度测量与分析[J].工程热物理学报,1996,17(Suppl.):207-210.
    [33]戴光清,杨永全,吴持恭.掺气射流水气两相流测试研究[J].四川联合大学学报(工程科学版),1997,1(I):1-6.
    [34]李玲,徐忠.方管内气固两相流动速度的LDV测量[J].试验力学,1998,13(2):267-272.
    [35]盛森之,徐月亭,袁辉清.近十年来流动测量的新发展[J].力学与实践,2002,24(5):1-14.
    [36]杜斯特F,默林F,怀特洛J H.激光多普勒测速技术的原理和实践[M].沈熊,许宏庆,周作元译.北京:科学出版社,1992.
    [37]赵志洲,赵玉华,张晓春,李晓萍.微粒速度与尺寸同时测量的技术[J].黑龙江矿业学院学报,1999,9(2):36-39.
    [38]朱友益,张强,王华军等.测试浮选柱液-气两相流中气泡的流速分布[J].北京科技大学学报, 1999,21(2):114-118.
    [39]Tricia A,Waniewski,Christopher Hunter,etc.Bubble measurement downstream of hydraulic jump[J].International Journal of Multiphase Flow,2001,27(7):1271-1284.
    [40]J.R.Kadambi ect.Particle size using Particle Image Velocimetry for two-phase flow[J].Powder Technology,1998,100(2-3):251-259.
    [41]A.L.Tassin,D.E.Nikitopoulos.None-intrusive of measurements of bubble size and velocity[J].Experiments in fluids,1995,19(2):121-132.
    [42]Masanobu Maeda,Tatsuya Kawaguchi and Koichi Hishida.Novel interferometric measurement of size and velocity distribution of spherical in fluid flows[J].Meas.Sci.Technol,2000,11:13-18.
    [43]车得福,林宗虎,陈学俊.气泡在垂直向上流动液体中的形成[J].西安交通大学学报,1994,28(2):97-102.
    [44]周洁,周立伟,崔玉林,周爱月.用CCD摄像法测量下喷环流反应器内的气泡行为[J].化学工业与工程,1996,13(2):7-15.
    [45]王恒,张永泽,李嘉.数字图像处理技术在固一液两相流试验中的应用[J].动力学研究与进展,1999,14(2):210-218.
    [46]冷何英,戴俊钊.高精度图象测量系统中的细分方法[J].光电工程,1999,26(增刊):111-115.
    [47]张金全,张国英,樊寄松等.红外窗口整流罩气动加热对红外热图像测量影响试验研究[J].红外技术,2001,3(2):32-34.
    [48]孙云飞,赵长德,何克忠.利用图象测量技术的摊铺机实时定向测量系统[J].光电工程,2000,27(4):39-41.
    [49]王建民,浦昭邦,刘国栋.提高图像测量系统精度的细分算法的研究[J].光学精密工程,1998,4(6):44-50.
    [50]吴晓波,杨永琴.图像测量技术的新应用[J].光学精密工程,1998,6(3):10-16.
    [51]Hrode,Sommerfeld M.A PW/PTV system for analyzing turbulent bubbly flow[J].Experiments in fluids,2000,28(3):202-207.
    [52]王希麟等.两相流场粒子成像测速技术((PTV-PIV)初探[J].力学学报,1998,30(1):121-125.
    [53]盛森之,徐月亭等.90年代的流动测量技术[M].北京:北京大学出版社,1993.
    [54]Niels G Deen.Two-phase PIV bubbly flows:Status and trend[J].Experiments in fluids,2002,33(2):225-230.
    [55]"Gad-el-Hak M.The fluid mechanics of microdevices the freeman scholar lecture[J].Journal of Fluids Engineering,1999,121(3):5-33.
    [56]Compton D A,Eaton J K.A high-resolution laser Doppler anemometer for three-dimensional turbulent boundary layers[J].Experiments in Fluids,1996,22(2):111-117.
    [57]Meinhart C D,Wereley S T,Santiago J G.Micro-Resolution velocimetry techniques,in Adrain R J,Durao D F G,Durst F,etal,eds[J].Laser Techniques Applied to Fluid Mechanics,Berlin: Springer-Verlag,2000:57-70.
    [58]Leu T S,Lanzillotto A M,Amabile M,et al.Analysis of fluidic and mechanicalmotions in ME-MS by using high speed x-ray micro-imaging techniques[R].Chicago:International Conference on Solid-State Sensors and Actuations,1997:149-150.
    [59]Maynes D,Webb A R.Velocity profile characterization in sub-millimeter diameter tubes using molecular tagging velocimetry[J].Experiments in Fluids,2002,32(1):3-15.
    [60]Paul P H,Garguilo M C,Rakestraw D J.Imaging of pressure and electrokinetically-driven flows through open capillaries[J].Analytical Chenrfatry,1998,70(13):2459-2467.
    [61]Wereley S T,Gui L.Santiago C D.Advanced algorithms for microscale particle image velocimetry[J].AIAA Journal,2002,4(6):1047-1055.
    [62]Konig G,Anders K,Frohn A.A new light-scattering technique to measurethe diameter of periodically generated moving droplets[J].Aerosol.Sci,1986,17(2):157-167.
    [63]Glover A R,Skippon S M,Boyle R D.Interferometdc laser imaging for droplet sizing:a method for droplet-size measurement in sparse spiny systems[J].Appl.OPT,1995,34(36):8409-8421.
    [64]Hess C E Planar particle image analyzer[C],Paper Presented at the 9th International Symposium on Application of Laser Techniques to Fluid Mechanics.Lisbon,1998:1-18.
    [65]浦世亮,浦兴国,袁镇福,岑可法,Loic MEESZ,Dems LEBRUN2.激光干涉气液两相流测量图像自动辨读方法的研究[J].中国电机工程学报,2004,24(2):201-205.
    [66]Damaschke N,Nobach H,Tropea C.Optical limits of particle concenhation for mufti-dimensional particle sizing techniques in fluid mechanics[J].Experiments in Fluids,2002,32(2):143-152.
    [67]张鹏,周英彪,郑楚光,等(Zhang Peng,ZhouYmgbiao,Zheng Chguang,et al).喷钙脱硫下煤粉着火的实时全息干涉法分析(Reserchon coal pamicle ignition.in eject-calcium desulphurization by real-time holographic interference measuring)[J].中国电衫巨程学报(Proceedings of the CSEE),2003,23(1):181-184.
    [68]Malic N A,Dracos Th,Papantoniou D A.Particle tracking velocimetry in three-dimensional flows,PartⅡ[J].Experimenting fluids,1993,15(4-5):279-294.
    [69]Miller R S.Photographic observations of bubble formation in flashing nozzle flow[J].Trans.ASME,1985,107(2):750-755.
    [70]Yasumishi A.Measurement of behaviour of gas bubble;and gds holdup in a slurry bubble column by a dual eledmresistivity probe method[J].J.Chem.Eng,1987,19(5):444-449.
    [71]Randall E W.A method of determing the size of bubble in two and three phase systems[J].J.Phys.E.Sci.Iostnun,1988,22(3):827-833.
    [72]朱友益,张强,赵耿,雷明.一种测试浮选柱中气泡尺寸及含气率的方法[J].国外金属矿选矿,1996,(11):30-34.
    [73]许联峰.水气两相流动的数字图像测量方法及应用研究[D].西安:西安理工大学,2004.
    [74]付德胜,寿益禾.图形图像处理学[M].南京:南京大学出版社,2002.
    [75]赵荣椿.数字图象处理导论[M].西北工业大学出版社,1995:1.
    [76]Lee S,Chung S.A Comparative Performance Study of Several Global Thresholding Techniques for Segmentation[J].Computer Vision,Graphics,and Image Processing,1990,52(2):171-190.
    [77]Fliss Guamieri FM,Bancroft C.Making DNAAdd[J].Science,1996,27(3):220-223.
    [78]Yurke Bernard,Mills Jr Allen P,Cheng Siulai.DNA Implementation of Addtion in Which the Input Strands are Separate from the Operator Strands[J].Biosystems,1999,52(1):165-174.
    [79]Alexander Zaruba~(a,*),Dirk Lucas~*,Horst-Michael Prasser~b,Thomas Hohne~a.Bubble-wall interactions in a vertical gas-liquid flow:Bouncing,sliding and bubble deformations[J].Chemical engineering science,2007,62(6),1591-1605.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700