液体电介质局放声测的光纤非本征法珀型传感器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
声发射探测技术是监测由局部放电引起的液—固复合绝缘电力设备的突发性故障的有效方法。与压电式超声传感器相比,光纤传感器可埋入液体介质中直接测量局部放电声发射信号,信号的传输及传感过程均不受电磁干扰。光纤非本征法珀型传感器是由声波与光波耦合元件——膜片、光纤端面及中间的腔体构成,体积小、结构灵活、无需保偏装置,用于液体介质中的局部放电探测有潜在的竞争力。本文就传感器的结构参数设计、元件及传感器的制备、特性的描述、仿真分析和试验测试、环境影响因素及消除方法等开展了研究工作。
     提出用于液体介质局部放电监测的光纤非本征法珀型传感器的结构设计方法,用仿真和超声激励法对膜的结构尺寸与传感器灵敏度、一阶固有频率的关系进行理论分析和测试;研制应用石英膜和基于MEMS工艺制备的硅膜分别与尾纤端面构成的法珀传感器,研究利用传感器构成元件的结构参数与性能的改变提高灵敏度的方法;分析了传感器光谱特性产生附加调制的原因并提出解决的方案。
     利用超声激励法对传感器偏离工作点产生的信号传递增益下降、波形畸变等问题进行分析。利用理论估算和实验测试随温度造成传感器结构热膨胀改变法珀腔长而改变传感器特性曲线上工作点的规律。研究传感器对声波信号的不同调制方法及解调方法,并重点研究工作点在强度调制中的意义。
     提出应用中心波长可改变的分布式光源照明传感器的方法,自动跟踪由温度和静液压改变腔长而改变的工作点。针对环境温度和液体静压力的变化使得传感器的工作点漂移导致传递特性劣化的问题,根据法珀传感器的基本理论,通过改变光源的中心波长改变传感器的特性曲线,使测试保证在理想工作点状态下进行。构建这种光源和实验系统,检验工作点调节效果。
     对局部放电进行测试确定传感器的结构参数。利用实验室制备的不同材料、结构参数和不同端面反射率的传感器及工作点调节系统,在实验室建立的局部放电测试系统下进行测试。通过对不同放电电压下的局部放电声发射信号进行测量,分析的影响局部放电声信号测试的因素,如传感器的膜的厚度和有效面积、端面反射率、固有频率等。端面反射率90%的尾纤和4mm×4mm×60μm的镀金硅膜构成的传感器放置在距针板放电源20cm处,在实验室建立的装置下测试的可测放电量为0.3~130kpC。
Acoustic emission detection technology is an effective way to monitor sudden failure caused by partial discharge (PD) in liquid-solid composite insulation of electrical equipment. Compared to piezoelectric acoustic sensors, fiber optic sensor buried in the liquid medium can detect PD-induced acoustic directly. The signal transmission and sensing process are not subject to electromagnetic interference from the environment. Extrinsic fiber Fabry-Perot (FP) sensor is made of a diaphragm as coupling components to acoustic and light, end face of optical fiber and a cavity composed. The sensor has compact and flexible structure without polarization component, which has potential prospect for PD detection in liquid. Research in the paper was carried out about structure design of FP sensor and preparation, characteristic description, simulation and experiment to the sensor and its component. The effect of environmental factors and elimination methods were studied.
     Structure design method of extrinsic fiber FP sensor is set up for monitoring PD in liquid medium. The relationship was obtained by simulation and ultrasonic excitation between the sensitivity and first-order natural frequency of the sensor and structure parameters of the diaphragm. FP sensors were made of pigtail and silicon diaphragm by MEMS or quartz diaphragm respectively. The structural parameters and performance changes of components of the sensor were studied to improve the sensitivity. Reason about the additional modulation in spectral characteristics of FP sensor were analysed and the solutions were put forward.
     Drift of operating point of the sensor resulted in decreased gain and distorted waveform by acoustic excitation. The laws of change of the operating point on the sensor characteristic curves was obtained by theoretical estimates and experimental tests with the change of cavity length caused by thermal expansion of the sensor structure. Modulation and demodulation methods of FP sensors on the acoustic signal were investigated, which focused on the significance of operating point in the intensity modulation.
     A distribution source with tunable center wavelength was put forward to launch the sensor in order to track automatically operating point with changes of FP cavity length caused by temperature and hydrostatic pressure. Drift of the operating point of the sensor by changes of ambient temperature and hydrostatic pressure result in degradation of transmission characteristics. According to interference principle FP sensor, characteristic curve of FP sensor can be changed by the source with tunable center wavelength. This technology can be able to ensure the ideal point, and the source and the experimental system were built up to test the effect of adjusting operating point.
     The structure parameters of the sensor were determined to detect PD-induced acoustic emission. Seven types of sensors with different materials, structural parameters and different end-reflectance were prepared to detect PD-induced acoustic signals in the system set up in the lab. The test was achieved in the operating point-adjusting systems with the source of tunable center wavelength. PD-induced acoustic signals were test under different discharge voltage. The effects on PD-induced acoustic detecting of the structure parameters and frequency characteristics of the sensor, such as thickness and effective area of the diaghragm, face reflectivity, and natural frequencies were analyzed. FP sensors with 90% end reflectivity of the pigtail and 4mm×4mm×60μm silicon diaphragm with gold coating film were able to detect 0.3~130kpC of discharge level at 2cm from discharge source in the laboratory test.
引文
[1]孙才新.输变电设备运行安全与故障防御理论中几个问题的探讨.中国电机工程学会高压专委会2007年学术年会论文集[C],深圳,中国,2007:T10-18.
    [2] Joint Working Group 33/23.12. Insulation co-ordination of GIS: return of experience, on site tests and diagnostic techniques[S]. Electra, 1998, 176(2): 67-97.
    [3]邱昌容,曹晓珑.电气绝缘测试技术[M].第3版.北京:机械工业出版社,2006:123-134.
    [4] IEEE Power Engineering Society. IEEE Std C57.127-2007. IEEE guide for the detection and location of acoustic emissions from partial discharges in oil-immersed power transformers and reactors[S]. New York, USA: Transformers Committee, 2007: 9-18.
    [5]刘少克.局部放电在线监测电流传感器的等效电路及其参数计算[J].国防科技大学学报,2000,22(6):34-37.
    [6]方琼,王凯,徐阳,等.大尺寸磁心式局部放电电流传感器的研究[J].高电压技术,2002,28(9): 24-25.
    [7] ROBLES1 G, ARGIIESO1 M, SANZI J, etal. Identification of parameters in a Rogowski coil used for the measurement of partial discharges[C]. IMTC 2007-IEEE Instrumentation and Measurement Technology Conference, Warsaw, Poland, May 1-3, 2007: 1-4.
    [8]邱昌容.局部放电特性的研究和测量技术的发展[J].电工技术学报,1986,(2):45-50.
    [9]桂峻峰,高文胜,谈克雄.变压器绕组局部放电脉冲响应的相关分析及电气定位[J].清华大学学报(自然科学版),2003,43(3):304-306.
    [10]唐炬,宋胜利,李剑,等.局部放电信号在变压器绕组中传播特性研究[J].中国电机工程学报,2002,22(10): 91-96.
    [11]王国利,郝艳捧,贾志东,等.电力变压器典型局部放电模型放电脉冲的特性研究[J].高电压技术,2001,27(2): 5-8.
    [12]谈克雄,朱德恒,王振远,等.基于人工神经网络的局部放电识别[J].高电压技术,1996,22(1):21-24.
    [13]董旭柱,王昌长,王忠东,等.电力变压器局部放电在线标定的研究[J].清华大学学报(自然科学版),1997,37(4):40-44.
    [14]罗亚桥.脉冲电流法和超声波法局部放电测试浅析[J].电力电容器,1996,(2):31-35.
    [15]孙才新,廖瑞金,陈伟根,等.变压器油中溶解气体在线监测研究[J].电工技术学报,1996,11(2):11-15.
    [16]程鹏,佟来生,吴广宁,等.大型变压器油中溶解气体在线监测技术进展[J].电力自动化设备,2004,24(11):90-93.
    [17] TSUKIOKA H, SUGAWARA K, MORI E. Apparatus for continuously monitoring hydrogen gas dissolved in transformer oil[J]. IEEE Transactions on Electrical Insulation, 1981,16(6):502-509.
    [18]李红雷.油浸电力设备在线色谱监测及诊断系统的研究[D].上海交通大学(博士学位论文),2000:20-25.
    [19]李红雷,张光福,刘先勇,等.变压器在线监测用的新型油气分离膜[J].清华大学学报(自然科学版),2005,45(10): 1301-1304.
    [20]张周胜,肖登明.油溶解气体色谱分析中的小型真空在线脱气技术[J].电力系统自动化,2007,31(11):92-96.
    [21] DUVAL M. New techniques for dissolved gas-in-oil analysis[J]. IEEE Electrical Insulation Magazine, 2003, 19(2):6-15.
    [22] ARAKELIAN V G. The long way to the automatic chromatographic analysis of gases dissolved in insulating oil[J]. IEEE Electrical Insulation Magazine, 2004, 20(6): 8-25.
    [23] ZYLKA P. Electrochemical gas sensors can supplement chromatography-based DGA[J]. Electrical Engineering, 2005, 87: 137-142.
    [24]李红雷,周方洁,谈克雄,等.用于变压器在线监测的傅里叶红外定量分析[J].电力系统自动化,2005,29(18):62-65.
    [25]陈伟根,云玉新,潘翀,等.光声光谱技术应用于变压器油中溶解气体分析[J].电力系统自动化,2007,31(15):94-98.
    [26]张川,王辅.光声光谱技术在变压器油气分析中的应用[J].高电压技术,2005,31(2):84-86.
    [27] IEC Publication 599, Interpretation of the analysis of gases in transformers and other oil-filled electrical equipment in-service[S]. IEC, 1978: 9-13.
    [28] DUVAL M. A review of faults detectable by gas-in-oil analysis intransformers[J]. IEEE Electrical Insulation Magazine, 2002, 18(3):8-17.
    [29] SU Q, Mi C, LAI L L, etal. A fuzzy dissolved gas analysis method for the diagnosis of multiple incipient faults in a transformer[J]. IEEE Transactions on Power Systems, 2000, 15(2): 593-598.
    [30] GUARDADO J L, NAREDO J L, MORENO P, etal. A comparative study of neural network efficiency in power transformers diagnosis using dissolved gas analysis[J]. IEEE Transactions on Power Delivery, 2001, 16(4):643-647.
    [31] MORAIS R D, ROLIM G J. A hybrid tool for detection of incipient faults in transformers based on the dissolved gas analysis of insulating oil[J]. IEEE Transactions on Power Delivery, 2006, 21(2):673-679.
    [32] JUDD M D, YANG L, HUNTER I B B. Partial discharge monitoring for power transformers using UHF sensors part 1: Sensor and signal interpretation[J]. IEEE Electrical Insulation Magazine, 2005, 21(2): 5-14.
    [33] JUDD M D, CLEARY G P, BENNOCH C J. Applying UHF partial discharge detection to power transformers[J]. IEEE Power Engineering Review, 2002,22 (8): 57-59.
    [34] JUDD M D, FARISH O, PEARSON J S, et al. Dielectric windows for UHF partial discharge detection[J]. IEEE Transaction on Dielectrics and Electrical Insulation, 2001, 8 (10): 953-958.
    [35] SHIGEMITSU O, SHUHEI K. Electromagnetic wave propagation in a coaxial pipe GIS model[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2007, 14(5): 1161-1169.
    [36] HIKITA M, OHTSUKA S, TESHIMA T, etal. Electromagnetic (EM) wave characteristics in GIS and measuring the EM wave leakage at the spacer aperture for partial discharge diagnosis[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2007, 14(2): 453-460.
    [37] JUDD M D, YANG L, HUNTER I B B. Partial discharge monitoring for power transformers using UHF sensors part 2: field experience[J]. IEEE Electrical Insulation Magazine, 2005, 21(3): 6-13.
    [38] ASCHENBRENNER D, KRANZ H G, RUTGERS W R, et al. On line PD measurements and diagnosis on power transformers[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2005, 12(2): 216-222.
    [39]陈庆国,王永红,高文胜,等.油中局部放电UHF频带选取及干扰的抑制[J].中国电机工程学报,2006,10(2):147-150.
    [40]李剑,宁佳欣,金卓睿,等.变压器局部放电在线监测超高频Hilbert分形天线研究[J].电力自动化设备,2007,27(6): 31-35.
    [41]孟延辉,唐炬,许中荣,等.变压器局部放电超高频信号传播特性仿真分析[J].重庆大学学报(自然科学版),2007,30(5): 70-74.
    [42] XIAO S, MOORE P J, JUDD M D, etal. An investigation into electromagnetic radiation due to partial discharges in high voltage equipment[C]. 2007 IEEE-Power Engineering Society General Meeting, Tampa, USA, 24-28 June 2007:1- 7.
    [43] BELL R, CHARLSON C, HALLIDAY P S, etal. High-voltage onsite commissioning tests for gas-insulated substations using UHF partial discharge detection[J]. IEEE Transactions on Power Delivery, 2003, 18(4): 1187-1191.
    [44]王娟,律方成,蒋庆云,等.超高频局部放电电磁波在变压器中的传播特性[J].华北电力大学学报,2007,34(6):19-22.
    [45]王颂,李香龙,李军浩,等.变压器局部放电超高频信号外传播特性的试验研究[J].高压电器,2007,43(2):100-101.
    [46] YANG L, JUDD M D. Recognising multiple partial discharge sources in power transformers by wavelet analysis of UHF signals[J]. IEE Proc.-Sci. Meas. Technol., 2003, 150(2): 119-127.
    [47] CLEARY G P, JUDD M D. UHF and current pulse measurements of partial discharge activity in mineral oil[J]. IEE Proceeding-Science, Measurement and Technology, 2006, 153(2): 47-54.
    [48] JUDD M D, FARISH O, PEARSON J S, et al. Power transformer monitoring using UHF sensors: installation and testing[C]. Conference Record of the 2000 IEEE International Symposium on Electrical Insulation, Anaheim, CA USA, April 2-5, 2000: 374-376.
    [49] JUDD M D, CLEARY G P, BENNOCH C J, et al. Power transformer monitoring using UHF sensors: site trials[C]. Conference Record of the 2002 IEEE International Symposium on Electrical Insulation, Boston, USA, April 7-10, 2002: 145-149.
    [50] HüCKER T, KRANZ H G. New approach in partial discharge diagnosisand pattern recognition[J]. IEE Proceeding-Science, Measurement and Technology, 1995, 142(1): 89-94.
    [51]王国利,郝艳捧,李彦明.电力变压器局部放电检测技术的现状和发展[J].电工电能新技术,2001,(2):52-57.
    [52] SARATHI R, DUBEY V, SRINIVASA Y G. Identification of incipient discharges in gas insulated system using acoustic emission technique[C]. 2005 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, Nashville, USA, 2005: 91-94.
    [53] LUNDGAARD L E. Particles in GIS-characterization from acoustic signatures[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2001, 8(6): 1064-1074.
    [54] GLAHN Von P, STRICKLETT K L, BRUNT Van R J, etal. Correlations between electrical and acoustic detection of partial discharge in liquids and implications for continuous data recording[J]. Conference Record of IEEE International Symposium on Electrical Insulation, 1996, 1:69-74.
    [55] MENON R, KOLAMBEKAR S, BUCH N J, etal. Correlation of acoustic emission method and electrical method for detection of partial discharges in transformers[C]. 2001 IEEE 7th International Conference on Solid Dielectrics, Eindhoven, the Netherlands 2001, June 25-29: 299-302.
    [56] RONALD T. HARROLD. The relationship between ultrasonic and electrical measurements of under-oil corona sources[J]. IEEE Transactions on Electrical Insulation, 1976, 11(1): 8-11.
    [57] BENGTSSON T, LEIJON M, MING L, etal. Directivity of acoustic signals from partial discharges in oil [J]. IEE Proc.-Sci. Meas. Technol., 1995, 142(1): 85- 88.
    [58] LUNDGAARD L E. Partial discharge-Part XIV: Acoustic partial discharge detection - practical application [J]. IEEE Electrical Insulation Magazine, 1992, 8(5): 34-43.
    [59] ELEFTHERION P M. Partial Discharge-Part XXI: Acoustic emission-based PD source location in transformers[J]. IEEE Electrical Insulation Magazine, 1995, 11(6): 22-26.
    [60]罗日成,李卫国,熊浩,等.电力变压器局部放电在线监测系统的研制[J].电网技术,2004,28(16):56-59.
    [61] LUO Y F, JI S C, LI Y M. Phased-ultrasonic receiving-planar array transducer for partial discharge location in transformer[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2006, 53(3): 614-622.
    [62]李燕青.超声波法检测电力变压器局部放电的研究[D].北京:华北电力大学(博士学位论文),2004:25-27
    [63]朱哲民,龚秀芬,杜功焕.声学基础[M].南京大学出版社,2001:19-44.
    [64] LUNDGAARD L E. Partial Discharge-Part XIII: Acoustic partial discharge detection-fundamental considerations[J]. IEEE Electrical Insulation Magazine, 1992, 8(4): 25-31.
    [65] SAKODA T, NIEDA H, ANDO K. Characteristics of elastic waves caused by corona discharges in an oil-immersed pole transformer[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2001, 8(2): 276-283.
    [66] CHEN L J, LIN W M, TSAO T P, etal. Study of partial discharge measurement in power equipment using acoustic technique and wavelet transform[J]. IEEE Transactions on Power Delivery, 2007, 22(3): 1575-1580.
    [67] CHAI M L, YASMIN H M T, GHOSH P S, etal. Identification of different types of partial discharge sources from acoustic emission signals in the time-frequency representation[C]. First International Power and Energy Coference PECon 2006, Putrajaya, Malaysia, 2006, November 28-29: 580-585.
    [68] LIM K J, KANG S H, LEE K W, etal. Partial discharge signal detection by piezoelectric ceramic sensor and the signal processing[J]. Journal of Electroceramics, 2004, 13(2): 487-492.
    [69] LIN D, JIANG L, LI F Q, etal. On-line partial discharge monitoring and diagnostic system for power transformer[J]. TSINGHUA Science and Technology, 2005, 10(5): 598-604.
    [70] GROSSMANN E, FESER K. Sensitive online PD-measurements of onsite oil/paper-insulated devices by means of optimized acoustic emission techniques(AET)[J]. IEEE Transactions on Power Delivery, 2005, 20(1): 158-162.
    [71] KWEON D J, CHIN S B, KWAK H R, etal. The Analysis of ultrasonic signals by partial discharge and noise from the transformer[J]. IEEE Transactions on Power Delivery, 2005, 20(3): 1976-1983.
    [72]邱昌容,王乃庆.电工设备局部放电及其测试技术[M].机械工业出版社,1994.
    [73]周力行,何蕾,李卫国.变压器局部放电超声信号特性及放电源定位[J].高电压技术,2003,29(5):11-13.
    [74]秦文明.变压器局部放电的超声波定位方法[J].变压器,1995,(3):6-8.
    [75] SAKODA T, ARITA T, NIEDA H, etal. Studies of elastic waves caused by corona discharges in oil[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1999, 6(6): 825-830.
    [76] GUNTHER M F, WANG A, FOGG B R, etal. Fiber optic impact detection and location system embedded in a composite material[C]. SPIE-Fiber Optic Smart Structures and Skins V, Boston, MA, USA, 1992, 1798:262-269.
    [77] LU Y, TAN X, HU X. PD detection and localisation by acoustic measurements in an oil-filled transformer[J]. IEE Proc.-Sci. Meas. Technol., 2000, 147(2): 81-85.
    [78] WANG A,PICKRELL G R. Optical sensor research at Virginia Tech Center for photonics technology[C]. Pro. of SPIE - Fiber Optic Sensor Technology and Applications 2001, Glasgow, Britain, 2002, 4578: 1-7.
    [79] ZHAO ZH Q, MACALPINE M, DEMOKAN M S. The directionality of an optical fiber high-frequency acoustic sensor for partial discharge detection and location [J]. Journal of Lightwave Technology, 2000, 10(6): 795-806.
    [80] MACALPINE M, ZHAO ZH Q, DEMOKAN M S. Development of a fibre-optic sensor for partial discharges in oil-filled power transformers [J]. Electric Power Systems Research, 2002, 63(1): 27-36.
    [81] MACIA-SANAHUJA C, LAMELA H. Development and characterization of fiber optic hydrophone coils for the detection of ultrasonic signals within power transformers[C]. Proc. of SPIE-Optical Sensing II, Strasbourg,France,3-6 April,2006, 618914.1-618914.8.
    [82] LAMELA H, GARCíA-SOUTO J A, MACIA-SANAHUJA C.Interferometric optical fiber sensors for measurements within oil-filled power transformers[C]. Pro. of SPIE- the International Society for Optical Engineering, Warsaw, Poland, 2005, 5952: 595209-1-8.
    [83] KIM T Y, SUH K S, NAM J H, etal. Acoustic monitoring of HV equipment with optical fiber sensors[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2003, 10(2): 266-270.
    [84] ZARGARI A, BLACKBURN T R. Application of optical fibre sensor for partial discharge detection in high-voltage power equipment[C]. 1996 IEEE Annual Report - Conference on Electrical Insulation and Dielectric Phenomena, San Francisco, USA, October 20-23, 1996: 541-544.
    [85] ZARGARI A, BLACKBURN T R. Modified optical fibre sensor for PD detection in high-voltage power equipment[C]. Conference Record of the 1996 IEEE International Symposium on Electrical Insulation, Montreal, Quebec, Canada, 1996: 424-427.
    [86] LEE J H, SHIN D Y, KWON T H, etal. Ultrasonic location using the Sagnac interferometric optical fiber sensor in underwater[C]. Proceedings of the 7th International Conference on Properties and Applications of Dielectric Materials, Nagoya, Japan, 2003.6: 475-478.
    [87] YU B, KIM D W, DENG J D, etal. Fiber Fabry-Perot sensors for detection of partial discharges in power transformers [J]. Applied Optics, 2003, 42(16): 3241-3250.
    [88] DENG J D, XIAO H, HUO W, etal. Optical fiber sensor-based detection of partial discharges in power transformers [J]. Optics and Laser Technology, 2001, 33(5): 305-311.
    [89] WANG X D, LI B Q, XIAO ZH X, etal. An ultra-sensitive optical MEMS sensor for partial discharge detection [J]. Journal of Micromechanics and Microengineering, 2005, 15(3): 521-527.
    [90] WANG X D, LI B Q, ROMAN H T, etal. Acousto-optical PD detection for transformers [J]. IEEE Transactions on Power Delivery, 2006, 21(3): 1068-1073.
    [91] BEARD P C, FRéDéRIC P, MILLS T N. Transduction mechanisms of the Fabry-Perot polymer film sensing concept for wideband ultrasound detection [J]. IEEE Transactions on Ultrasonics, Ferroelectrics, andFrequency Control, 1999, 46(6): 1575-1582.
    [92] BEARD P C, MILLS T N. Extrinsic optical-fiber ultrasound sensor using a thin polymer film as a low-finesse Fabry-Perot interferometer [J]. Applied Optics, 1996, 35(4): 663-675.
    [93] BEARD P C, MILLS T N. A 2D optical ultrasound array using a polymer film sensing interferometer[C]. 2000 IEEE Ultrasonics Symposium Proceedings, San Juan, Argentina, 22-25 October 2000: 1183-1186.
    [94]王宁,朱永,符欲梅,等.光纤法珀应变测量系统在混凝土弹性模量标定中的应用[J].土木工程学报,2003,36(8):53-56.
    [95]熊先才,朱永,符欲梅,等.光纤法珀传感器及其在桥梁应变监测中的应用[J].重庆建筑大学学报,2007,29(3):48-50.
    [96]荆振国,于清旭.用于高温油井测量的光纤温度和压力传感器系统[J].传感技术学报,2006,19(6): 2450-2452.
    [97]吕涛,刘德森,何开华.非本征敏感法布里-珀罗腔高精度光纤液位传感器输出特性[J].光学学报,2006,26(11):1614-1618.
    [98] LI M, WANG M, LI H P. Optical MEMS pressure sensor based on Fabry-Perot interferometry [J]. Optics Express, 2006, 14(4): 1497-1504.
    [99]倪小琦,王鸣,陈绪兴,等.光纤微机电系统法布里—珀罗压力传感器的波分复用[J].光学学报,2007,27(5):776-780.
    [100]陈伟民,朱永,唐晓初,等.光纤法布里珀罗传感器串连复用的傅里叶变换解调方法初探[J].光学学报,2004,24(11):1481-1486.
    [101]章鹏,朱永,唐晓初,等.基于傅里叶变换的光纤法布里珀罗传感器解调研究[J].光学学报,2005,25(2):186-189.
    [102]范少卿,郭富昌.物理光学[M].北京理工大学出版社,1990,8:62-74.
    [103]潘永东,钱梦騄.激光超声位移场的共焦法布里-佩罗干涉仪检测技术[J].声学学报,2003,28(3):207-211.
    [104] NAKANO H, MATSUDA Y, NAGAI S. Ultrasound detection by using a confocal Fabry-Perot interferometer with phase-modulated light[J]. Ultrasonics, 1999, 37: 257-259.
    [105] SHUKLA R P, UDUPA D V, MANTRAVADI M V. Fabry-Perot interferometer using curved plates[J]. Optics and Lasers in Engineering, 2000, 34(4): 239- 243.
    [106] BARBARIN Y, BENTE E A J M, SERVANTON G, etal. Gain measurements of Fabry-Perot InP/InGaAsP lasers using an ultrahigh-resolution spectrometer[J]. Applied Optics, 2006, 45(35): 9007-9012.
    [107] VIDAL B, PIQUERAS M A, CORRAL J L, etal. Tunable photonic microwave filter based on two parallel Fabry-Perot filters[C]. International Topical Meeting on Microwave Photonics, Seoul, Korea, 12-14 Oct, 2005: 205-208.
    [108]师树恒,王斌,王勇,等. ICF中可调法布里-珀罗滤波器间距稳定度研究[J].强激光与粒子束,2007,19(5):777-780.
    [109]吕玮搁,陈海星,顾培夫,等.可调谐液晶滤波器的调谐性能研究[J].光学学报,2004,24(11):1538-1542.
    [110] DORIGHI J F, KRISHNASWAMY S, ACHENBACH J D. Stabilization of an embedded fiber optic Fabry-Perot sensor for ultrasound detection[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1995, 42(5): 820-824.
    [111] YOSHINO T, KUROSAWA K, ITOH K, etal. Fiber-optic Fabry-Perot interferometer and its sensor applications[J]. IEEE J. of Quantum Electronics, 1982, 18(10): 1624-1633.
    [112] MURPHY K A, GUNTHER M F, WANG A B, etal. Detection of acoustic emission location using optical fiber sensors[C]. Proc. SPIE-Smart Structures and Materials 1994: Smart Sensing, Processing, and Instrumentation, Bellingham, USA, 1994, 2191: 282-290.
    [113] BORINSKI J W, DUKE J C, HORNE M R. Fiber optic acoustic emission sensors for harsh environment health monitoring[C]. Proceedings of SPIE - Advanced Nondestructive Evaluation for Structural and Biological Health Monitoring, Newport Beach, USA, 2001, 4335: 399-409.
    [114] FüRSTENAU N, SCHMIDT M, HORACK H, etal. Extrinsic Fabry-Perot interfero-meter vibration and acoustic sensor systems for airport ground traffic monitoring[J]. IEE Proc-Optoelectron, 1997, 144(3): 134-144.
    [115]江理平.工程弹性力学[M].同济大学出版社,2006,6:164.
    [116]许肖梅.声学基础[M].科学出版社,2003:28-40.
    [117]王小静,刘永武,王敏,等. MEMS微平面构件的空气阻尼效应研究[J].中国机械工程,2007,16(14):1276-1278.
    [118]石庚辰,郝一龙.微机电系统技术基础[M].北京:中国电力出版社,2006年8月:26-61.
    [119]李德胜,王东红,孙金伟,等. MEMS技术及其应用[M].哈尔滨:哈尔滨工业大学出版社,2002年3月:78-85.
    [120]田静,汪承灏,徐联,等.圆形振动膜硅微电容传声器[J].传感技术学报,2006,19(5):2297-2299.
    [121]乔东海,田静,徐联,等.一种以多晶硅为振动膜的MEMS传声器研制[J].中国机械工程,2005,16(14):1243-1246.
    [122]黄伟荣,高应俊,刘志麟,等.温度对光纤法—珀液位传感器腔深度的影响与补偿[J].光子学报,2005,34(12):1810-1813.
    [123] RIBEIRO A B L, FERREIRA L A, SANTOS J L, et al. Analysis of the reflective-matched fiber Bragg grating sensing interrogation scheme[J]. Appl. Opt., 1997, 36(4): 934-939.
    [124]陶永华.新型PID控制及其应用[M].第2版.机械工业出版社,2003,7:1-7.
    [125]于效宇.基于可调谐法布里-珀罗滤波器的光纤光栅解调技术研究[D].哈尔滨理工大学(博士学位论文),2008:25-37.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700