氢气盐溶液在肝脏缺血再灌注损伤中保护作用的机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的:肝脏缺血再灌注损伤(hepatic ischemia-reperfusion injury, HIRI)是肝脏外科常见的问题,可见于肝脏外伤、肝肿瘤切除术,肝移植及休克,感染等。HIRI的发生机理非常复杂,其确切机制目前尚不完全清楚,多数观点认为HIRI的损伤机制主要与氧自由基释放、炎性细胞因子表达、钙离子超载、微循环障碍、线粒体功能受损、能量代谢障碍等因素有关。肝脏作为机体重要的防御屏障,其功能的受损常常造成内毒素血症,后者反过来又加重肝脏功能受损,形成恶性循环,造成严重的脓毒症及多脏器功能衰竭甚至死亡。目前,国内外研究所报道的肝脏缺血再灌注损伤的防护策略主要集中在抗氧化,抗炎等主要方面,因此,寻找特异性强、副反应小、临床应用可能性大的抗氧化抗炎双重效能的药物,具有迫切的研究意义和潜在的临床应用前景。近期,有文献指出氢分子具有选择性抗氧化的生理特性,呼吸氢气能显著缓解肝,脑,肾脏等器官的缺血再灌注损伤。但是通过呼吸的方法不仅在气体混合过程中存在爆炸的危险,而且需要比较特殊的设备,操作比较复杂,在临床上难以推广。经过理论推算发现,将氢气溶解在生理盐水中,经过加压等特殊的处理,使其达到饱和溶解,可制造出氢的生理盐水饱和溶液。本研究旨在研究氢气盐溶液在肝脏缺血再灌注损伤中的保护效应及相关机制。
     研究方法:①比较假手术、缺血再灌注、生理盐水+缺血再灌注(对照组)和氢气盐溶液组+缺血再灌注组(治疗组)之间血清中转氨酶以及肝脏组织结构变化的差异,以及各组的MDA含量的差异;②DAB免疫组织化学染色的方法检测氧自由基与细胞内脂质以及DNA反应的产物羟基丙烯醛(HNE)以及8-羟基鸟嘌呤(8-OH-G),比较各组之间阳性细胞数的差异;③检测肝脏缺血再灌注2,6,12,24小时肝组织炎性细胞因子TNF-a和IL-6 mRNA水平;利用Westernblot的方法分析肝内和血清中内源性损伤蛋白HMGB1的含量;检测肝脏缺血再灌注损伤后内源性损伤蛋白HMGB1在肝细胞中的定位,分析其与肝细胞氧化损伤之间的关联。研究结果:
     1.动物实验研究:①与对照组组大鼠相比,缺血前腹腔注射氢气盐溶液再灌注后2,6,12,24小时血清丙氨酸氨基转移酶水平明显降低(P<0.05),其中IRhy-2h降低38.0%,IRhy-6h小时降低44.0%,IRhy-12h降低56.5%,IRhy-24h降低74.8%;同时肝脏组织缺血再灌注6小时后HE染色结果显示治疗组无明显细胞坏死以及中性粒细胞浸润;②与对照组比,缺血前腹腔注射氢气盐溶液再灌注后2,6,12,24小时组织MDA含量也显著降低(P<0.05),其中IRhy-2h降低31.2%,IRhy-6h小时降低42.8%, IRhy-12h降低48.3%,IRhy-24h降低70.5%;同时,治疗组HNE和8-OH-G阳性细胞数较对照组显著减少,P<0.05。
     2.分子机制研究:①与对照组相比,治疗组再灌注2,6,12,24小时肝组织中细胞因子TNF-a和IL-6 mRNA水平明显降低,其中TNF-a水平在6h,12h,24h分别较对照组降低25.6%,39.6%,54.6%,P<0.05;IL-6水平在2h,6h,12h,24h分别下降44.6%,39.2%,40.2%,36.6%,P<0.05;②氢气盐溶液组肝脏组织中HMGB1表达较对照组降低,P<0.05,同时循环系统中的HMGB1含量也较对照组显著降低,P<0.05;另外,免疫组织化学显示氢气盐溶液能抑制缺血再灌注诱导的HMGB1表达及释放,仅有少量在胞浆及胞核表达HMGB1的阳性细胞。
     结论:本研究显示,腹腔注射10ml/kg氢气盐溶液显著改善肝脏缺血再灌注诱导的肝脏损伤,表现为降低术后血清转氨酶ALT水平,较少肝细胞坏死,降低肝脏组织中细胞因子TNF-a和IL-6 mRNA水平,减轻由肝脏缺血再灌注诱导的局部及全身炎症反应,并且这种保护作用与氢气分子在体内清除毒性自由基,抑制内源性损伤蛋白HMGB1的表达及释放有关。
Backgroud:Hepatic ischemia-reperfusion injury is common in liver surgery, particularly in hepatic transplantation, part lobes of liver resection, hemorrhagic shock and trauma. HIRI is a dynamic process, the mechanism of which has not been clear now. Free oxygen radical release, active pro-inflammatory cytokines expression, calcium overload, microcirculation dysfuction, mitochondrial damage as well as energy metabolism disruption were considered to involve the HIRI pathophysiological procedure. As the most important defensive barrier, hepatic injury induced the endotoxemia with high probability, which in turn aggravate the injured liver to nonfunction, with the result of sepsis as well as multiple organ failure or even to death. The current papers reported that the therapeutic strategies on HIRI mainly aimed at anti-inflammation and antioxidation were proved to be available. Therefore, seeking for an agent with the characteristic of high specificity, mild side reaction, potential clinical application prospect and effective anti-inflammatory and antioxidative action is requisite and significant. Recent papers point out that hydrogen molecule act as an oxygen free radical scavenger to neutralize the cytotoxic hydroxyl radical selectively and hydrogen gas inhalation was demonstrated to protect liver, brain, kindey against ischemia reperfusion injury. Otherwise, for explosion danger of mixed gas, special equipment for inhalation, complex operating sequence, inhalation hydrogen gas is difficult to generalize in clinical. Thus, the suitable therapeutic method need to be further studied. It is calculated theoretically that hydrogen gas could be dissolved to saturation in saline under 0.4 KPa, which is named as hydrogen-enrich saline. The current study was designed to evaluate the protection of this novel agent in hepatic ischemia reperfusion injury and probe the underlying mechanism.
     Methods:①Serum alanine aminotransferase level as well as morphological change was detected in rats treated with sham, hepatic ischemia reperfusion only, saline before hepatic IR and hydrogen-enrich saline before hepatic IR respectively to determine the protection of this novel agent in HIRI.②Malondialdehyde level in hepatic tissue was also detedcted to estimate the antioxidation of hydrogen-enrich saline. To further determine the underlying mechanism of cytoprotection of novel fluid, the HNE and 8-OH-G location was detected through immunohistochemistry and the positive percentage was compared among sham, control and therapeutic groups.③Pro-inflammative cytokines levels including TNF-a and IL-6 mRNA levels in hepatic tissue after 2,6,12,24 h reperfusion between control and therpeutic groups was measured. HMGB1 protein expression in hepatic tissue and plasma were detected through westernblot analysis between two groups. Immunohistochemistry was performed to determine HMGB1 location in hepatic tissue.
     Results:
     1. Study of animal models:Significantly lower serum alanine aminotransferase as well as tissue malondialdehyde level were observed in hydrogen-enrich saline treated animals than controls. Moreover, morphological detetion results showed little necrosis in hydrogen-enrich saline treated animals than controls. Furthermore, HNE and 8-OH-G positive cells were lower in therpeutic animals than controls. Accordingly, the results suggested this that protection is asscoiated with low oxidation result from hydrogen molecule.
     2. Study of underlying mechanism:①Compared with controls, animals treated with hydrogen-enrich saline showed the low proinflammatory cytokines mRNA levels in tissue including TNF-a和IL-6.②HMGB1 protein expression both in tissue and blood decreased significantly in compared with controls. Moreover, only a little of HMGB1 was detected inside cells, while abundant positive cells with brown precipitation both in cytoplasm as well as nucleus were detected in controls.
     Conclusion:Intraperitoneal injection of hydrogen-enriched saline attenuates hepatic ischemia reperfusion injury, with the characteristic of low serum ALT and little necrotic hepatic cells. Hydrogen-enriched saline play an antioxidative role in hepatic ischemia reperfusion injury, characterized by little peroxdiative hepatocytes and low level of tissue MDA. Moreover, hydrogen-enrich saline prevent HMGB1 and cytokines from expressing as well as releaseing during the period of ischemia reperfusion, with the subsequent of inhibiting inflammatory response.
引文
[1]Eduardo E. Montalvo-Jave, Tomas Escalante-Tattersfied, et al. Factors in the pathophysiology of the liver ischemia-reperfusion injury. J Surg Res.2008; 147:153-159.
    [2]Delva E, Camus Y, Nordlinger B, Hannoun L, et al. Vascular occlusions for liver resections. Operative management and tolerance to hepatic ischemia:142 cases. Ann Surg.1989; 209: 211-8.
    [3]Serracino-Inglott F, Habid NA, Mathie RT, et al. Hepatic ischemia-reperfusion injury. Am J Surg.2001; 181:1606.
    [4]Andrew J Vardanian, Ronald W Busuttil, et al. Molecular mediators of liver ischemia and reperfusion injury:a brief review. Mol Med; 2008; 14:337-345.
    [5]Malhi H, Gores GJ, Lemasters JJ. Apoptosis and necrosis in the liver:a tale of two deaths? Hepatology; 2006; 43:S31-44.
    [6]Fondevila C, Busuttil RW, et al. Hepatic ischemia/reperfusion injury:a fresh. Exp.Mol.Pathol. 2003;74:86-93.
    [7]De Groot H, Rauen U. Ischemia-reperfusion injury:processes in pathogenetic networks:a review. Transplant Proc; 2007; 39:481-4.
    [8]Romanque UP, Uribe MM, Videla LA. Molecular mechanisms in liver ischemic-reperfusion injury and ischemic preconditioning. Rev Med Chil; 2005; 133:469-76.
    [9]Jaeschke H. Molecular mechanisms of hepatic ischemia-reperfusion injury and preconditioning. Am J Physiol Gastrointest Liver Physiol.2003; 284:G15-26.
    [10]Hartmut Jaeschke, Abraham P. Bautista, Zoltan Spolarics, et al. Superoxide generation by neutrophils and kupffer cells during in vivo reperfusion after hepatic ischemia in rats. Journal of Leukocyte Biology.1992; 52:377-382.
    [11]Jaeschke H, Farhood A. Neutrophil and kupffer cell-induced oxidant stress and ischemia-reperfusion injury in rat liver in vivo. Am J Physiol.1991; 260:G355.
    [12]Cywes R, Packham MA, Tietze L, et al. Role of platelets in hepatic allograft preservation injury in the rat. Hepatology; 1993; 18:635-47.
    [13]Tsukamoto H. Redox regulation of cytokine expression in Kupffer cells. Antioxid Redox Signal; 2002; 4:741-8.
    [14]Colletti LM, Kunkel SL, Walz A, Burdick MD, et al. The role of cytokine network in the liver injury following hepatic ischemia/reperfusion in the rat. Hepatology; 1996; 23:506-14.
    [15]Mosher B, Dean R, Harkema J, et al. Inhibition of chemokines production by kupffer cells decreased hepatic ischemia/reperfusion injury in mice. J Surg Res; 2001; 992:201.
    [16]Vodovotz Y, Kim PK, Bagci EZ, et al. Inflammatory modulation of hepatocyte apoptosis by nitric oxide:in vitro, and in silico studies. Curr Mol Med; 2004; 4:753-62.
    [17]Allan Tsung, Rohit Sahai, Hiroyuki Tanaka, et al. The nuclear factor HMGB1 mediates hepatic injury after murine liver ischemia-reperfusion. JEM; 2005; 201:1135-1143.
    [18]Vollmar B, Glasz J, Leiderer R, et al. Hepatic microcirculatory perfusion failure is a determinant of liver dysfunction in warm ischemia-reperfusion. Am J Pathol; 1994; 145: 1421-31.
    [19]Cutrn JC, Perrelli MG, Cavalieri B, et al. Microvascular dysfunction induced by reperfusion injury and protective effect of ischemic preconditioning. Free Radic Biol Med; 2002; 33: 1200-8.
    [20]Anaya-Prado R, Toledo-Pereyra LH, Lentsch AB, et al. Ischemia/reperfusion injury. J Surg Res; 2002; 105:248-58.
    [21]David P. Foley, et al. Ischemia-reperfusion injury in transplantation:novel mechanisms and protective strategies. Transplantation Reviews; 2007; 21:43-53.
    [22]W. Zhang, M. Wang, H.Y. Xie, et al. Role of reactive oxygen species in mediating hepatic ischemia-reperfusion injury and its therapeutic applications in liver transplantation. Transplantation Proceedings; 2007; 39:1332-1337.
    [23]Amersi F, et al. Upregulation of heme oxygenase-1 protects genetically fat zucker rat livers from ischemia/reperfusion injury. J Clin Invest; 1999; 104:1631-9.
    [24]Tsuchihshi S, Zhai Y, Bo Q, et al. Heme oxygenase-1 mediated cytoprotection against liver ischemia and reperfusion injury:inhibition of type-1 interferon signaling. Transplantation; 2007; 83:1682-34.
    [25]Varadarajan R, et al. Nitric oxide in early ischemia reperfusion injury during human orthotopic liver transplantation. Transplantation.2004; 78:250-6.
    [26]Shiva S, et al. Nitrite augments tolerance to ischemia/reperfusion injury via the modulation of mitochondrial electron transfer. JEM; 2007; 204:2089-102.
    [27]Michal Pardo, Noga Budick-Harmelin, et al. Antioxidant defense in hepatic ischemia-reperfusion injury is regulated by damage-associated molecular pattern signal molecules. Free Radic. Biol. Med.2008; doi:10.106/j.freeradbiomed.2008.06.029.
    [28]Martin O. Leonard, Niamh E. Kieran, et al. Reoxygenation-specific activation of the antioxidant transcription factor Nrf2 mediates cytoprotective gene expression in ischemia-reperfusion injury. FASEB; 2006; 20:2166-2176.
    [29]Selzner N, Rudiger H, Graf R, et al. Protective strategies against ischemic injury of the liver. Gastroenterology; 2003; 125:917-36.
    [30]Fan C, Zwacka RM, Engelhardt JF. Therapeutic approaches for ischemia/reperfusion injury in the liver. J Mol Med; 1999; 77:577-92.
    [31]Jaeschke, H. Reactive oxygen and ischemia/reperfusion injury of the liver. Chem. Biol. Interact.1991; 79:115-136
    [32]Poli G, Cutrin JC, Biasi F. Lipid peroxidation in the reperfusion injury of the liver. Free Radical. Res.1998; 28:547-51.
    [33]Jaeschke H. Reactive oxygen and mechanisms of inflammatory liver injury. J. Gastroenterol. Hepatol.2000; 15:718-24.
    [34]McCord JM. Oxygen-derived radicals:a link between reperfusion injury and inflammation. Fed Proc; 1987; 46:2402-6.
    [35]Hartmut Jaeschke, Abraham P. Bautista, et al. Superoxide generation by neutrophils and kupffer cells during in vivo reperfusion after hepatic ischemia in rats. Journal of Leukocyte Biology; 1992; 52:377-382.
    [36]Jaeschke H, Farhood A, et al. Neutrophil and kupffer cell-induced oxidant stress and ischemia-reperfusion injury in rat liver. Am. J. Physiol; 1991; 260:355-362.
    [37]Jaeschke H, Bautista A.P., et al. Superoxide generation by kupffer cells and priming of neutrophils during reperfusion after hepatic ischemia. Free Radic. Res. Commun; 1991; 15: 285-292.
    [38]Young TA, Cunningham CC, Bailey SM. Reactive oxygen species production by the mitochondrial respiratory chain in isolated rat hepatocytes and liver mitochondrial:studies using myxothiazol. Arch Biochem Biophys; 2002; 4051-65.
    [39]Sheu, S.S., Nauduri, D.& Anders, M.W. Targeting antioxidants to mitochondria:a new therapeutic direction. Biochim. Biophys. Acta.2006; 1762:256-265.
    [40]Elimadi. A, Sapena. R, Settaf. A, et al. Attenuation of liver normothermic ischemia-reperfusion injury by preservation of mitochondrial functions with S-15176, a potent trimetazidine derivative. Biochem. Pharmacol.2001; 62:509-516.
    [41]Casini A, Ceni E, Salzano R, et al. Neutrophil-derived superoxide anion induces lipid peroxidation and stimulates collagen synthesis in human hepatic stellate cells:role of nitric oxide. Hepatology; 1997; 252-361.
    [42]Buege. J.A, Aust. S.D. Microsomal lipid peroxidation. Methods Enzymol.1978; 52:302-310.
    [43]Eum. H.A, Cha. Y.N, Lee. S.M, et al. Necrosis and apoptosis:sequence of liver damage following reperfusion after 60 min ischemia in rats. Biochem. Biophys. Res. Commun; 2007; 358:500-505.
    [44]Szabo C, Ischiropoulos H, Radi R. Peroxynitrite:biochemistry, pathophysiology and development of therapeutics. Nat. Rev. Drug Discov; 2007; 6:662-80.
    [45]Younes. M, Kayser. E, Strubelt. O, et al. Effect of antioxidants on hypoxia/reoxygenation-induced injury in isolated perfused rat liver. Pharmacol. Toxicol.1992; 71:278-283.
    [46]Mota-Filipe H, McDonald MC, et al. A membrane-permeable radical scavenger reduces the organ injury in hemorrhage shock. Shock; 1999; 124:255.
    [47]Marubayashi S, Dohi K, Ochi K, et al. Protective effects of free radical scavenger and antioxidant administration on ischemic liver cell injury. Transplant Proc; 1987; 19:1327-8.
    [48]He SQ, et al. Delivery of antioxidative enzyme genes protects against ischemia/reperfusion induced liver injury in mice. Liver Transpl; 2006; 12:1869-79.
    [49]Fridovich I. Superoxide dismutases:defence against endogenous superoxide radical. Ciba Found. Symp; 1978; 77-93.
    [50]Yabe Y, Koyama Y, Nishikawa M, et al. Hepatocyte-specific distribution of catalase and its inhibitory effect on hepatic ischemia/reperfusion injury in mice. Free Radic Res; 1999; 304: 265.
    [51]Shau H, Merino A, Chen L, et al. Induction of peroxiredoxins in transplanted livers and demonstration of their in vitro cytoprotection activity. Antioxid Redox Signal; 2000; 22:347.
    [52]Vertuani S, Angusti A, Manfredini S. The antioxidants and pro-antioxidants network:an overview. Curr Pharm Des; 2004; 10:1677.
    [53]Hassan L, Bueno P, Ferron-Celma I, et al. Time course of antioxidant enzyme activities in liver transplant recipients. Transplant Proc; 2005; 379:3932.
    [54]Sepodes B, et al. Tempol, an intracellular free radical scavenger, reduces liver injury in hepatic ischemia-reperfusion in the rat. Transplant. Proc; 2004; 36:849-53.
    [55]Lehmann TG, et al. Gene delivery of Cu/Zn-superoxide dismutase improves graft function after transplantation of fatty livers in the rat. Hepatology (Baltimore); 2000; 32:1255-64.
    [56]Wu TJ, Khoo NH, Zhou F, et al. Decreased hepatic ischemia-reperfusion injury by manganes-porphyrin complexes. Free Radic Res; 2007; 41:127-34.
    [57]Yuzawa H, et al. Inhibitory effects of safe and novel SOD derivatives, galactosylated-SOD, on hepatic warm ischemia/reperfusion injury in pigs. Hepatogastroenterology; 2005; 52: 839-43.
    [58]Mizoe A, et al. Preventive effects of superoxide dismutase derivatives modifies with monosacchrides on reperfusion injury in rat liver transplantation. J. Surg. Res; 1997; 73: 160-5.
    [59]Ejiri S, Eguchi Y, Kishida A, et al. Protective effect of OPC-6535, a superoxide anion production inhibitor, on liver grafts subjected to warm ischemia during porcine liver transplantation. Transplant Proc; 2000; 32:318-21.
    [60]Yabe Y, Koyama Y, Nishikawa M, et al. Hepatocyte-specific distribution of catalase and its inhibitory effect on hepatic ischemia/reperfusion injury in mice. Free Radic Res; 1999; 304: 265.
    [61]Rolf J Schauer, Alexander L Gerbes, Daniel Vonier, et al. Glutathione protects the rat liver against reperfusion injury after prolonger warm ischemia. Ann Surg; 2004; 239:220-231.
    [62]Liu P, Fisher MA, Farhood A, et al. Beneficial effects of extracellular glutathione against endotoxin-induced liver injury during ischemia and reperfusion. Circ Shock; 1994; 43:64-70.
    [63]Koeppel TA, Lehmann TG, Thies JC, et al. Impact of N-acetylcysteine on the hepatic microcirculation after orthotopic liver transplantation. Transplantation; 1996; 61:1397-402.
    [64]Fusai G, Glantzounis GK, Hafez T, et al. N-acetylcysteine ameliorates the late phase of liver ischaemia/reperfusion injury in the rabbit with hepatic steatosis.Clin Sci (Lond); 2005; 465: 1095.
    [65]Dunne JB, Davenport M, Williams R, et al. Evidence that S-adenosylmethionine and N-acetylcysteine reduce injury from sequential cold and warm ischemia in the isolated perfused rat liver. Transplantation; 1994; 57:1161-1167.
    [66]Kobayashi H, Kurokawa T, Kitahara S, et al. The effects of y-glutamylcysteine ethyl ester, a prodrug of glutathione, on ischemia-reperfusion induced injury in rats. Transplantation; 1992; 54:414-418.
    [67]Bilzer M, Paumgartner G, Gerbes AL, et al. Glutathione protects the rat liver against reperfusion injury after hypothermic preservation. Gastroenterology; 1999; 117:200-210.
    [68]Sener G, Sehirli O, Ercan F, et al. Protective effect of MESNA (2-mercaptoethane sulfonate) against hepatic ischemia/reperfusion injury in rats. Surg Today; 2005; 357:575.
    [69]Tomochika Hanawa, Shoichiro Asayama, Taiji Watanabe, et al. Protective effects of the complex between manganese porphyrins and catalase-poly (ethylene glycol) conjugates against hepatic ischemia/reperfusion injury in vivo. Journal of controlled release; 2009; 135: 60-64.
    [70]Tadolini C, Juliano L, Piu F, et al. Resveratrol inhibition of lipid peroxidation. Free Radic Res; 2000; 33:105.
    [71]Z.P. Evans, J.D. Ellet, M.W. Fariss, et al. Vitamin E succinate reduces ischemia/reperfusion injury in steatotic livers. Transplantation Proceedings; 2008; 40:3327-3329.
    [72]Heidi Schuster, Samir Nakib, et al. Protective effects of glutamine dipeptide and a-tocopherol against ischemia-reperfusion injury in the isolated rat liver. Clinical Nutrition; 2009; 28: 331-337.
    [73]Taha M.O, Souza H.S, Carvalho C.A, et al. Cytoprotective effects of ascorbic acid on the ischemia-reperfusion injury of rat liver. Transplant. Proc; 2004; 36:296-300.
    [74]Seo M.Y, Lee S.M. Protective effect of low dose of ascorbic acid on hepatobiliary function in hepatic ischemia/reperfusion in rats. J. Hepatol; 2002; 36:72-77.
    [75]De Tata V, Brizzi S, Saviozzi M, et al. Protective role of dehydroascorbate in rat liver ischemia-reperfusion injury. J Surg Res; 2005; 123:215.
    [76]Sang-Won Park, Sun-Mee Lee. Antioxidant and prooxidant properties of ascorbic acid on hepatic dysfunction induced by cold ischemia/reperfusion. European Journal of pharmacology; 2008; 580:401-406.
    [77]Karaman A, Fadillioglu E, Turkmen E, et al. Protective effects of leflunomide against ischemia-reperfusion injury of the rat liver. Pediatr Surg Int; 2006; 22:428
    [78]Mediha Canbek, Mustafa Uyanoglu, Gokhan Bayramoglu, et al. Effects of carvacrol on defects of ischemia-reperfusion in the rat liver. Phytomedicine; 2008; 15:447-452.
    [79]Maines, M. D.The heme oxygenase sytem:Update 2005. Antiox Redox Signal; 2005; 7: 1761-1766.
    [80]Maines MD. The heme oxygenase system:a regulator of second messenger gases. Annu.Rev. Pharmacol. Toxicol; 1997; 37:517-54.
    [81]Amersi, F., Shen, X. D., Anselmo, D., et al. Ex vivo exposure to carbon monoxide prevents hepatic ischemia/reperfusion injury through p38 MAP kinase pathway. Hepatology;2002; 35:815-823.
    [82]Wang, X. H., Wang, K., Zhang, F., et al. Alleviating ischemia reperfusion injury in aged rat liver by induction of heme oxygenase-1. Transplant Proc; 2004; 36:2917-2923.
    [83]Coito AJ, et al. Heme oxygenase-1 gene transfer inhibits inducible nitric oxide synthase expression and protects genetically fat Zucker rat livers from ischemia-reperfusion injury. Transplantation; 2002; 74:96-102.
    [84]Ke B, et al. Heme oxygenase 1 gene transfer prevents CD95/Fas ligand-mediated apoptosis and improves liver allograft survival via carbon monoxide signaling pathway. Hum. Gene Ther; 2002;13:1189-99.
    [85]Tsuchihashi S, Zhai Y, Bo Q, et al. Heme oxygenase-1 mediated cytoprotection against liver ischemia and reperfusion injury:inhibition of type-1 interferon signaling. Transplantation; 2007; 83:1628-34.
    [86]Fondevila C, Shen XD, Tsuchiyashi S, et al. Biliverdin therapy protects rat livers from ischemia and reperfusion injury. Hepatology; 2004; 406:1333.
    [87]Fondevila C, et al. Biliverdin protects rat livers from ischemia/reperfusion injury. Transplant. Proc;2003; 35:1798-9.
    [88]Tang LM, et al. Exogenous biliverdin ameliorates ischemia-reperfusion injury in small-forsize rat liver grafts. Transplant. Proc; 2007; 39:1338-44.
    [89]Moore, B. A., Overhaus, M., Whitcomb, J., et al. Brief inhalation of low-dose carbon monoxide protects rodents and swine from postoperative ileus. Crit. Care Med; 2005; 33: 1317-1326.
    [90]Kaizu T, et al. Carbon monoxide inhalation ameliorates cold ischemia/reperfusion injury after rat liver transplantation. Surgery; 2005; 138:229-35.
    [91]Amersi F, et al. Ex vivo exposure to carbon monoxide prevents hepatic ischemia/reperfusion injury through p38 MAP kinase pathway. Hepatology; 2002; 35:815-23.
    [92]Tsuchihashi S, Livhits M, Zhai Y, et al. Basal rather than induced heme oxygenase-1 levels are crucial in the antioxidant cytoprotection. J. Immunol; 2006; 177:4749-57.
    [93]Bogdan C. Nitric oxide and the immune response. Nat. Immunol; 2001; 2:907-16.
    [94]Charles-Henry Cottart, Louis Do, et al. Hepatoprotective effect of endogenous nitric oxide during ischemia-reperfusion in the rat. Hepatology; 1999; 29:809-813.
    [95]Shiva S, et al. Nitrite augments tolerance to ischemia/reperfusion injury via the modulation of mitochondrial electron transfer. J. Exp. Med; 2007; 204:2089-102.
    [96]Geller DA, Chia SH, Takahashi Y, et al. Protective role of the L-arginine-nitric oxide synthase pathway on preservation injury after rat liver transplantation. JPEN J. Parenter. Enteral Nutr; 2001; 25:142-7.
    [97]Reid KM, et al. (2007) Liver I/R injury is improved by the arginase inhibitor, N(omega)-hydroxy-nor-L-arginine (nor-NOHA). Am. J. Physiol; 2007; 292:G512-7.
    [98]Moncada S, Higgs A. The L-arginine-nitric oxide pathway. N. Engl. J. Med; 1993; 329: 2002-12.
    [99]Hara Y, Teramoto K, Ishidate K, Arii S. Cytoprotective function of tetrahydrobiopterin in rat liver ischemia/reperfusion injury. Surgery; 2006; 139:377-84.
    [100]Hara Y, et al. Beneficial effect of tetrahydrobiopterin on the survival of rats exposed to hepatic ischemia-reperfusion injury. Transplant.Proc; 2005; 37:442-4.
    [101]Theruvath TP, Zhong Z, Currin RT, et al. Endothelial nitric oxide synthase protects transplanted mouse livers against storage/reperfusion injury:role of vasodilatory and innate immunity pathways. Transplant.Proc; 2006; 38:3351-7.
    [102]Szabo C, Ischiropoulos H, Radi R. Peroxynitrite:biochemistry, pathophysiology and development of therapeutics. Nat. Rev. Drug Discov; 2007; 6:662-80.
    [103]Kimura H, et al. Role of inducible nitric oxide synthase in pig liver transplantation. J. Surg.Res; 2003; 111:28-37.
    [104]Tsuchihashi S, et al. FK330, a novel inducible nitric oxide synthase inhibitor, prevents ischemia and reperfusion injury in rat liver transplantation.Am. J. Transplant; 2006; 6: 2013-22.
    [105]Meguro M, et al. A novel inhibitor of inducible nitric oxide synthase (ONO-1714) prevents critical warm ischemia-reperfusion injury in the pig liver. Transplantation; 2002; 73:1439-46.
    [106]Rahul S. Koti, Janice C. Tsui, et al. Nitric oxide synthase distribution and expression with ischemic preconditioning of the rat liver.2005; FASEB; doi:10.1096/fj.04-3220fje.
    [107]Takeda K, Akira S. Toll-like receptors in innate immunity. Int Immunol; 2005; 17:1-14.
    [108]Cook DN, Pisetsky DS, Schwartz DA. Toll-like receptors in the pathogenesis of human disease. Nat Immunol; 2004; 5:975-9.
    [109]Ketloy, C, Engering, A., Srichairatanakul, U., et al. Expression and functionof Toll-like receptors on dendritic cells and other antigen presenting cellsfrom non-human primates. Veterinary Immunology and Immunopathology; doi:10.1016/j.vetimm.2008.05.001.
    [110]Tsan MF, Gao B. Endogenous ligands of Toll-like receptors. J. Leukocyte Biol; 2004; 76: 514-9.
    [111]Roelofs MF, et al. Identification of small heat shock protein B8 (HSP22) as a novel TLR4 ligand and potential involvement in the pathogenesis of rheumatoid arthritis. J. Immunol; 2006; 176:7021-7.
    [112]Levy RM, et al. Systemic inflammation and remote organ injury following trauma require HMGB1. Am. J. Physiol. Regul. Integr. Comp. Physiol; 2007; 293:R1538-44.
    [113]Tsung A, et al. Hepatic ischemia/reperfusion injury involves functional TLR4 signaling in nonparenchymal cells. J. Immunol; 2005; 175:7661-8.
    [114]Zhai Y, Qiao B SH, Gao F, et al. Evidence for the pivotal role of endogenous TLR4 ligands in liver ischemia and reperfusion injury. Transplantation (In Press).
    [115]Allan Tsung, Rohit Sahai, Hiroyuki Tanaka, et al.The nuclear factor HMGB1 mediates hepatic injury after murine liver ischemia-reperfusion. JEM; 2005; 201:1135-1143.
    [116]Wu H, et al. TLR4 activation mediates kidney ischemia/reperfusion injury. J. Clin. Invest; 2007;117:2847-59.
    [117]T. Yoshizumi, Y. Ikeda, Y. Kaneda, et al. Ex Vivo Transfer of Nuclear Factor-KB Decoy Ameliorates Hepatic Cold Ischemia/Reperfusion Injury. Transplantation Proceedings; 2009; 41: 1504-1507.
    [118]Hiroyuki yoshidome, Atsushi kato, Tsushi, Michael J. Edwards, et al.Interleukin-10 inhibits pulmonary NF-kB activation and lung injury induced by hepatic ischemia-reperfusion. Am J Physiol Lung Cell Mol Physiol; 1999; 277:919-923.
    [119]Allan Tsung, Rohit Sahai, Hiroyuki Tanaka,et al.The nuclear factor HMGB1 mediates hepatic injury after murine liver ischemia-reperfusion. JEM; 2005; 201; 7:1135-1143.
    [120]Allan Tsung, John R. Klune, Xianghong Zhang, et al. HMGB1 release induced by liver ischemia involves Toll-like receptor 4-dependent reactive oxygen species production and calcium-mediated signaling. JEM; 2007; 204; 12:2913-2923.
    [121]Christopher J. Czura, Huan Yang, and Kevin J. Tracey. et al. High Mobility Group Box-1 as a Therapeutic Target Downstream of Tumor Necrosis Factor. JID; 2003; 187; (Suppl 2):S391.
    [122]Cutrin, J.C., Perrelli, M.G., Cavalieri, B. et al. Microvascular dysfunction induced by reperfusion injury and protective effect of ischemic preconditioning. Free Radical Biology and Medicine; 2002; 33; 9:1200-1208.
    [123]Peralta, C, Fernandez, L., Panes, J., et al. Preconditioning protects against systemic disorders associated with hepatic ischemia-reperfusion through blockade of tumor necrosis factor-induced P-selectin up regulation in the rat. Hepatology; 2001; 33 (1):100-113.
    [124]Lemasters, J.J. Necrapoptosis and the mitochondrial permeability transition:shared pathways to necrosis and apoptosis. American Journal of Physiology; 1999; 276; (1 Pt 1): G1-G6.
    [125]Malhi, H., Gores, GJ., Lemasters, J.J. Apoptosis and necrosis in the liver:a tale of two deaths? Hepatology; 2006; 43; (2 Suppl 1):S31-S44.
    [126]Kazuo Honda, Taiji Tohyama, Hiroshi Kotegawa. et al. Protective Effect of Adeno-Mediated Human Bcl-xL Gene Transfer to the Mouse Liver in a Partial Ischemia/Reperfusion Model. Journal of Surgical Research; doi:10.1016/j.jss.2008.10.019.
    [127]Juan L. Contreras, Mario Vilatoba, Christopher Eckstein, et al. Caspase-8 and caspase-3 small interfering RNA decreases ischemia/reperfusion injury to the liver in mice. Surgery; doi:10.1016/j.surg.2004.05.015.
    [128]Masahiko Taniguchi, Shinichirou Magata,Tomomi Suzuki, et al. Dipyridamole Protects the Liver Against Warm Ischemia and Reperfusion injury. The American College of Surgenos; doi:10.1016/j.jamcollsurg.2003.12.002.
    [129]Rita Carini, Emanuele Albano, et al. Recent Insights on the Mechanisms of Liver Preconditioning. Gastroenterology; 2003; 125:1480-1491.
    [130]Peralta C, Hotter G, Closa D, et al. The protective role of adenosine in inducing nitric oxide synthesis in rat liver ischemia preconditioning is mediated by the activation of adenosine A2 receptors. Hepatology; 1999; 29:126-132.
    [131]Carini R, De Cesaris MG, Splendore R,et al. Signal pathway involved in the development of hypoxic preconditioning in rat hepatocytes. Hepatology; 2001; 33:131-139.
    [132]Peralta C, Hotter G, Closa D, et al. Protective effect of preconditioning on the injury associated to hepatic ischemia-reperfusion in the rat:role of nitric oxide and adenosine. Hepatology; 1997; 25:934-937.
    [133]Teoh N, Pena AD, Farrell G. Hepatic ischemic preconditioning in mice is associated with activation of NF-KB, p38 kinase and cycle entry. Hepatology; 2002; 36:94-102.
    [134]Peralta C, Bartrons R, Riera L, et al. Hepatic preconditioning preserves energy metabolism during sustained ischemia. Am J Physiol; 2000; 279:G163-G171.
    [135]Shauer RJ, Gerbes AL, Vonier D, et al. Induction of cellular resistance against Kupffer cellderived oxidant stress:a novel concept of hepatoprotection by ischemic preconditioning. Hepatology; 2003; 37:286-295.
    [136]Yadav S, Sindram D, Perry DK, et al. Ischemic preconditioning protects the mouse liver by inhibition of apoptosis through a caspase-dependent pathway. Hepatology; 1999; 130: 1223-1231.
    [137]Peralta C, Fernandez L, Panes J, et al. Preconditioning protects against systemic disorders associated with hepatic ischemia-reperfusion through blockade of tumor necrosis factor-induced P selectin up-regulation in the rat. Hepatology; 2001; 33:100-113.
    [138]Nakayama H, Yamamoto Y, Kume M, et al. Pharmacologic stimulation of adenosine A2 receptor supplants ischemic preconditioning in providing ischemic tolerance in rat livers. Surgery; 1999; 126:945-954.
    [139]Serracino-Inglott F, Virlos IT, Habib NA, et al. Adenosine preconditioning attenuates hepatic reperfusion injury in rat by preserving the down-regulation of endothelial nitric oxide synthase. BMC Gastroenterol; 2002; 2:22.
    [140]Rafael Omar Giovanardi, Ernani Luis Rhoden, Carlos Thadeu Cerski, et al. Pharmacological Preconditioning Using Intraportal Infusion of L-Arginine Protects Against Hepatic Ischemia Reperfusion Injury. Journal of Surgical Research; 2009; 155; 244-253.
    [141]Gerbes AL, Vollmar AM, Kiemer AK, Bilzer M. The guanylate cyclase-coupled natriuretic peptide receptor:a new target for prevention of cold ischemia-reperfusion damage of the rat liver. Hepatology 1998; 28:1309-1317.
    [142]Vassilios Smyrniotis, Nikolaos Arkadopoulos, et al.Attenuation of Ischemic Injury by N-Acetylcysteine Preconditioning of the Liver. Journal of Surgical Research; 2005; 129; 31-37.
    [143]Dominique Crenessea, Marina Laurensb, Catherine Heurteauxc, et al. Rat liver ischemia-reperfusion-induced apoptosis and necrosis aredecreased by FK506 pretreatment. European Journal of Pharmacology; 2003; 473:177-184.
    [144]Shi-Yau Yu, Jen-Hwey Chiu, Shiaw-Der Yang, et al. Preconditioned Hyperbaric Oxygenation Protects the Liver against Ischemia-Reperfusion Injury in Rats, ournal of Surgical Research; 2005; 128:28-36.
    [145]Salminen, W. E, Voellmy, R., and Roberts, S. M. Protection against hepatotoxicity by a single dose of amphetamine:the potential role of heat shock protein induction. Toxicol. Appl. Pharmacol; 1997; 147:247。
    [146]Takano, M., Arai, T., Mokuno, Y., Nishimura, H., Nimura, Y, and Yoshikai, Y. Dibutyryl cyclic adenosine monophosphate protects mice against tumor necrosis factor-alpha-induced hepatocyte apoptosis accompanied by increased heat shock protein 70 expression. Cell Stress Chaperones; 1998; 3:109.
    [147]Kim, Y. M., de Vera, M. E., Watkins, S. C, and Billiar, T. R. Nitric oxide protects cultured rat hepatocytes from tumor necrosis factor-alpha-induced apoptosis by inducing heat shock protein 70 expression. J. Biol. Chem; 1997; 272:1402.
    [148]Nishihara, M., Sumimoto, R., Fukuda, Y, Southard, J. H., Asahara, T., Kawaishi, H., and Dohi, K. TNF-L and heat-shock protein gene expression in ischemic-injured liver from fasted and non-fasted rats. Role of donor fasting in the prevention of reperfusion injury following liver transplantation. Transpl. Int; 1998; 11:417.
    [149]Abdulkadir Bedirli, Omer Sakrak, Sebahattin Muhtaroglu, et al. Ergothioneine Pretreatment Protects the Liver from Ischemia-Reperfusion Injury Caused by Increasing Hepatic Heat Shock Protein 70. Journal of Surgical Research; 2004; 122:96-102.
    [150]McNally, S. J, Harrison, E. M., Ross, J. A., et al. Curcumin induces heme oxygenase-1 in hepatocytes and is protective in simulated cold preservation and warm reperfusion injury. Transplantation; 2006; 81:623-626.
    [151]J. Heiman, M. Wallin, B.I. Gustafsson, et al. Pharmacological Preconditioning of Rat Liver by Up-Regulation of Heme Oxygenase 1.Transplantation Proceedings; 2006; 38:2705-2707.
    [152]Rene Schmidt, Eva Tritschler, Alexander Hoetzel, et al. Heme Oxygenase-1 Induction by the Clinically Used Anesthetic Isoflurane Protects Rat Livers From Ischemia/Reperfusion Injury. Ann Surg; 2007; 245:931-942.
    [153]Lemasters JJ, Bunzendahl H, Thurman RG. Reperfusion injury to donor livers stored for transplantation. Liver Transplant Surg; 1995; 1:124-38.
    [154]Blankensteijn JD, Terpstra OT. Liver preservation:the past and the future. Hepatology 1990; 13:1235-50.
    [155]Clavien PA, Harvey PRC, Strasberg SM. Preservation and reperfusion injuries in liver allografts. Transplantation 1992; 53:957-78.
    [156]Rosser BG, Gores GM. Liver cell necrosis:cellular mechanisms and clinical implications. Gastroenterology 1995; 108:252-75.
    [157]Hansen TN, Dawson PE, Brockbank KGM. Effects of hypothermia upon endothelial cells: mechanisms and clinical importance.Cryobiology 1994; 31:101-6.
    [158]Busuttil, R.W., Tanaka, K.,2003. The utility of marginal donors in liver transplantation.Liver Transplantation 9 (7),651-66.
    [159]Vajdova, K., Graf, R., Clavien, P.A.,2002. ATP-supplies in the cold-preserved liver:a long-neglected factor of organ viability. Hepatology 36 (6),1543-1552.
    [160]Pesonen, E.J., Linder, N., Raivio, K.O., Sarnesto, A., Lapatto, R., Hockerstedt,K., Makisalo, H., Andersson, S.,1998. Circulating xanthine oxidase and neutrophil activation during human liver transplantation. Gastroenterology 114 (5),1009-1115.
    [161]Ambiru, S., Uryuhara, K., Talpe, S., Dehoux, J.P., Jacobbi, L., Murphy, C.J., McAnulty, J.F., Gianello, P.,2004. Improved survival of orthotopic liver allograft in swine by addition of trophic factors to University of Wisconsin solution. Transplantation 77 (2),302-319.
    [162]Moresco, R.N., Santos, R.C., Alves Filho, J.C., Cunha, A.A., dos Reis, C., Reichel, C.L., De Oliveira, J.R.,2004. Protective effect of fructose-1,6-bisphosphate in the cold storage solution for liver preservation in rat hepatic transplantation. Transplantation Proceedings 36 (5), 1261-1264.
    [163]Yoshinari, D., Takeyoshi, I., Kobayashi, M., Koyama, T., Iijima, K., Ohwada, S., Matsumoto, K., Morishita, Y.,2001. Effects of a p38 mitogen-activated protein kinase inhibitor as an additive to University ofWisconsin solution on reperfusion injury in liver transplantation. Transplantation 72 (1),22-27.
    [164]Takada, Y, Boudjema, K., Jaeck, D., Bel-Haouari, M., Doghmi, M., Chenard, M.P., Wolf, P., Cinqualbre, J.,1995. Effects of platelet-activating factor antagonist on preservation/reperfusion injury of the graft in porcine orthotopic liver transplantation. Transplantation 59 (1),10-16.
    [165]Anaise, D., Ishimaru,M.,Madariaga, J., Irisawa, A., Lane, B., Zeidan, B., Sonoda, K., Shabtai, M., Waltzer, W.C., Rapaport, F.T.,1990. Protective effects of trifluoperazine on themicrocirculation of cold-stored livers. Transplantation 50(6),933-939.
    [166]Takei, Y., Marzi, I., Kauffman, F.C., Currin, R.T., Lemasters, J.J., Thurman, R.G.,1990. Increase in survival time of liver transplants by protease inhibitors and a calcium channel blocker, nisoldipine. Transplantation 50 (1),14-20.
    [167]Ikizler, M., Dernek, S., Sevin, B., Kural, T.,2003. Trimetazidine improvesrecovery during reperfusion in isolated rat hearts after prolonged ischemia. Anadolu Kardiyoloji Dergisi 3 (4), 303-308.
    [168]Carrasco-Chaumel, E., Rosello-Catafau, J., Bartrons, R., Franco-Gou, R., Xaus, C., Casillas, A., Gelpi, E., Rodes, J., Peralta, C.,2005. Adenosine monophosphate-activated protein kinase and nitric oxide in rat steatotic liver transplantation. Journal of Hepatology 43 (6),997-1006.
    [169]Shaoguang Sui, Atsushi Kudo, et al. Preservation Solutions Alter Mrp2-Dependent Bile Flow in Cold Ischemic Rat Livers.Journal of Surgical Research; doi:10.1016/j.jss.2008.12.043.
    [170]Lang JD Jr, et al. Inhaled NO accelerates restoration of liver function in adults following orthotopic liver transplantation. J. Clin. Invest; 2007; 117:2583-91.
    [171]Beatrice Beck-Schimmer, Stefan Breitenstein, Severin Urech, et al. A Randomized Controlled Trial on Pharmacological Preconditioning in Liver Surgery Using a Volatile Anesthetic.Ann Surg; 2008; 248:909-918.
    [172]Baskin-Bey ES, et al. Clinical trial of the pan-caspase inhibitor, IDN-6556, in human liver preservation injury. Am. J. Transplant.2007; 7:218-25.
    [173]Aldrighetti L, et al. Impact of preoperative steroids administration on ischemia-reperfusion injury and systemic responses in liver surgery:a prospective randomized study. Liver Transpl. 2006; 12:941-9.
    [174]Khan AW, Fuller BJ, Shah SR, Davidson BR, Rolles K. A prospective randomized trial of N-acetyl cysteine administration during cold preservation of the donor liver for transplantation. Ann. Hepatol; 2005; 4:121-6.
    [175]A. Nakamura, Y. Akamatsu, S. Miyagi, T. Fukumori, et al. A Free Radical Scavenger, Edaravone, Prevents Ischemia-Reperfusion Injury in Liver Grafts From Non-Heart-Beating Donors. Transplantation Proceedings; 2008; 40:2171-2174.
    [176]Taizo Takeda, Setsuko Takeda, Masaya Takumida, Protective effects of edaravone against ischemia-induced facial palsy.Auris Nasus Larynx; 2008; 35:321-327.
    [177]St Peter SD, Post DJ, Rodriguez-Davalos MI, Douglas DD, Moss AA, Mulligan DC. Tacrolimus as a liver flush solution to ameliorate the effects of ischemia/reperfusion injury following liver transplantation. Liver Transpl; 2003; 9:144-9.
    [178]Goggins WC, et al. A prospective, randomized, clinical trial of intraoperative versus postoperative Thymoglobulin in adult cadaveric renal transplant recipients. Transplantation;2003; 76:798-802.
    [1]Huguet C, Addario-Chieco P, Gavelli A, et al. Technique of hepatic vascular exclusion for extensive liver resection. Am J Surg 1992; 163:602.
    [2]Delva E, Camus Y, Nordlinger B, et al. Vascular occlusions for liver resections. Operative management and tolerance to hepatic ischemia:142 cases. Ann Surg 1989; 209:211.
    [3]Powner DJ. Factors during donor care that may affect liver transplantation outcome. Prog Transplant 2004; 14:241; quiz 248.
    [4]Lemasters, J.J. The mitochondrial permeability transition and the calcium, oxygen and PH paradoxes:one paradox after another. Cardiovasc Res.1999; 44:470-473;.
    [5]Tanihai H, Hines I.N, et al. Susceptibility of murine periportal hepatocytes to hypoxia-reoxygenation:role for NO and Kuffer cell-derived oxidants. Hepatology.2004; 39: 1544-1552.
    [6]Sheu S.S, Nauduri D, et al. Targeting antioxidants to mitochondrial:a new therapeutic direction. Biochim Biophys Avta.2006;1762:256-265.
    [7]Eduardo E, Montalvo-Jave, et al. Factors in the pathophysiology of the liver ischemia-reperfusion injury. J Surg Res.2008;147:153-159.
    [8]Ikuroh Ohsawa, Masahiro Ishikawa, et al. Hydrogen act as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nature Medicine.2007; 13:688-694.
    [9]Kei-ichi Fukuda, Sadamitsu Asoh, et al. Inhalation of hydrogen gas suppresses hepatic injury caused by ischemia/reperfusion through reducing oxidative stress. BBRC.2007;361: 670-674.
    [10]Kentaro Hayashida, Motoaki Sano, et al. Inhalation of hydrogen gas reduces infarct size in the rat model of myocardial ischemia-reperfusion injury. BBRC.2008; 05:165.
    [11]Buchholz BM, Kaczorowski DJ, et al. Hydrogen inhalation ameliorates oxidative stress in transplantation induced intestinal graft injury. Am J Transplant.2008; 8:2015-24.
    [12]Jianmei Cai, Zhimin Kang, et al.Hydrogem therapy reduces apoptosis in neonatal hypoxia-ischemia rat model. Neuroscience Letters.2008; 441:167-172.
    [13]Cai JM, Kang ZM, et al. Neuroprotective effects of hydrogen saline in neonatal hypoxia-ischemia rat model. Brain Res.2009; 1256:129-137.
    [14]Nagata K, Nakashima-Kamimura N, et al. Consumption of molecular hydrogen prevents the stress-induced impairments in hippocampus-dependent learning tasks during chronic physical restraint in mice. Neuropsychopharmacology.2009; 34:501-8.
    [15]Kajiyama S, Hasegawa G, et al. Supplementation of hydrogen-rich water improves lipid and glucose metabolism in patients with type 2 diabetes or impaired glucose tolerance. Nutr. Res. 2008;28:137-43.
    [16]Yasunori Sato, Shizuo kajiy, et al. Hydrogen-rich water prevents superoxide formation in brain slices of vitamin C-depleted SMP30/GNL knockout mice. BBRC.2008; 08:020.
    [17]Nakashima-Kamimura N, Mori T, et al. Molecular hydrogen alleviates nephrotoxicity induced by anti-cancer drug cisplatin without compromising anti-tumor activity in mice. Cancer Chemother Pharmacol.2009; 16:216.
    [18]Zheng XF, Mao YF, et al. Hydrogen-rich saline protects intestinal ischemia-reperfusion injury in rats. Free Radical Res.2009 in press.
    [19]Bouchra Gharib, et al. Anti-inflammatory properties of molecular hydrogen:investigation on parasite-induced liver inflammation. Life Sciences.2001; 324:719-724.
    [20]Stros M, Cherny D, et al. HMG-1 protein stimulates DNA end joining by promoting association of DNA molecular via their ends. Eur J Biochem.2000; 367:4088-4097.
    [21]Li J, Kokkola R, et al. Structural basis for the proinflammatory cytokine activity of high mobility group box 1. Mol Med.2003; 9:37-45.
    [22]Lum HK, Lee KL. The human HMGB1 promotor is modulated by a silencer and an enhancer-containing intron. Biochim Biophys Acts.2001; 1520:79-84.
    [23]Wang H, Bloom O, et al. HMG-1 as a late mediator of endotoxin lethality in mice. Science. 1999; 285:248-251.
    [24]Andersson U, Erlandsson Harris H, et al. HMGB1 as a DNA-binding cytokine. J leukoc Biol.2002; 72:1084-1091.
    [25]Allan Tsung, Rohit Sahai, et al. The nuclear factor HMGB1 mediates hepatic injury after murine liver ischemia-reperfusion. JEM 2005; 201:1135-43.
    [26]Allan Tsung, John R, et al. HMGB1 release induced by liver ischemia involves Toll-like receptor 4-dependent reactive oxygen species production and calcium-mediated signaling. JEM.2005; 204:2913-23.
    [27]Nakao A, Kaczorowski DJ, Sugimoto R, et al. Combined administration of hydrogen and carbon monoxide is a superior strategy for ameliorationg cardic cold ischemia/reperfusion injury. Transplantation 2009, in press。
    [28]Cai JM, Kang ZM, Liu W, et al. Hydrogen therapy reduces apoptosis in neonatal hypoxia-ischemia rat model. Neurosci lett.2008;441:167-172
    [29]FondevilaC, Busuttil RW, Kupiec-Weglinski JW. Hepatic ischemia/reperfusion injury:a fresh look. Exp.Mol.Pathol.2003;74:86-93.
    [30]Marubayashi S, Dohi K, Ochi K, et al. Protective effects of free radical scavenger and antioxidant administration on ischemic liver cell injury. Transplant Proc; 1987; 19:1327-8.
    [31]He SQ, et al. Delivery of antioxidative enzyme genes protects against ischemia/reperfusion induced liver injury in mice. Liver Transpl; 2006; 12:1869-79.
    [32]Fridovich I. Superoxide dismutases:defence against endogenous superoxide radical. Ciba Found. Symp; 1978; 77-93.
    [33]Z.P. Evans, J.D. Ellet, M.W. Fariss, et al. Vitamin E succinate reduces ischemia/reperfusion injury in steatotic livers. Transplantation Proceedings; 2008; 40:3327-3329.
    [34]Taha M.O, Souza H.S, Carvalho C.A, et al. Cytoprotective effects of ascorbic acid on the ischemia-reperfusion injury of rat liver. Transplant. Proc; 2004; 36:296-300.
    [35]Sang-Won Park, Sun-Mee Lee. Antioxidant and prooxidant properties of ascorbic acid on hepatic dysfunction induced by cold ischemia/reperfusion. European Journal of pharmacology; 2008; 580:401-406.
    [36]Taizo Takeda, Setsuko Takeda, Masaya Takumida, Protective effects of edaravone against ischemia-induced facial palsy.Auris Nasus Larynx; 2008; 35:321-327.
    [37]Chan PH. Role of oxidants in ischemic brain damage. Stroke.1996; 27:1124-1129
    [38]Buxton, GV, Greenstock, CL., Helman, W.P. et al. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals in aqueous solution. J Phys Chem.1988; 17:513-886
    [39]Kayar SR, Axley MJ, Homer LD, et al. Hydrogen gas is not oxidized by mammalian tissues under hyperbaric conditions.Undersea Hyperb Med.1994; 21:265-75
    [40]Dole M, Wilson FR, Fife WP.Hyperbaric hydrogen therapy:a possible treatment for cancer. Science.1975;190:152-4.
    [41]Cai JM, Kang ZM, Liu K, et al. Neuroprotective effects of hydrogen saline in neonatal hypoxia-ischemia rat model. Brain Res.2009; 1256:129-137
    [42]Zheng XF, Mao YF, Cai JM, Li YH, Liu WW, Sun PL, Zhang JH, Sun XJ, Yuan.HB Hydrogen-Rich Saline Protects against Intestinal Ischemia/Reperfusion Injury in Rats Free Radical Res.2009 in press
    [43]Poli G, Cutrin JC, Biasi F. Lipid peroxidation in the reperfusion injury of the liver. Free Radical. Res.1998; 28:547-51.
    [44]Huan Yang, Haichao Wang, Christopher J. The cytokine activity of HMGB1. Journal of leukovyte biology.2005; 78:1-8.
    [45]Bianchi ME, Scaffidi P, et al. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature.2002; 418:191-5.
    [46]Geetha Jeyabalan, Allan Tsung, et al. High-mobility group box 1 (HMGB1) release in response to hypoxia is calcium dependent.2006; 203:S27
    [47]Chen H, Sun YP, Hu PF, Liu WW, Xiang HG, Li Y,Yan RL, Su N, Ruan CP, Sun XJ, Wang Q.The effects of hydrogen-rich saline on the contractile and structural changes of intestine induced by ischemia-reperfusion in rats. J Surg Res.2009; in press.
    [48]Yuan Zhai, Xiu-da Shen, Ryan O'Connell, et al. Cutting edge:TLR4 activation mediates liver ischemia/reperfusion inflammatory response via IFN regulatory factor 3-dependent MyD88-Independent pathway. The journal of immunology.2004; 173:7115-7119.
    [49]Li J, Kokkola R, Tabibzadeh S, et al. Structural basis for the proinflammatory cytokine activity of high mobility group box 1. Mol Med,2003; 9:27-45
    [50]Bustin M.Revised nomenclature for high mobility group (HMG) chromosomal proteins.Trends Biochem Sci,2000,26(3):152-153.
    [51]Stros M, Cherny D, Jivin TM.HMG-1 protein stimulates DNA end joining by promoting association of DNA molecules via their via their ends.Eur J Biochem,2000, 367(13):4088-4097
    [52]Bustin M. Lehn DA, Landsman D.Structual features of the HMG chromosomal proteins and their genes.Biochem Biophys Acta,1990,1049:231-243.
    [53]Bentley DR, Delouk BP, Dunham A, et al.The physical maps for sequencing human chromosomes 1,6,9,10,13,20 and Ⅹ.Nature,2001,409(6822):942-943.
    [54]Lum HK, Lee KL.The human HMGB1 promoter is modulated by a silencer and an enhancer-containing intron.Biochim Biophys Acts,2001,1520(1):79-84.
    [55]Jon Cardinal, Pinhua Pan, et al. Cisplatin prevents high mobility group box 1 release and is protective in a murine model of hepatic ischemia/reperfusion injury. Hepatology, Auguet 2009.
    [56]Kokkola R, Andersson A, Mullins G, et al.RAGE is the major receptor for the proinflammatory activity of HMGB1 in rodent macrophages.Scand J Immunol,2005, 61(1):1-9.
    [57]Park JS, Svetkauskaite D, He Q, et al.Involvement of TLR2 and TLR4 in cellular activation by high mobility group box 1 protein (HMGB1).J Biol Chem,2004,279(9):7370-7377.
    [58]姚咏明,刘辉.对高迁移率族蛋白B1作用的新认识.中国危重病鱼急救医学,2005,17(7):385-387.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700