正渗透法水溶液脱盐研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
正渗透过程,与传统的脱盐方法相比,具有能耗低和回收率高的特点,因此成为脱盐领域非常有发展前景的膜分离方法。目前,正渗透已经应用在污水处理、食品加工和海水淡化领域,甚至在航空饮用水方面也有应用。正渗透依靠半透膜两侧的渗透压差作为传质动力,将纯水从料液一侧渗透通过半透膜进入汲取液一侧,整个过程不需要外加压力和较高的温度。与反渗透过程相似,半透膜是影响正渗透性能的非常重要的因素。理想中的正渗透膜既要有一层致密的活性层,还要有非常薄的支撑层,即在保证高脱盐率的同时,尽可能的减弱内浓差极化。如何制备一种合适的半透膜,成为本课题出发点。
     离子液体是一种新型的绿色溶剂,具有许多传统有机溶剂所不能比拟的优良特性,特别是在高分子聚合物中的应用。本论文根据离子液体特点,用它来处理反渗透膜,对膜表面进行改性,同时优化了相关操作条件。实验结果表明,当使用95%的[BMIM]Cl离子液体浸泡反渗透膜24小时后,反渗透膜的通量提高了20%左右,同时,将处理后的反渗透膜通过扫描电子显微镜(SEM)、原子力显微镜(AFM)、测接触角和膜表面ZETA电位等方法,进行膜结构和性能的表征。
     本论文还将反渗透膜的无纺布层进行了剥离,进一步减小了膜的厚度。实验中,分别将未处理的反渗透膜、离子液体处理后的反渗透膜、未处理的且剥离无纺布层的反渗透膜和处理后的且剥离无纺布层的反渗透膜用于正渗透过程,比较分析它们的渗透性能。实验结果显示,反渗透膜在经过[BMIM]Cl离子液体浸泡24小时,并且被剥离了无纺布层后,在正渗透过程中的膜通量由3.43L·m-2h-1升高到8.42L·m-2h-1。此外,实验还使用不同的半透膜对影响正渗透过程中的因素进行了讨论。
Forward osmosis is a novel water treatment process that potentially can be used as an alternative for both traditional desalination and brine disposal technologies due to its less energy requirement and high recovery. Its applications have been developed in various fields, such as wastewater treatment, pharmaceutical and juice concentration, and seawater desalination, and even for water recycle use in spacecraft. In a FO process, a solution of considerably high concentration (known as draw solution) is utilized to generate a hydrostatic osmotic pressure gradient across a semi-permeable membrane to extract freshwater from a feed solution, which is on the other side of the membrane. The FO process is based on the osmotic pressure as a driving force. As a result, it can operate without high pressures and high temperatures. Similar to the RO process, the semi-permeable membrane as the barrier plays an important role on the realization of FO. The desired characteristics of membranes for FO would be high density of the active layer for high solute rejection; a thin membrane with minimum porosity of the support layer for low internal concentration polarization. Therefore, it was a prime solution to search for an appropriate semi-permeable membrane for the FO progress.
     Ionic liquids, as new novel green solvents, have many unique properties in comparison with traditional organic reagents, especially its application in the polymer. In this paper, the ionic liquids were used to treat the RO membranes. The results show that the membranes treated with 95% [BMIM]C1 lead to an increase in permeation flux in RO. The treated membranes were tested by SEM, AFM, contact angle and zeta potential.
     In this paper, in order to minimize the effect of the internal concentration polarization in FO, the fabric layers of the treated membranes are removed. Comparison of the membrane performance in the FO process were carried out for the untreated membrane, the membrane treated with ILs, untreated membrane without fabric layer and treated membrane without fabric layer. The results of the experiment demonstrate that the treated membrane without fabric layer achieves a water flux from an initial value 3.43 L/m2h to 8.42 L/m2h. In addition, the influence factors of the FO process with different semi-permeable membranes were also studied and discussed.
引文
[1]D.K. Anderson. Concentration of Dilute Industrial Wastes by Direct Osmosis[D]. University of Rhode Island, Providence,1977
    [2]R.W. Holloway, T.Y. Cath, K.E. Dennett, A.E. Childress. Forward osmosis for concentration of anaerobic digester centrate[A]. In:Proceedings of the AWWA Membrane Technology Conference and Exposition[C]. Phoenix, AZ,2005
    [3]E.G. Beaudry, J.R. Herron. Direct osmosis for concentrating waste water[A]. In: Proceedings of the 27th International Conference on Environmental Systems[C]. Lake Tahoe,NV, July,14-17,1997
    [4]R.J. York, R.S. Thiel, E.G. Beaudry. Full-scale experience of direct osmosis concentration applied to leachate management[A]. In:Proceedings of the Seventh International Waste Management and Landfill Symposium(Sardinia'99)[C]. S. Margherita diPula, Cagliari, Sardinia, Italy,1999
    [5]E.G. Beaudry, K.A.Lampi. Membrane technology for direct osmosis concentration of fruit juices[J]. Food Technol.,44(1990)121
    [6]M.I. Dova, K.B.Petrotos, H.N. Lazarides. On the direct osmotic concentration of liquid foods. Part I. Impact of process parameters on process performance[J]. J. Food Eng., in press
    [7]M.I. Dova, K.B. Petrotos, H.N. Lazarides. On the direct osmotic concentration of liquid foods. Part Ⅱ. Development of a generalized model[J]. J. Food Eng., in press
    [8]B. Jiao, A. Cassano, E. Drioli. Recent advances on membrane processes for the concentration of fruit juices:a review[J]. J. Food Eng.63(2004):303-324
    [9]K.B. Petrotos, P.C. Quantick, H. Petropakis. A study of the direct osmotic concentration of tomato juice in tubular membrane-module configuration. I. The effect of certain basic process parameters on the process performance[J]. J. Membr. Sci.,150(1998)99-110
    [10]K.B. Petrotos, P.C. Quantick, H.Petropakis. Direct osmotic concentration of tomato juice in tubular membrane-module configuration. II. The effect of using clarified tomato juice on the process performance[J].J. Membr. Sci.,160(1999)171-177
    [II]K.B. Petrotos, H.N. Lazarides. Osmotic concentration of liquid foods[J]. J. Food Eng., 49(2001)201-206
    [12]K. Popper, W.M. Camirand, F. Nury, W.L. Stanley. Dialyzer concentrates beverages[J]. Food Eng.,38(1966)102-104
    [13]R.E. Wrolstad, M.R. McDaniel, R.W. Durst, N. Composition and sensory characterization of red raspberry juice concentrated by direct-osmosis or evaporation[J]. J. Food Sci., 58(1993)633-637
    [14]E.G. Beaudry, J.R. Herron, S.W. Peterson. Direct osmosis concentration of waste water: Final report[R]. Osmotek Inc., Corvallis, OR,1999
    [15]T.Y. Cath, S. Gormly, E.G. Beaudry ed al. Membrane contactor processes for wastewater reclamation in space. I. Direct osmotic concentration as pretreatment for reverse osmosis[J]. J. Membr. Sci.,257(2005)85-98
    [16]T.Y. Cath, V.D. Adams, A.E. Childress. Membrane contactor processes for wastewater reclamation in space. II. Combined direct osmosis, osmotic distillation, and membrane distillation for treatment of metabolic wastewater[J]. J. Membr. Sci.,257(2005)111-119
    [17]M. Flynn, J. Fisher, B. Borchers. An Evaluation of Potential Mars Transit Vehicle Water Treatment Systems[C]. NASA Ames Research Center, Moffett Field, CA,1998
    [18]R.E. Kravath, J.A. Davis. Desalination of seawater by direct osmosis[J]. Desalination, 16(1975)151-155
    [19]J.R. McCutcheon, R.L. McGinnis, M. Elimelech. A novel ammonia-carbon dioxide forward(direct) osmosis desalination process[J]. Desalination 174(2005)1-11
    [20]D. Cohen. Mixing moves osmosis technology forward[J/OL], Chemical Processing magazine, October 2004. http://www.chemicalprocessing.com/articles/2004/346.html
    [21]P.P. Bhatt. Osmotic drug delivery systems for poorly soluble drugs[DB/OL]. Pharma Ventures Ltd., Oxford, UK,2004. http://www.shirelabs.com/news/11 30 04.pdf
    [22]F. Theeuwes, S.I. Yum. Principles of the design and operation of generic osmotic pumps for the delivery of semisolid or liquid drug formulations[J] Ann. Biomed. Eng., 4(1976)343-353
    [23]J.C. Wright, R.M. Johnson, S.I. Yum. DUROS(?) osmotic pharmaceutical systems for parenteral & site-directed therapy[J]. Drug Delivery Technol.,3(2003)
    [24]R.J. Aaberg. Osmotic power-a new and powerful renewable energy source[J]. ReFocus, 4(2003)48-50
    [25]H.H.G. Jellinek, H. Masuda. Osmo-power:theory and performance of an osmo-power pilot plant[J]. Ocean Eng.,8(1981)103-128
    [26]K.L. Lee, R.W. Baker, H.K. Lonsdale. Membranes for power generation by pressure-retarded osmosis[J]. J.Membr.Sci.,8(1981)141-171
    [27]S. Loeb. Osmotic power plants[J]. Science,189(1974)350
    [28]S. Loeb. Production of energy from concentrated brines by pressure-retarded osmosis. I. Preliminary technical and economic correlations[J]. J. Membr. Sci.,1(1976)49.
    [29]S. Loeb. Energy production at the Dead Sea by pressure-retarded osmosis:challenge or chimera?[J]. Desalination,120(1998)247-262
    [30]S. Loeb. One hundred and thirty benign and renewable megawatts from Great Salt Lake? The possibilities of hydroelectric power by pressure-retarded osmosis, Desalination 141(2001)85-91
    [31]S. Loeb. Large-scale power production by pressure-retarded osmosis using river water and sea water passing through spiral modules[J]. Desalination,143(2002)115-122
    [32]G.D. Mehta. Further results on the performance of present-day osmotic membranes in various osmotic regions[J]. J. Membr. Sci.,10(1982)3-19
    [33]A. Seppala, M.J. Lampinen. Thermodynamic optimizing of pressure-retarded osmosis power generation systems[J]. J. Membr. Sci.,161(1999)115-138
    [34]G.L. Wick. Energy from salinity gradients[J]. Energy,3(1978)95
    [35]G.D. Mehta, S. Loeb. Internal polarization in the porous substructure of a semi-permeable membrane under pressure-retarded osmosis[J]. J. Membr. Sci.,4(1978)261
    [36]高从增,郑根江,汪锰,等.正渗透-水纯化和脱盐的新途径[J].水处理技术,2008,34(2):1-4
    [37]S. Loeb, L. Titelman, E. Korngold. Effect of porous support fabric on osmosis through a Loeb-Sourirajan type asymmetric membrane[J]. J. Membr. Sci.,129(1997)243-249
    [38]S. Loeb. Pressure-retarded osmosis revisited:the prospects for osmotic power at the dead sea[A]. In:Proceedings of the Euromembrane'95 Conference[C] University of Bath,UK,1995
    [39]I. Goosens, A. Van-Haute. The use of direct osmosis tests as complementary experiments to determine the water and salt permeabilities of reinforced cellulose acetate membranes[J]. Desalination,26(1978)299-308
    [40]J.R. McCutcheon, R.L. McGinnis, M. Elimelech. Desalination by a novel ammonia-carbon dioxide forward osmosis process:influence of draw and feed solution concentrations on process performance[J]. J. Membr. Sci.,278(2006)114-123
    [41]Hydration Technologies Inc., Hydration bags-technology overview[DB/OL]. Electronic Source:http://www.hydrationtech.com/merchant.mv?Screen=CTGY&Store Code=MHTI & Category Code=TECH-FO
    [42]G.W. Batchelder. Process for the demineralization of water[P]. US Patent 3,171,799(1965)
    [43]D.N. Glew. Process for liquid recovery and solution concentration[P]. US Patent, 3,216,930(1965)
    [44]B.S. Frank. Desalination of Sea Water[P]. US Patent,3,670,897(1972)
    [45]J.O. Kessler, C.D. Moody. Drinking water from sea water by forward osmosis[J]. Desalination,18(1976)297-306.
    [46]K. Stache. Apparatus for transforming sea water, brackish water, polluted water or the like into a nutritious drink by means of osmosis[P]. US Patent,4,879,030(1989)
    [47]R.L. McGinnis. Osmotic desalination process (1)[P]. US Patent,6,391,205B 1(2002)
    [48]R.L.McGinnis. Osmotic desalination process(2)[P]. US Patent Pending PCT/US02/ 02740(2002).
    [49]Nano Magnetics[DB/OL]. Water purification,2005. Electronic Source:http://www. nanomagnetics.com/water purification.asp
    [50]G.D. Mehta, S. Loeb. Performance of Permasep B-9 and B-10 membranes in various osmotic regions and at high osmotic pressures[J] J. Membr. Sci.,4(1979)335-349
    [51]C.D. Moody, J.O. Kessler. Forward osmosis extractors[J]. Desalination,18(1976)283-295
    [52]J.R. Herron, E.G. Beaudry, C.E. Jochums. Osmotic concentration apparatus and method for direct osmosis concentration of fruit juices[P]. US Patent,5,281,430(1994)
    [53]E. Singer. New technologies deliver in treating neurological diseases-RNA interference, osmotic pumps may solve drug delivery problems [J], Nat. Med.,10(2004).
    [54]Y.C Su, L. Lin. A water-powered micro drug delivery system[J], J. Micro-electromech. Syst.,13(2004)75-82.
    [55]靖大为.反渗透系统优化设计[M].北京:北京化学工业出版社,2006
    [56]王湛,周翀.膜分离技术基础[M].北京:北京工业出版社,2006
    [57]周正立.反渗透水处理应用技术及膜水处理剂[M].北京:北京工业出版社,2006
    [58]Kulkarni A, Mukherjee D, Gill W N. Flux enhancement by hydrophilization of thin film composite reverse osmosis membranes[J]. J. Membr. Sci.,1996,114:39-50
    [59]Hirose Masahiko, Ohara Tomomi, Ando Masaaki. Highly permeable composite reverse osmosis membrane[P]. US,6171497,2001-01-09.
    [60]Urama R.I, Marinas B.J. Mechanistic interpretation of solute permeation through a fully aromatic polyamide reverse osmosis membrane[J]. J. Membr. Sci.,1997,123(2):267-280
    [61]Mukherjee D, Kulkarni A, Gill W N. Chemical treatment for improved performance of reverse osmosis membranes[J]. Desalination,1996,104:239-249
    [62]李娜,刘忠洲,续曙光.耐污染膜-聚乙烯醇膜的研究进展[J].膜科学与技术, 1999,19(3):1-7
    [63]Kim S H, Kwak S-Y, Sohn B-H, et al. Design of TiO2 nanoparticle self-assembled aromatic polyamide thin-film-composite(TFC) membrane as an approach to solve biofouling problem[J]. J. Membr. Sci.,2003,211:157-165.
    [64]Louie J S, Pinnau I, Ciobanu I, et al. Effects of polyether-polyamide block copolymer coating on performance and fouling of reverse osmosis membranes[J]. J. Membr. Sci., 2006,280:762-770
    [65]具滋永,金淳植,洪成杓.耐污染性优良的选择分离膜的制造方法[P].中国,02126106.7.2004-01-21
    [66]Elimelech M, Xiaohua Zhu, Childress A E, et al. Role of membrane surface morphology in colloidal fouling of cellulose acetate and composite aromatic polyamide reverse osmosis membranes[J].J. Membr. Sci.,1997,127(1):101-109
    [67]黄维菊,魏星.膜分离技术概论[M].北京:国防工业出版社,2008:31-32
    [68]Freger V, Gilron J, Belfer S. TFC polyamide membranes modified by grafting of hydrophilic polymers:an FT-IR/AFM/TEM study[J]. J. Membr. Sci.,2002,209(1): 283-292
    [69]康国栋,曹义鸣,袁权.反渗透复合膜表面接枝改性的研究[C].杭州:第一届海水淡化与水再利用西湖论坛论文集,2006:48-51
    [70]Belfer S, Gilron J, Kedem O. Characterization of commercial RO and UF modified and fouled membranes by means of ATR/FTIR[J]. Desalination,1999,124(1-3):175-180
    [71]李汝雄.绿色溶剂-离子液体的合成与应用[M].北京:化学工业出版社,2004.
    [72]Swatloski R P, Scott S K, et al. Dissolution of cellulose with ionicliquids[J]. Journal of the American Chemical Society,2002,124(18):4974-4975
    [73]任强,武进等.1-烯丙基-3-甲基咪唑室温离子液体的合成及其对纤维素溶解性能的初步研究[J].高分子学报,2003,(3):448-451
    [74]Heinze T, Schwikal K, Barthel S. Ionic liquids as reaction medium in cellulose functionalization[J]. Macromolecular Bioscience,2005,5:520-525
    [75]Megan B Turner, Scott K Spear, John D Holbrey, et al. Production of bioactive cellulose films reconstituted from ionic liquids[J]. Biomacromolecules,2004,5:1379
    [76]Liu Weiwei, Ye Yunting, Zhang Yumei,et al. Properties of PAN/ionic liquids diluted solution[J].7th ISGCC,2005.108
    [77]Zeng Yuxing, Zhang Yumei, Wang Huaping. Rheological Behaviours of polyacrylonitrile/ 1-butyl-3-methylimidazolium chloride concenteated solutions[J].2nd ICA FPM,2005,1: 47
    [78]Zhao Tingting, Zhang Yumei, Wang Biao, et al. Relogical properities of poly(m-phenyleneiso-phthalamide) in 1-n-butyl-3-methylimidazolium chloride [BM IM]Cl[A]. Advances in Rheology and Its Applications[C], Proc of 4th Pacific Rim Confon Rheology Sci Press USA Inc, Shanghai,2005:516
    [79]Scott M.P, Brazel C S, et al. Application of ionic liquids as plasticizers for poly(methyl methacrylate)[J]. Chemical Communications,2002, (13):1370-1371
    [80]于春影,李春喜.离子液体的制备及其性质研究[D].北京:北京化工大学硕士学位论文,2005
    [81]李汝雄.绿色溶剂-离子液体的合成和应用[M].北京:化学工业出版社,2004
    [82]Elimelech M, Xiaohua Zhu, Childress A E, et al. Role of membrane surface morphology in colloidal fouling of cellulose acetate and composite aromatic polyamide reverse osmosis membranes[J]. J. Membr. Sci.,1997,127(1):101-109
    [83]Zhao Y, Taylor J, Hong Seungkwan. Combined influence of membrane surface properties and feed water qualities on RO/NF mass transfer, a pilot study[J].Water Res,2005,39: 1233-1244
    [84]Subramani A, Hoek E M V. Direct observation of initial microbial deposition onto reverse osmosis and nanofiltration membranes[J]. J. Membr. Sci.,2008(03):025.
    [85]Kim S, Hoek E M V. Interactions controlling biopolymer fouling of reverse osmosis membranes[J]. Desalination,2007,202:333-342
    [86]Norberg D, Hong Seungkwan, Taylor J, et al. Surface characterization and performance evaluation of commercial fouling resistant low-pressure RO membranes[J]. Desalination, 2007,202:45-52
    [87]Vrijenhoek E M, Hong Seungkwan, Elimelech M. Influence of membrane surface properties on initial rate of colloidal fouling of reverse osmosis and nanofiltration membranes[J]. J. Membr. Sci.,2001,188:115-128
    [88]Li Q L, Xu Z H, Pinnau I. Fouling of reverse osmosis membranes by biopolymers in wastewater secondary effluent:role of membrane surface properties and initial permeate flux[J]. J. Membr. Sci.,2007,290:173-181
    [89]Norberg D, Hong Seungkwan, Taylor J, et al. Surface characterization and performance evaluation of commercial fouling resistant low-pressure RO membranes[J]. Desalination, 2007,202:45-52

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700