钛酸钡系铁电薄膜的制备及光学和光电行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铁电薄膜材料和器件的研究目前仍然面临着很多问题,如光学和光电转换系数提高优化问题、在大规模光电集成电路(OEICs)中集成化与兼容性问题、薄膜化引起的界面问题、小型化带来的尺寸效应和加工、表征问题等等。本论文以钛酸钡系铁电薄膜为研究对象,较为系统地研究钛酸钡(BTO)和钛酸锶钡(BST)薄膜的制备及表征、光学特性和应用。
     本论文的研究成果主要有:
     发展了晶态铁电薄膜低温(≤550℃)制备工艺和高度择优取向生长的制备工艺。采用溶胶—凝胶(Sol-Gel)法和金属有机分解(MOD)法于550℃成功制备出了结晶态良好的BST薄膜,采用磁控溅射法于450℃获得了(100)择优取向生长的BST薄膜,这些工艺是目前已经报道的具有较低温度制备的工艺之一。铁电薄膜的低温成功制备对其在OEICs的集成应用是十分有益的。另外,采用磁控溅射法在SiO2/Si基底上于700℃获得了高度(100)择优取向生长的晶态BST的薄膜。在非晶SiO2层上制备出高度择优取向生长的铁电薄膜一直是该领域研究的热点与难点之一
     较为系统地研究了单片集成即硅基底上多晶BST薄膜的光学及光电行为。SiO2/Si基底上高度(100)择优取向生长的晶态Ba0.5Sr0.5TiO3的薄膜的光带隙能Eg值与沉积温度和薄膜的厚度表现出很大相关性,主要是由于量子尺寸效应和受到薄膜结晶度,如晶界、粒度、取向生长和非晶相的存在等的影响。薄膜的这种Eg值与结晶度的相关性有望应用到集成光器件中。基于多晶(BST0.7)薄膜首次在硅衬底制备了单片集成Mach-Zehnder电光调制器,成功实现了光的调制。多晶BST0.7薄膜的电光系数为2.4pm/V。
     设计和制备出了铁电薄膜沟槽掩埋型光波导,并且基于双反射镜原理设计和成功制备出了小尺寸低损耗的90°直角弯曲光波导,该结构波导便于工艺制作、OEICs的光电集成和光传输损耗的定量标准测量。对于5μm宽、300nm厚的多晶BST0.7平面光波导在632.8nm波长的光传输损耗大约是17dB/cm。对于5和10μm宽的非晶态BST0.7薄膜波导在632.8nm波段的光传输损耗分别为12.8和9.4dB/cm,所制备的90°弯曲结构损耗分别为1.2和0.9dB。非晶态BST0.7薄膜波导比用于OEICs的高折射率差△的Si/SiO2波导的损耗(34dB/cm)小得多,比晶态BST0.7薄膜波导的光传输损耗也要小30%。该非晶BST0.7薄膜用于OEICs光波导是具有潜在应用价值的。
     通过理论分析提出了一种新的薄膜光学常数计算测量的方法。厚度约为214nm的非晶BST0.7薄膜的光学带隙能和折射率分别为:4.27eV和n=1.94。薄膜在可见光和近红外区域的消光系数远远低于多晶BST薄膜,约为10-3数量级。
     研究了非晶BST和BTO薄膜室温光致发光(PL)性能及其机理,用能带跃迁模型来进行了很好的解释,基于该薄膜的这种PL性能,首次应用到LED器件上,实现了基于非晶BTO薄膜白光LED器件。约150nm厚非晶BTO薄膜InGaN/GaN多量子阱LEDs呈现蓝白光,CIE坐标为(0.2139,0.1627)。基于非晶BTO薄膜白光LED器件的实现,与传统工艺比较很容易实现保形涂覆结构、在可见光波段具有高透光性能、不需要粘结剂且可以在更高的温度下使用等很多优点,为发展LED提供了一种新的思路。
The study of ferroelectric thin film materials and devices is still facing a lot of problems, such as improvement and optimization problems of optical and optoelectronic conversion factors, integration and compatibility problems in large-scale optoelectronic integrated circuits(OEICs), interface problems caused by thin film, and size effect, processing and characterization problems brought by small size, etc. In this paper, we take barium titanate-based ferroelectric thin films as the research object and relatively systematically study the preparation and characterization, optical performance, application of barium titanate (BTO) and barium strontium titanate (BST) thin films.
     The main research results in this paper are as follows:
     Developments of the preparation process of ferroelectric thin film at low temperature (≤550℃) or highly preferred oriented growth have been implemented. We successfully prepare crystalline BST thin films at550℃by using Sol-Gel method and metal organic decomposition (MOD) method. The crystalline BST thin film with (100)-oriented growth have been fabricated at700℃by the magnetron sputtering. These processes are one of preparation processes at lower temperature reported so far. The preparation of ferroelectric thin film at low temperature can be very useful for integrated application of OEICs. Besides, we obtained crystalline BST thin film with highly (100)-oriented growth on SiO2/Si substrate at700℃by the magnetron sputtering. The preparation of ferroelectric thin films with highly oriented growth on amorphous SiO2layer has been a hot spot and one of the difficulties of researches in this field.
     We relatively systematically studied the optical and optoelectronic behaviors of polycrystalline BST thin film monolithically integrated on silicon substrate. The optical band gap Eg of crystalline Ba0.Sro.5TiO3film with highly oriented growth on SiO2/Si substrate showing great correlation with the deposition temperature and the thickness of film, which is mainly due to the quantum size effect and influenced by crystallinity of thin film, such as grain boundaries, size, orientation growth and the presence of amorphous phase, etc. It is believed that dependence of the band-gap energies of the thin films on the crystallinity such as deposition temperature and film thickness should find applications in integrated optical devices. We firstly prepare the monolithically integrated Mach-Zehnder electro-optic modulator on silicon substrate based on the polycrystalline Ba0.5Sr0.5TiO3(BST0.7) thin film. The modulation of light has been successfully achieved. The electro-optic coefficient of the polycrystalline BST0.7film is2.4pm/V.
     We successfully designed and prepared a ferroelectric thin film groove-buried optical waveguide. The90°bent structures with a small curvature of micrometers have been also designed on the basis of a double corner mirror structure. It is easy for the waveguides with the designed structures to be fabricated and integrated in OEICs. The quantitative standard measurement of the light transmission loss also becomes easy. The optical propagation losses were about17dB/cm for the5μm wide and300nm thick polycrystalline BST0.7film waveguides at the wavelength of632.8nm. It was found that the optical propagation losses were about12.8and9.4dB/cm and the90°bend losses were about1.2and0.9dB respectively for5and10μm wide waveguides at the wavelength of632.8nm., which are much smaller than that in high index contrast polycrystalline Si/SiO2waveguides for the optical interconnection in monolithic OEICs (34dB/cm) and30%smaller than the optical propagation losses of crystalline BST0.7thin film waveguide. It is obvious that amorphous BST0.7thin film groove-buried type waveguides can be promised in being applied not only for the optical interconnection in monolithic OEICs but also for active waveguide devices on the Si chip despite the optical losses are not very small at present.
     We proposed a new method for thin film optical constants measurement by theoretical analysis. For the amorphous BST0.7film with the thickness of about214nm, the optical band gap is4.27eV and refractive index n=1.94. The extinction coefficient of the film in the visible and near-infrared region is far below the polycrystalline BST film, approximately the magnitude order of10"3.
     We studied the room temperature photoluminescence (PL) properties and mechanism of the amorphous BST and BTO films. The PL phenomenon was well explained by using the model of band to band transition. Due to the PL performance of film, we firstly applied it to LED devices and obtained white LED devices based on the amorphous BTO film. The InGaN/GaN multi-quantum well LEDs based on the150nm thick amorphous BTO film display a blue-white light. The coordinates value of CIE is (0.2139,0.1627).
     Compared with the traditional process, it is more easy for the white LED devices based on the amorphous BTO film to implement the structure of conformal coating. The BTO thin film has high transparent performance in the visible wavelength. The binders were not used in the fabrication of the LEDs based on the amorphous BTO film. So, they could be used at higher temperature. It provides a new way to study LEDs.
引文
[1]M. Daigo, A. Fumito; T. Hideo, et al. Ferroelectric Columnar Liquid Crystal Featuring Confined Polar Groups within Core-Shell Architecture, Science,2012,336 (6078):209-213.
    [2]Gregg, J. Marty. Stressing Ferroelectrics, Science,2012,336 (6077):41-42.
    [3]H. Lu, C. W. Bark, D. Esque de los Ojos. Mechanical Writing of Ferroelectric Polarization, Science,2012,336 (6077):59-61.
    [4]C. T. Nelson, P. Gao, J. R. Jokisaari, et al. Domain Dynamics During Ferroelectric Switching, Science,2011,334 (6058):968-971.
    [5]H. C. Walker, F. Fabrizi, L. Paolasini, et al. Femtoscale Magnetically Induced Lattice Distortions in Multiferroic TbMnO3, Science,2011,333 (6047):1273-1276.
    [6]R. Reddy, Amaranatha, Chenhui Zhu, Renfan Shao, et al. Spontaneous Ferroelectric Order in a Bent-Core Smectic Liquid Crystal of Fluid Orthorhombic Layers, Science,2011,332 (6025): 72-77.
    [7]Chun-Lin Jia, K. W. Urban, M. Alexe, et al. Direct Observation of Continuous Electric Dipole Rotation in Flux-Closure Domains in Ferroelectric Pb(Zr,Ti)O3, Science,2011,331 (6023): 1420-1423.
    [8]V. Garcia, M. Bibes, L. Bocher, et al. Ferroelectric Control of Spin Polarization, Science,2010, 327(5969):1106-1110.
    [9]P. Maksymovych, S. Jesse, Pu Yu, et al. Polarization Control of Electron Tunneling into Ferroelectric Surfaces, Science,2009,324 (5933):1421-1425.
    [10]M. P. Warusawithana, Cheng Cen, C. R. Sleasman, et al. A Ferroelectric Oxide Made Directly on Silicon, Science,2009,324 (5925):367-370.
    [11]K. J. Choi, M. Biegalski, et al. Enhancement of Ferroelectricity in Strained BaTiO3 Thin Films, Science,2004,306:1005-1009.
    [12]Dillon D. Fong, G Brian Stephenson, et al. Ferroelectricity in Ultrathin Perovskite Films, Science,2004,304:1650-1653.
    [13]A. S. Tayi, A. K. Shveyd, A. C-H Sue, et al. Room-Temperature Ferroelectricity in Supramolecular Networks of Charge-transfer Complexes, Nature,2012,488 (7412):485-489.
    [14]V. Garcia, M. Bibes. Electronics inside Story of Ferroelectric Memories, Nature,2012, 483(7389):279-281.
    [15]J. H. Lee, Lei Fang, E. Vlahos, et al. A Strong Ferroelectric Ferromagnet Created by Means of Spin-Lattice Coupling, Nature,2011,476(7358):114.
    [16]N. Choudhury, L. Walizer, S. Lisenkov, et al. Geometric Frustration in Compositionally Modulated Ferroelectrics, Nature,2011,470(7335):513-517.
    [17]J. H. Lee, Lei Fang, E. Vlahos, et al. A Strong Ferroelectric Ferromagnet Created by Means of Spin-lattice Coupling, Nature,2010,466(7309):954-U72.
    [18]S. Horiuchi, Y. Tokunaga, G. Giovannetti, et al. Above-Room-Temperature Ferroelectricity in A Single-Component Molecular Crystal, Nature,2010,463(7282):789-U97.
    [19]V. Garcia, S. Fusil, K. Bouzehouane, et al. Giant Tunnel Electroresistance for Non-Destructive Readout of Ferroelectric States, Nature,2009,460(7251):81-84.
    [20]G. Rijnders, D. H. A. Blank. Materials science:Build your own superlattice, Nature,2005, 433:369-370.
    [21]H. N. Lee, H. M. Christen, et al. Strong Polarization Enhancement in Asymmetric Three-Component Ferroelectric Superlattices, Nature,2005,433:395-399.
    [22]Ming-Wen Chu, I. Szafraniak, et al. Impact of Misfit Dislocations on the Polarization Instability of Epitaxial Nanostructured Ferroelectric Perovskites, Nature Materials,2004,3: 87-90.
    [23]M. Schrader, D. Mienert, Tae-Sik Oh, H. Yoo, et al. An Optical, EPR and Electrical Conductivity Study of Blue Barium Titanate, BaTiO3, Solid State Sciences,2008,10:768-775.
    [24]D. H. Kim, H. S. Kwok. Pulsed Laser Deposition of BaTiO3 Thin films and Their Optical Properties, Appl. Phys. Lett.,1995,67(13):1803-1805.
    [25]R. Ahuja, O. Eriksson, B. Johansson. Electronic and Optical Properties of BaTiO3 and SrTiO3, Journal of Applied Physics,2001,90 (4):1854-1859.
    [26]J. Hwang, T. Kolodiazhnyi, J. Yang, et al. Doping and Temperature-Dependent Optical Properties of Oxygen-Reduced BaTiO3, Physical Review B,2010,82:214109.
    [27]Jianheng Li, Zhifu Liua, B. W. Wessels, et al. Hexagonal Photonic Crystal Waveguide Based on Barium Titanate Thin Films, Proc. of SPIE,2011,7934:79340R-1-7.
    [28]S. Masuda, A. Seki, K. Shiota, et al. Electro-Optic and Dielectric Characterization of Ferroelectric Films for High-Speed Optical Waveguide Modulators, Journal of Applied Physics,2011,109:124108.
    [29]Pingsheng Tang, D. J. Towner, A. L. Meier, et al. Low-Voltage, Polarization-Insensitive, Electro-Optic Modulator Based on A Polydomain Barium Titanate Thin film, Applied Physics Letters,2004,85 (20):4615-4617.
    [30]A. Petraru, J. Schubert, M. Schmid, Ch. Buchal. Ferroelectric BaTiO3 Thin-film Optical Waveguide Modulators, Applied Physics Letters,2002,81 (8):1375-1377.
    [31]G. C. C. Costa, P. S. Maram, A. Navrotsky. Thermodynamics of Nanoscale Lead Titanate and Barium Titanate Perovskites, Journal Of the American Ceramic Society,2012,95(10): 3254-3262.
    [32]A. S. Baturin, K. V. Bulakh, A. V. Zenkevich, et al. Study of the Ferroelectric Properties of BaTiO3 Films Grown on An Iron Sublayer Using Atomic Force Microscopy, Journal of Surface Investigation-X-Ray Synchrotron and Neutron Techniques,2012,6(5):733-737.
    [33]Lingxia Li, Dong Guo, Wangsuo Xia, et al. An Ultra-Broad Working Temperature Dielectric Material of BaTiO3-Based Ceramics with Nd2O3 Addition, Journal of the American Ceramic Society,2012,95(7):2107-2109.
    [34]Xiangrong Wang, Yong Zhang, Xiaozhen Song, et al. Glass Additive In Barium Titanate Ceramics and Its Influence on Electrical Breakdown Strength in Relation with Energy Storage Properties, Journal of the European Ceramic Society,2012,32(3):559-567.
    [35]E. V. Mejia-Uriarte, R. Y. Sato-Berru, M. Navarrete, et al. Determination of Phase Transition by Principal Component Analysis Applied to Raman Spectra of Polycrystalline BaTiO3 at Low and High Temperature, Journal of Applied Research and Technology,2012,10(1):57-62.
    [36]S. Ray, Y. V. Kolen'ko, K. A. Kovnir, et al. Defect Controlled Room Temperature Ferromagnetism in Co-Doped Barium Titanate Nanocrystals, Nanotechnology,2012,23(2): 025702.
    [37]G. Pezzotti, K. Okai, Wenliang Zhu, et al. Stress Tensor Dependence of the Polarized Raman Spectrum of Tetragonal Barium Titanate, Journal of Applied Physics,2012,111(1):013504.
    [38]W. H. Zhang, L. Chen, Y. T. Tao, et al. Raman Study of Barium Titanate with Oxygen Vacancies, Physica B-Condensed Matter,2011,406(24):4630-4633.
    [39]R. Ashiri, A. Nemati, M. S. Ghamsari, et al. A Modified Method for Barium Titanate Nanoparticles Synthesis, Materials Research Bulletin,2011,46(12):2291-2295.
    [40]Zhen Tian, Kun Xin, Mingwei Wang, et al. Terahertz Response of Ferroelectric Nanofibers, Journal of Nanoscience and Nanotechnology,2011,11(11):9636-9640.
    [41]J. G Barbosa, M. R. Pereira, C. Moura, et al. Barium Titanate Thin Films Deposited by Electrophoresis on p-Doped Si(001) Substrates, Journal of Nanoscience and Nanotechnology, 2011,11(10):8700-8704.
    [42]C.B. Samantaray, A. Dhar, D. Bhattacharya, et al. Effect of Post-Deposition Annealing on Microstructural and Optical Properties of Barium Strontium Titanate Thin Films Deposited By R.F. Magnetron Sputtering, Journal of Materials Science:Materials in Electronics,2001,12: 365-370.
    [43]A. K. Bain, T. J. Jackson, et al. Optical Properties of Barium Strontium Titanate (BST) Ferroelectric Thin Films, Ferroelectric Letters,2007,34:149-154.
    [44]K. Takeda, T. Muraishi, T. Hoshina, H. Kakemoto, T. Tsurumi. Birefringence and Electro-Optic Effect in Epitaxial BST Thin Films, Materials Science and Engineering B,2009, 161:61-65.
    [45]D. Y. Wang, J. Wang, H. L. W. Chan, C. L. Choy. Linear Electro-Optic Effect in Bao.7Sr0.3TiO3 Thin Film Grown on LSAT (001) Substrate, Integrated Ferroelectrics,2007,88: 12-20.
    [46]D. Y. Wang, J. Wang, H. L. W. Chan and C. L. Choy. Structural and Electro-Optic Properties of Bao.7Sro.3Ti03 Thin films Grown On Various Substrates Using Pulsed Laser Deposition, Journal of Applied Physics,2007,101:043515.
    [47]K.L. Jim, C.W. Leung, H.L.W. Chan. Photonic Crystal Cavity Embedded Barium Strontium Titanate Thin-film Rib Waveguide Prepared By Focused Ion Beam Etching, Thin Solid Films, 2010,518:e101-e103.
    [48]D. Y. Wang, K. P. Lor, K. K. Chung, et al. Mach-Zehnder Electro-Optic Modulator Based on Epitaxial Bao.7Sro.3Ti03 Thin Films, Ferroelectrics,2007,357:109-114.
    [49]M. Suzuki, K. Nagata, Y. Tanushi, S. Yokoyama. Transient Response in Monolithic Mach-Zehnder Optical Modulator Using (Ba,Sr)TiO3 Film Sputtered at Low Temperature on Silicon, Japanese Journal of Applied Physics,2007,46 (4B):2462-2466.
    [50]Shyuan Yang, B. R. Tull, N. K. Pervez, et al. Asymmetric Leakage in (Ba, Sr)TiO3 Nanoparticle/Parylene-C Composite Capacitors, Journal of Polymer Science Part B-Polymer Physics,2013,51(1):35-38.
    [51]W. Y. Park, M. H. Park, J. H. Lee, et al. Strain Evolution of Each Type of Grains in Poly-Crystalline (Ba,Sr)TiO3 Thin Films Grown by Sputtering, Scientific Reports,2012,2(12): 939.
    [52]Shunyi Li, Yuliang Zheng, R. Jakoby, et al. Electrically Programmable Bistable Capacitor for High-Frequency Applications Based on Charge Storage at the (Ba,Sr)TiO3/Al2O3 Interface, Advanced Functional Materials,2012,22(22):4827-4832.
    [53]V. B. Shirokov, Yu. I. Golovko, V. M. Mukhortov. Optical Properties of Thin Epitaxial Ba0.8Sr0.2TiO3 Films, Technical Physics,2012,57(7):975-980.
    [54]Ruihong Liang, Wanfang Liao, Junwei Wu, et al. Extremely High Tunability of Low Dielectric Constant 1-3 Type (Ba,Sr)TiO3/Resin Epoxy, Journal of the American Ceramic Society,2012,95(7):2120-2123.
    [56]Hong Liu, Jianguo Zhu, Qiang Chen, et al. Enhanced Ferroelectric Properties of Mg Doped (Ba,Sr)TiO3 Thick Films Grown on (001) SrTiO3 Substrates, Thin Solid Films,2012,520(9): 3429-3432.
    [57]M. H. Badr, L. M. Sharaf El-Deen, A. H. Khafagy, et al. Structural and Mechanical Properties Characterization of Barium Strontium Titanate (BST) Ceramics, Journal of Electroceramics, 2011,27(3-4):189-196.
    [58]J. M. Wesselinowa. Ion Doping Effects on the Dielectric and Phonon Properties of (Ba, Sr)TiO3 Thin Films, International Journal of Modern Physics B,2011,25(25):3289-3301.
    [59]N. Kobayashi, T. Ishigaki, T. Watanabe, et al. Synthesis of Pure, Crystalline (Ba,Sr)TiO3 Nanosized Powders in Radio Frequency Induction Thermal Plasma, International Journal of Applied Ceramic Technology,2011,8(5):1125-1135.
    [60]Meng Wang, Jianjun Li, Qiang Lei, et al. Fabrication, Dielectric and Ferroelectric Properties of Bao.6Sro.4Ti03 Film with Preferred Orientation, Journal of Materials Science-Materials in Electronics,2011,22(8):1033-1039.
    [61]Le Wang, Xiaoli Wang, Jing Shi, et al. Unusually Soft Ferroelectricity in (Ba1-xSrx)TiO3 Ceramics, Physica Status Solidi A-Applications and Materials Science,2011,208(8): 1960-1963.
    [62]Y. C. Liang, C. L. Huang, C. Y. Hu. Effects of Growth Temperature on Structure and Electrical Properties of Dielectric (Ba,Sr)TiO3 Capacitors with Transparent Conducting Oxide Electrodes, Journal of Alloys and Compounds,2011,509(30):7948-7952.
    [63]S. H. Xiao, W. F. Jiang, K. Luo, et al. Structure and Ferroelectric Properties of Barium Titanate Films Synthesized By Sol-Gel Method, Materials Chemistry and Physics,2011, 127(3):420-425.
    [64]N. Abe, M. Hoshino, N. Kitamura, et al. Evaluation and Reliability Improvement Investigation of Electrical Characteristics of Ba0.9Sr0.1TiO3 Dielectric Films Prepared by Electrophoretic Deposition Method, Japanese Journal of Applied Physics,2011,50(5): 051502.
    [65]Li Dai, Dayong Li, Chao Xu, et al. Influence of Hf4+ Ions Concentration on the Defect Structure and Exposure Energy in Hf:Ho:LiNbO3, Optics and Laser Technology,2013,45: 503-507.
    [66]A. Dhar, N. Singh, R. K. Singh, et al. Low Temperature dc Electrical Conduction in Reduced Lithium Niobate Single Crystals, Journal of Physics and Chemistry of Solids,2012,74 (1): 146-151.
    [67]Yannan Qian, Rui Wang, Biao Wang, et al. Growth of Zr Codoped Er:LiNbO3 and Er/Yb:LiNbO3 Single Crystal, Journal of Crystal Growth,2012,361:85-88.
    [68]M. Chauvet, L. Al Fares, B. Guichardaz, et al. Integrated Optofluidic Index Sensor Based on Self-Trapped Beams in LiNbO3, Applied Physics Letters,2012,101 (18):181104.
    [69]S.Y. Xu, B. Chen, P. R. Hua, et al. Refractive Index Profile in Special Structure of Optical-Damage-Resistant Mg-Diffused Near-Stoichiometric Ti:Mg:LiNbO3 Waveguide, Journal of Lightwave Technology,2012,30(21):3330-3337.
    [70]T. Nishimatsu, K. Aoyagi, T. Kiguchi, et al. Molecular Dynamics Simulation of 90 degrees Ferroelectric Domains in PbTiO3, Journal of the Physical Society of Japan,2012,81(12): 124702.
    [71]G. Pilania, R. Ramprasad. Dielectric Permittivity of Ultrathin PbTiO3 Nanowires from First Principles, Journal of Materials Science,2012,47(21):7580-7586.
    [72]I. Tomeno, J. A. Fernandez-Baca, K. J. Marty, et al. Simultaneous Softening of Acoustic and Optical Modes in Cubic PbTiO3, Physical Review B,2012,86(13):134306.
    [73]Z. Liu, Z.H. Ren, Z. Xiao, et al. Size-Controlled Single-Crystal Perovskite PbTiO3 Nanofibers from Edge-Shared TiO6 Octahedron Columns, Small,2012,8(19):2959-2963.
    [74]Jun He, G. B. Stephenson, S. M. Nakhmanson. Electronic Surface Compensation of Polarization in PbTiO3 Films, Journal of Applied Physics,2012,112(5):054112.
    [75]D. M. Potrepka, L. M. Sanchez, R. G. Polcawich, et al. Atomic Layer Deposition of Pt Growth Template for Orienting PbZrxTi1-xO3 Thin Films, Journal of Vacuum Science & Technology A,2012,30(1):01A129.
    [76]N. Tayebi, S. Kim, R. J. Chen, et al. Tuning the Built-in Electric Field in Ferroelectric Pb(Zr0.2Ti0.8)03 Films for Long-Term Stability of Single-Digit Nanometer Inverted Domains, Nano Letters,2012,12(11):5455-5463.
    [77]S. Kataoka, T. Arie, S. Akita. Improvement of Transfer Characteristic for Carbon Nanotube Field Effect Transistor with Poly Crystalline PbZrxTi1-xO3 Gate by Ionic Liquid, Applied Physics Letters,2011,99(22):223514.
    [78]J. Rho, S. J. Kim, W. Heo, et al. PbZrxTi1-xO3 Ferroelectric Thin-Film Capacitors for Flexible Nonvolatile Memory Applications, IEEE Electron Device Letters,2010,31(9):1017-1019.
    [79]K. Wieczorek, Z. Ujma, K. Popek, et al. Phase Transition of Displacive Type in PbZr0.94Ti0.06O3, Journal of Physics-Condensed Matter,2009,21(11):115901.
    [80]A. Mesquita, M. I. Basso Bernardi, C. Godart, et al. Grain Size Effect on the Structural and Dielectric Properties of Pb0.85La0.15TiO3 ferroelectric ceramic compound, Ceramics International,2012,38(7):5879-5887.
    [81]F. A. Londono, J. A. Eiras, D. Garcia. Optical and Electro-Optical Properties of (Pb,La)TiO3 Transparent Ceramics, Optical Materials,2012,34(8):1310-1313.
    [82]V. R. Mastelaro, Y. P. Mascarenhas, P. P. Neves, et al. Spontaneous Long and Short-Range Ferroelectric Ordering in Pb0.55La0.30TiO3 Ceramics, Journal of Applied Physics,2010,107(11): 114103.
    [83]Y. Deng, J. X. Zhou, Y. L. Du, et al. Polymer-Assisted Hydrothermal Synthesis of Single Crystal Pb1-xLaxTiO3 Nanorods, Materials Letters,2009,63(11):937-939.
    [84]W. L. Zhu, J. L. Zhu, Y. S. Luo, et al. Effect of A LaSrCoO3 Buffer Layer on Pb1-xLaxTi1-xO3 Films Studied by Polarized Raman Spectroscopy, Applied Surface Science,2010,256(22): 6673-6677.
    [85]A. Mesquita, C. Godart, A. Michalowicz, et al. Size-Induced Diffuse Behavior in Pb0.89La0.11Zr0.40Ti0.60O3 Nanocrystalline Ferroelectric Ceramics, Solid State Sciences,2012, 14(9):1392-1397.
    [86]E. Perez-Delfin, J. E. Garcia, A. Vega-Garcia, et al. Influence of Mn-doping on Phase Transition Characteristics and Relaxor Behaviour of Lead Lanthanum Zirconate Titanate Ceramics, Journal of the European Ceramic Society,2012,32(8):1659-1665.
    [87]J. M. Oh, K. Takeda, T. Hoshina, et al. Longitudinal Electro-Optic Effect of Highly (100) Oriented (Pb,La)(Zr,Ti)O3 Film Grown on A Transparent Al-doped ZnO Electrode, Journal of the Ceramic Society of Japan,2012,120(1401):166-170.
    [88]Z. H. Cui, G. Gregori, A. L. Ding, et al. Electrical Transport Properties of Transparent PLZT Ceramics:Bulk and Grain Boundaries, Solid State Ionics,2012,208:4-7.
    [89]T. Wasanapiarnpong, N. Cherdtham, S. Phungsripheng. Effects of Titanium Nitride Doping on Properties of Ferroelectric PLZT (3/52/48) Ceramics, Journal of the Australian Ceramic Society,2012,48(2):227-231.
    [90]T. Yamanaka, M. Ahart, Y. Nakamoto, et al. Anharmonic Atomic Vibrations in the Relaxor Ferroelectric Pb(Mg1/3Nb2/3)O3 Under Pressure, Physical Review B,2012,86(17):174108.
    [91]L. S. Kamzina, Wei Ruan, Guorong Li, et al. Transparent Ferroelectric Ceramics PbMg1/3Nb2/303-xPbZr0.53Ti0.4703:Dielectric and Electro-Optical Properties, Physics of the Solid State,2012,54(10):2024-2029.
    [92]N. Novak, R. Pirc, M. Wencka, et al. High-Resolution Calorimetric Study of Pb(Mg1/3Nb2/3)O3 Single Crystal, Physical Review Letters,2012,109(3):037601.
    [93]Wei Ruan, Guorong Li, Jiangtao Zeng, et al. Fabrication of PMN-PZT Transparent Ceramics by Two-Stage Sintering, Journal of the American Ceramic Society,2012,95(7):2103-2106.
    [94]N. Novak, R. Pirc, Z. Kutnjak. Impact of the Electric Field on the Freezing Dynamics of Pb(Mg1/3Nb2/3)O3, Ferroelectrics,2012,426(SI):31-37.
    [95]O. Subohi, G. S. Kumar, M. M. Malik, et al. Dielectric Properties of Bismuth Titanate (Bi4Ti3O12) Synthesized Using Solution Combustion Route, Physica B-Condensed Matter, 2012,407(18):3813-3817.
    [96]Y. Kitanaka, Y. Noguchi, M. Miyayama, et al. Elastic and Piezoelectric Properties of High-Quality Ferroelectric Bi4Ti3O12 Single Crystals, Japanese Journal of Applied Physics, 2012,51(9):09LD08.
    [97]Sijun Luo, Chuanbin Wang, Song Zhang, et al. Epitaxial Integration of (100) Bi4Ti3O12 with (0001) ZnO through Long-Range Lattice Matching, Applied Physics Express,2012,5(8): 085801.
    [98]M. S. Wu, Z. M. Tian, S. L. Yuan, et al. Dielectric Behavior and ac Conductivity in Aurivillius Bi4Ti3O12 Doped by Antiferromagnetic BiFeO3, Physics Letters A,2012, 376(28-29):2062-2066.
    [99]W. S. Choi, H. N. Lee. Band Gap Tuning In Ferroelectric Bi4Ti3O12 by Alloying with LaTMO3 (TM= Ti, V, Cr, Mn, Co, Ni, and Al), Applied Physics Letters,2012,100(13): 132903.
    [100]V. B. dos Santos, J. C. M'Peko, V. R. Mastelaro, et al. Correlating Phase and Microstructure Development Versus Dielectric Properties in La3+and Er3+ Co-Doped Bi4Ti3O12 Ferroelectric Ceramics, Journal of Alloys and Compounds,2012,510(1):60-65.
    [101]S. Y. Wang, Xue Qiu, W. F. Liu, et al. Improved Dielectric and Insulating Properties of Ba0.5Sr0.5TiO3 Films Fabricated by Laser Molecular-Beam Epitaxy with Active Oxygen, Journal of Crystal Growth,2011,324(1):130-133.
    [102]G. Niu, B. Gautier, S. Yin, et al. Molecular Beam Epitaxy Growth of BaTiO3 Thin Films and Crucial Impact of Oxygen Content Conditions on the Electrical Characteristics, Thin Solid Films,2012,520(14):4595-4599.
    [103]Yu. A. Draginda, S. G. Yudin, V. V. Lazarev, et al. Vacuum-Evaporated Ferroelectric Films and Heterostructures of Vinylidene Fluoride/Trifluoroethylene Copolymer, Crystallography Reports,2012,57(3):421-425.
    [104]Wei Cai, Chunlin Fu, Jiacheng Gao, Qian Guo, Xiaoling Deng, et al. Preparation and Optical Properties of Barium Titanate Thin films, Physica B,2011,406:3583-3587.
    [105]姜维海,林泽彬,刘行冰,蔡苇,符春林.溶胶-凝胶法制备掺镧钛酸钡薄膜及其光学性质研究,重庆科技学院学报(自然科学版),2011,13(5):114-116.
    [106]吴继清,章天金,汪竞阳,余琳,潘瑞琨.Ho3+掺杂的Ba0.8Sr0.2TiO3)厚膜的发光特性,发光学报,2011,32(1):12-15.
    [107]Tianjin Zhang, Animesh Jha, Shaoxiong Shen, et al. Lattice Strain Dependent Optical Transitions in Ho3+ -Ion Doped Barium Strontium Titanate Thin films, J. Mater. Sci:Mater. Electron,2009,20:S190-S194.
    [108]N. S. Negi, D. R. Sharma, A. C. Rastogi. Metallo-Organic Decomposition Synthesis and Characterization Of Ferroelectric (Pb1-xCax)TiO3 thin films, Integrated Ferroelectrics,2007,92: 97-113.
    [109]R. Ashiri, Ali Nemati, M. S. Ghamsari, H. Aadelkhani. Characterization of Optical Properties of Amorphous BaTiO3 Nanothin films, Journal of Non-Crystalline Solids,2009,355: 2480-2484.
    [110]F.M. Pontes, E. Longo, et al. Photoluminescence at Room Temperature in Amorphous SrTiO3 Thin Films Obtained by Chemical Solution Deposition, Materials Chemistry and Physics,2002,77:598-602.
    [111]D.M.A. Melo, A. Cesar, et al. Room Temperature Photolumiescene of Amorphous BaxSr1-xTiO3 Doped with Chromium, Journal of Solid State Chemistry,2004,177:670-67'4.
    [112]P.S. Pizani, E.R. Leite, et al. Potoluminescene of Disordered ABO3 Perovskites, Applied Physics Letters,2000,77:824-826.
    [113]张五星等.Sol-gel法制备BST铁电薄膜及其性能分析,压电与声光,2004,26(1):45-48.
    [114]叶杨等Ba0.7Sr0.3TiO3薄膜的制备结构及性能研究,无机材料学报,2002,17(1):125-130.
    [115]鲍景波等.Mn掺杂BST薄膜的制备与表征,压电与声光,2002,24(5):389-393.
    [116]刘柏年,马颖,周益春.BaTiO3铁电体中应变—极化耦合效应的分子动力学模拟,无机材料学报,2010,25(12):1247-1251.
    [117]李春艳,刘雪华,刁飞玉,梁文双,王乙潜,P. Petrov, N. Alford.钛酸锶钡薄膜中微观结构缺陷及其形成机理,无机材料学报,2012,27(3):285-290.
    [118]邓湘云,王晓慧,李龙土.纳米晶钛酸钡陶瓷尺寸效应的研究,稀有金属材料与工程,2008,S1:810-812.
    [119]王根水等.化学溶液制备的Ba0.9Sr0.1TiO3薄膜的结构及光学性能研究,红外与毫米波学报,2002,21(1):37-40.
    [120]刘世建等.射频磁控溅射法制备Ba0.7Sr0.5TiO3铁电薄膜,压电与声光,2001,23(4):293-295.
    [121]高微微.稀土Eu离子掺杂钛酸钡材料的制备及其光学性能,首都师范大学,硕士学位论文,2009,4.
    [122]Zuci Quan, Hao Hu, Shishang Guo, Wei Liu, et al. Effect of Annealing Temperature on Microstructure, Optical and Electrical Properties of Sputtered Ba0.9Sr0.1TiO3 Thin Flms, Applied Surface Science,2009,255:9045-9053.
    [123]Jinglin Shang, Gujin Hu, Ting Zhang, et al. Effect of Polyethylene Glycol Content on the Optical Properties of Ba0.9Sr0.1TiO3 Multilayers, J. Am. Ceram. Soc.,2009,92 (2):539-541.
    [124]Y. Yin, H. Ye, C. Zhang, et al. Determination of Refractive Indices and Thicknesses of Flms with and without MgO (001) Buffer Layer on Silicon Substrate, Journal of Applied Physics,2009,106:074103.
    [125]Jun Wang, Junhuai Xiang, Lingyun Bai, et al. Microstructure, Dielectric and Optical Properties of Compositionally Graded Ba1-xSrxTiO3 Thin Flm, Materials Chemistry and Physics,2008,112:542-545.
    [126]G. S. Wang, Y. Y. Zhang, et al. Composition Dependence of Structural and Optical Properties for Sol-Gel Derived (100)-Oriented Ba1-xSrxTiO3 Thin Films, Applied Physics Letters,2007, 91:061104.
    [127]Jinbao Xu, Jiwei Zhai, Xi Yao. Electrical and Infrared Optical Properties of Ba0.7Sr0.3TiO3 Thin Films Prepared by A Sol-Gel Process, Ferroelectrics,2007,357:148-153.
    [128]尹开锯PLZT, BST铁电薄膜光学特性研究,电子科技大学,硕士学位论文,2006,4.
    [129]M. Suzuki, K. Nagata, S. Yokoyama. Imprint Property of Optical Mach-Zehnder Interferometers Using (Ba,Sr)TiO3 Sputter-Deposited at 450℃, Jpn. J. Appl. Phys.,2008,47: 2897-2901.
    [130]San-Yuan Chen, Hong-Wen Wang, Li-Chi Huang, Role of An Intermediate Phase (Ba,Sr)2Ti2O5CO3 in Doped (Ba0.7Sr0.3)TiO3 Thin Films, Materials Chemistry and Physics, 2002,77:632-638.
    [131]S. B. Singh, H. B. Sharma, H. N. K. Sarma, et al. Influence of Crystallization on the Spectral Features of Nano-Sized Ferroelectric Barium Strontium Titanate Ba0.7Sr0.3TiO3 Thin Films, Physica B-Condensed Matter,2008,403(17):2678-2683.
    [132]S. B. Singh, H. B. Sharma, H. N. K. Sarma, et al. Structural and Optical Properties of Barium Strontium Titanate (Ba0.5Sr0.5TiO3) Thin Films, Ferroelectrics Letters Section,2006, 33(3-4):83-90.
    [133]Ala'eddin A. Saif, P. Poopalan. AC Conductivity and Dielectric Relaxation Behavior of Sol-Gel BaxSr1-xTiO3 Thin Films, Journal of Materials Science & Technology,2011,27(9): 802-808.
    [134]Y. J. Seo, W. S. Lee. Chemical Mechanical Polishing of Ba0.6Sr0.4TiO3 Film Prepared by Sol-Gel Method, Microelectronic Engineering,2004,75(2):149-154.
    [135]W. J. Lee, I. Park, G. E. Jang, et al. Electrical Properties and Crystal Structure of (Ba0.5Sr0.5)TiO3 Thin Films Prepared on Pt/SiO2/Si by RF Magnetron Sputtering, Jpn. J. Appl. Phys.,1995,34:196-199.
    [136]T. G. Kim, J. Oh, Y. Kim, T. Moon, et al. Crystallinity Dependence of Microwave Dielectric Properties in (Ba,Sr)TiO3 Thin Films, Jpn. J. Appl. Phys.,2003,42:1315-1319.
    [137]F. M. Pontes, E. R. Leite, et al. Ferroelectric and Optical Properties of Ba0.8Sr0.2TiO3 Thin Film, J. Appl. Phys.,2002,91:5972.
    [138]B. Panda, A. Dhar, G.D. Nigam, D, Bhattacharya and S.K. Ray. Optical Properties of RF Sputtered Strontium Substituted Barium Titanate Thin Films. Thin Solid Films,1998,332(1-2): 46-49.
    [139]Y. P. Wang and T. Y. Tseng. Optical and Structural Properties of (Ba, Sr)TiO3 Thin Films Grown by Radio-Frequency Magnetron Sputtering, Journal of Materials Science,1999,34(18): 4573-4578.
    [140]F. Tchelbou, U.S. Ryu, et al. On the Microstructure and Optical Properties of Ba0.5Sr0.5TiO3 films, Thin Solid Films,1997,299(1-2):14-17.
    [141]Takamaro Kikkawa, Naonori Fujiwara, et al. Energy Band Structure of Ru/(Ba,Sr)TiO3/Si Capacitor Deposited by Inductively-Coupled Plasma-Assisted Radio-Frequency-Magnetron Plasma Sputtering, Appl. Phys. Lett.,2002,81:2821-2823.
    [142]Jang-Sik Lee, H. Wang, et al. Lateral Epitaxial Growth of (Ba,Sr)TiO3 Thin Films, Appl. Phys. Lett.,2003,83:5494-5496.
    [143]Dal-Young Kim, Seung Eon Moon, Eun-Kyung Kim, et al. Electro-Optic Characteristics of (001)-Oriented Bao.6Sro.4Ti03 Thin Films, Appl. Phys. Lett.82 (2003) 1455-1457.
    [144]J.C. Tauc. Amorphous and Liquid Semiconductor, Plenum Press, New York, (1974):159.
    [145]J.C. Tauc. Optical Properties of Solids, North-Holland, Amsterdam, (1972):372.
    [146]J. F. Scott. Ferroelectric Memories, Springer, Berlin, (2000).
    [147]H. S. Gu, D. H. Bao, S. M. Wang, et al. Synthesis and Optical Properties of Highly C-Axis Oriented Bi4Ti3O12 Thin Films by Sol-Gel Processing, Thin Solid Films,1996,283(1-2): 81-83.
    [148]Dinghua Bao, Xi Yao, Naoki Wakiya, et al. Band-gap Energies of Sol-Gel-Derived SrTiO3 Thin Films, Appl. Phys. Lett.,2001,79:3767-3769.
    [149]G. Hodes, A. A. Yaron, et al. Three-Dimensional Quantum-Size Effect in Chemically Deposited Cadmium Selenide Films, Phys. Rev. B,1987,36(8):4215-4221.
    [150]K. L. Chopra, P. D. Paulson, V. Dutta. Thin-film Solar Cells:An Overview, Progress in Photovoltaics:Res. and Appl.,2004,12(2-3):69-92.
    [151]M. G. Krishna and A. K. Bhattacharya. Effect of Thickness on the Optical Absorption Edge of Sputtered Vanadium Oxide Films, Mater. Sci. Eng. B,1997,49(2):166-171.
    [152]A. Petraru, J. Schubert, M. Schmid, et al. Integrated Optical Mach Zehnder Modulator Based on Polycrystalline BaTiO3, Optics Lett.,2003,28(24):2527-2529.
    [153]Xiaofeng Chen, et al. Structural and Thermal Analyses On Phase Evolution of Sol-Gel (Ba,Sr)TiO3 Thin Films, Surface and Coatings Technology,2003,167:203-206.
    [154]A. S. Liu, R. Jones, L. Xiao, D. S. Rubio, et al. A high-Speed Silicon Optical Modulator Based on A Metal-Oxide-Semiconductor Capacitor, Nature,2004,427:615-618.
    [155]Hiroshi Nishihara, Masamitsu Haruna, Toshiaka Suhara. Optical Integrated Circuits (McGraw-Hill Professional,1 edition,1989), p.27.
    [156]Y. P. Li, C. H. Henry. Optical Fiber Telecommun. ⅢB, (1997),319-372.
    [157]M. Kawachi. Silica Waveguides on Silicon and Their Application to Integrated-Optic Components, Opt.& Quantum Electron.,1990,22(5):391-416.
    [158]P. Kersten, F. Bakthi. Passive Optical Components for WDM Applications, Proc. SPIE,2001, 4277:54-68.
    [159]R. L. Espinola, R. U. Ahmad, et al. A Study of High-Index-Contrast 90 Degree Waveguide Bend Structures, Optics Express,2001,8(9):517-528.
    [160]J. Foresi, P. Villeneuve, J. Ferrera, et al. Photonic-Bandgap Microcavities in Optical Waveguides, Nature,1997,390:143-145.
    [161]J. Foresi, D. Lim, L. Liao, et al. Silicon-Based Monolithic and Hybrid Optoelectronic Devices, Proc. SPIE,1997,3007:112-118.
    [162]K. Lee, D. Lim, A. Agarwal, et al. Performance of Polycrystalline Silicon Waveguide Devices for Compact on-Chip Optical Interconnection, Proc. SPIE,1999,3847:120-125.
    [163]Kevin K. Lee, et al. Effect of Size and Roughness on Light Transmission in A Si/SiO2 Waveguide:Experiments and Model, Applied Physics Letters,2000,77:1617-1619.
    [164]J. S. Foresi, M. R. Black, et al. Losses in Polycrystalline Silicon Waveguides, Applied Physics Letters,1996,68:2052.
    [165]Anuradha M. Agarwal, et al. Low-Loss Polycrystalline Silicon Waveguides for Silicon Photonics, Journal of Appl. Phys.,1996,80(11):6120-6123.
    [166]W. Zhu, O. K. Tan, et al. Preparation, Property, and Mechanism Studies of Amorphous Ferroelectric (Ba,Sr)TiO3 Thin Films for Novel Metal-Ferroelectric-Metal Type Hydrogen Gas Sensors, J. Mater. Res.2000,15(6):1291-1302.
    [167]T. G. Kim, J. Oh, Y. Kim, et al. Crystallinity Dependence of Microwave Dielectric Properties in (Ba,Sr)TiO3 Thin Films, Jpn. J. Appl.Phys.2003,42:1315-1319.
    [168]J. C. Manifacier, J. Gasiot, et al. A simple method for the determination of the optical constants n, k and the thickness of a weakly absorbing thin film, J. Phys. E, Sci. Instrum.,1976, 9(11):1002-1004.
    [169]R. Swanepoel. Determination of the Thickness and Optical Constants of Amorphous Silicon, J. Phys. E, Sci. Instrum.,1983,16(12):1214-1222.
    [170]K. K. Rebane. Impurity Spectra of Solids, Plenum, New York,1970, p70
    [171]M. Borodisky, E. Yablonovitch. Light-Emitting Diode Extraction Efficiency, Proc. SPIE., 1997,3002:119.
    [172]熊慰.大功率LED路灯散热分析与设计[硕士学位论文].武汉:华中科技大学,2009.
    [173]K. S. Lee, E. J. Kang, et al. Improved Light-Output and Electrical Performance of Ingan-Based Light-Emitting Diode By Microroughening of the p-GaN Surface, Jour. Appl. Phys.,2003,93(11):9383-9385.
    [174]J. J. Wierer. High-Power AlGaInN Flip-Chip Light-Emitting Diodes, Appl Phys Lett.,2001, 78(22):3379-3381.
    [175]J. K. Kim, T. Gessmann, et al. GaInN Light-Emitting Diodes with RuO2/SiO2/Ag Omni-Directional Reflector, Appl. Phys. Lett.,2004,84(22):4508-4510.
    [176]E. Yablonovitch. Inhibited Spontaneous Emission in Solid-State Physics and Electronics, Phys. Rev. Lett.,1987,58(20):2059-2062.
    [177]S. Fan, P. R. Villeneuve. High Extraction Efficiency of Spontaneous Emission from Slabs of Photonic Crystals, Phys. Rev. Lett.,1997,78(17):3294-3297.
    [178]李小丽.纳米压印技术制作光子晶体结构及其应用研究[博士学位论文].上海:上海交通大学,2009.
    [179]H. Ichikawa, T. Baba. Efficiency Enhancement in A Light-Emitting Diode With A Two-Dimensional Surface Grating Photonic Crystal, Appl. Phys. Lett.,2004,84(4):457-459.
    [180]D. H. Kim, et al. Enhanced Light Extraction from Gan-Based Light-Emitting Diodes with Holographically Generated Two-Dimensional Photonic Crystal Patterns. Appl. Phys. Lett., 2005,87(20):203508.
    [181]D. H. Long, I. K. Hwang, et al. Design Optimization of Photonic Crystal Structure for Improved Light Extraction of GaN LED, IEEE Jour. Sele. Top. Quan. Electro.,2009,15(4): 1257-1263.
    [182]J. Lee, D. H. Kim, et al. GaN-Based Light-Emitting Diodes Directly Grown on Sapphire Substrate with Holographically Generated Two-Dimensional Photonic Crystal Patterns, Cur. Appl. Phy.,2009,9(3):633-635.
    [183]刘文,王磊,周宁,张义文,邱飞,徐智谋,王定理,李林松,曹明德.采用纳米压印技术制作DWDM激光器的研究,中国通信,2010,7(3):134-138.
    [184]G Y. Jung, et al. Circuit Fabrication at 17 nm Half-Pitch by Nanoimprint Lithography, Nano Letters,2006,6(3):351-354.
    [185]E. Orhan, J. A. Varela, et al. Room-temperature photoluminescence of BaTiO3:Joint experimental and theoretical study, Physical review B,2005,71(8):085113.
    [186]S. Nishiura, S. Tanabe, et al. Properties of Transparent Ce:YAG Ceramic Phosphors for White LED, Optical Materials,2011,33(5):688-691.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700