饱和土中结构对稳态体波散射问题的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以Biot波动理论和弹性波理论为基础,借助复变函数和多级坐标变换及保角映射等方法,并且运用大圆弧来代替半空间饱和土直边界的近似处理手段,对具有不同的工程背景的饱和土中结构在稳态弹性平面入射体波作用下所产生的散射和集中的问题进行了较系统的研究,得出了一些有益结论。研究的内容包括以下几个方面:
     (1)利用复变函数和多级坐标并借助以曲代直的大圆弧边界处理方法,通过引入位移势函数,解耦Biot波动理论在不同模型中的控制方程和运动方程,研究半空间饱和土介质中的圆形孔洞对弹性体波在有无流体耗散情况下的散射及动应力、孔压集中问题。求解过程为:首先通过引入位移势函数将半空间饱和土中在Biot模型下的波动方程解耦成三个Helmholtz方程;并利用分离变量法求解该组方程,得到用复数表示的三个势函数的通解;之后根据饱和土中的控制方程及复势函数特性,得到介质应力、位移和孔压和势函数的关系式,并将这些关系式转化为复平面极坐标形式;在引进一个大圆弧近似代替半空间直边界基础上,利用应力边界条件、位移边界条件或混合边界条件求解出复势函数级数展开式中的未知系数值,进而求得复势函数的特解,最后利用复势函数的特解求解出孔洞周边的动应力和孔压的集中系数,讨论半空间饱和土中的孔洞周围的散射和集中系数对直边界散射、孔洞边界透水性、孔洞埋深、饱和土的孔隙率、土骨架的密度、剪切模量及土骨架的泊松比等不同的参数条件组合下的分布和变化情况。从而得出一些较普遍的规律。
     (2)借助Biot多孔介质波动理论和弹性介质中的波动理论,引入位移势函数来解
In terms of Biot’s dynamic theory, the multi-polar coordinate and complex function are used to put forward an approximate analysis method for scattering and concentration coefficient of harmonic plane body wave around a circular cavity or the structure in a saturated soil half-space. Here, a circular cavity with large radius is used to replace the straight boundary of saturated soil half-space. The studies of the paper consist of the following parts.
     (1) With the dissipation condition, the steady state Biot’s dynamic field equations of saturated solid are uncoupled into Helmholtz equations via given potential functions. Here, the complex function method based on the potential function and multi-polar coordinate method are used. A circular-arc with large radius is used to replace the straight boundary of the saturated soil half-space. The stresses and pore water pressures are obtained by the potential functions with certain boundary conditions of the saturated soil. Then the variations of the coefficients of dynamic stress concentration and the pore pressures concentration on boundaries of the cavity are discussed with different parameter conditions
     (2) Based on Biot’s dynamic theory and elastic wave theory, the potential functions is used to decoupled the equations the saturated soil and the elastic lining with the complex function method and the multi-polar coordinate method. Considering the conditions between the saturated soil and the lining, the coefficients in the potentials can be determines by using the boundary condition of the lining and the straight boundary of the saturated soil half-space replaced by a circular-arc with large radius. Utilizing the solutions of the potential functions, the expressions of the displacements, stresses and pore pressures of saturated around the lining structure can be obtained. Some numerical results are given by the different parameter conditions and some conclusions are obtained.
     (3) By using a circular-arc with large radius to replaced the straight boundary of the saturated half-space and the circular-arc alluvial valley, the scattering of saturated circular-arc alluvial valley and straight boundary of the saturated half-space can be studied. The coefficients of dynamic stresses concentration and
引文
[1] Lamb H., Problems Relating to the Impact of Waves on a Spherical Obstacle in an Elastic Medium. Proceedings of the London Mathematical Society(London), 1900, 32: 120-131.
    [2] Sezawa Katsutada. Scattering of elastic waves and some allied problems. Bulletin of the Earthquake Research Institute, 1927, 3: 19-27.
    [3] Nishimura G. and Jimbo Y., A dynamical problem of stress concentration stresses in the vicinity of a spherical matter included in a elastic solid under dynamical force. Journal of the Faculty of Engineering, University of Tokyo, 1955, 24:101-116.
    [4] Inglis C.E., Stresses in a plate due to the presence of cracks and sharp corners. Transactions of the royal institution of naval architects, 1913, 55: 219-241.
    [5] Timoshenko S.P., Analysis of Bi-metal thermostats. Journal of Optical Society of America, 1925, 11: 233-245.
    [6] Howland R.C.J., The stress in the neighbourhood of a circular hole in a strip under tension. Philosophical Transaction of Royal Society, Series A, 1930, 229:48-86.
    [7] Timoshenko Stephen and Goodier J.N., Theory of Elasticity. McGraw-Hill Book Co., New York, 1969.
    [8] Neuber Heinz, Kerbspannungslehre (Theory of Notch Stress). Springer-Verlag, Berlin, 1958.
    [9] Ying C.F. and Fruell R. Scattering of a plane longitudinal wave by a spherical obstacle in an isotropically elastic solid. Journal of applied physics, 1956, 27: 1086-1100.
    [10] Knopoff Leon, Scattering of compression waves by spherical obstacles. Geophysic, 1956, 24: 30-45.
    [11] White R.M., Elastic wave scattering at a cylindrical discontinuity in a solid. The Journal of the Acoustical Society of America, 1958, 30: 771-785.
    [12] Wells A.A. and Post D., The dynamic stress distribution surrounding a running crack—A photoelastic analysis. Proceedings of the society for experimental stress analysis, 1958, 16: 69-78.
    [13] Durelli A.J. and Dally J.W., Stress Concentration Factors under Dynamic Loading Conditions. Journal of mechanical engineering science, 1959, 1: 1-13.
    [14] Savin G.N.著, 卢鼎霍译, 孔附近的应力集中. 北京,科学出版社,1963
    [15] Pao Yih-Hsing and Mow Chao-Chow, Diffraction of Elastic Wave and Dynamic Stress Concentrations. Adam Hilger Ltd. In UK, 1973 ( 鲍亦兴,毛昭宙著,刘殿魁、苏先樾译.弹性波的衍射与动应力集中. 科学出版社. 1993)
    [16] Bennett S.B., Scattering of a plane elastic wave from objects near an interface. Journal of applied mechanics, 1972, 39(4): 214-253.
    [17] Waterman P.C., Matrix theory of elastic wave scattering. Journal of the Acoustical Society of America, 1976, 60(3): 567-578.
    [18] Pao Y.H. and Varatharajulu V., Principle condition and integral formulas for the scattering of elastic waves. Journal of the Acoustical Society of America, 1976, 59: 1361-1371.
    [19] Lee V.W., On deformations near circular underground cavity subjected to incident SH-waves. University of Southern California, Los Angeles, 1977, 951-962.
    [20] Lee V.W. and Trifunac M.D., Response of Tunnels to Incident SH Waves. Journal of engineering mechanics division, ASCE, 1979, 105, 643-659.
    [21] Scheidl W. and Zieglar F., Interaction of a pulsed Rayleigh surface wave and a rigid cylindrical inclusion. Modern Problems in Elastic Wave Propagation, New York, 1971, 145-169.
    [22] Lee V.W. and Cao H., Diffraction of SV Waves by Circular Cylindrical Canyons of Various Depths. Journal of engineering mechanics division, ASCE, 1989, 115: 2035-2056.
    [23] Cao H. and Lee V.W., Scattering of Plane SH Waves by Circular cylindrical Canyons with Variable Depth-to-Width Ratio. European Journal of Earthquake Engineering, 1989, 2: 29-37.
    [24] Lee V.W., On the Scattering of Plane SH Waves By a Semi-Parabolic Parabolic Cylindrical Canyon in an Elastic Half-Space. Geophysical Journal, 1990, 100: 79-86.
    [25] Cao H. and Lee V.W., Scattering and Diffraction of Plane P Waves by Circular Cylindrical Canyons with Variable Depth-to-Width Ratio. International Journal of Soil Dynamics and Earthquake Engineering, 1990, 9(3): 141-150.
    [26] Todorovska M.I. and Lee V.W., A note on response of shallow circular valleys to Raylergh waves: analytical approach. Earthquake Engineering and Vibration, 1990, 10(1): 21-34.
    [27] Karl J. and Lee V.W., Scattering and diffraction of elastic waves by an underground, circular cylindrical tunnel(cavity). Civil Engineering Report No. CE91-04, University of Southern California, Los Angeles, 1991.
    [28] Todorovska M.I. and Lee V.W., Surface Motion of Shallow Circular Alluvial Valleys for Incident Plane SH Waves - Analytical Solution. International Journal of Soil Dynamics and Earthquake Engineering, 1991, 10(4): 192-200.
    [29] Todorovska M.I. and, A Note on Scattering of Rayleigh Waves by Shallow Circular Canyons: Analytical Approach. Bulletin of Indian society of earthquake technology, 1991. 28(2):1-16.
    [30] Lee V.W. and Karl J., Diffraction of Elastic Plane P Waves by Circular, Underground Unlined Tunnels. European Earthquake Engineering, 1993, 6(1): 29-36.
    [31] Lee V.W. and Karl J., Diffraction of Elastic Plane P Waves by Circular, UndergroundUnlined Tunnels. European Earthquake Engineering, 1993, 6(1): 29-36.
    [32] Lee V.W., Ghosh T. and Sabban M.S., Scattering and Diffraction of Plane P Waves by 3-D Cylindrical Canals. European Earthquake Engineering, 1996,4(3) : 12-22.
    [33] Manoogian M.E. and Lee V.W., Diffraction of SH-Waves by Subsurface Inclusions of Arbitrary Shape. Journal of engineering mechanics division, ASCE, 1996, 122(2): 123-129.
    [34] Sherif R. and Lee V.W., Diffraction around a Circular Alluvial Valley in a Wedge-Shaped Medium due to Plane SH-Waves. European Earthquake Engineering, 1997,5(3): 21-28.
    [35] Davis C.A., Lee V.W. and Bardet J.P., Transverse Response of Underground Cavities and Pipes to Incident SV Waves. Earthquake Engineering & Structural Dynamics, 2001,30: 383-410.
    [36] Gregory R.C., An expansion theorem applicable to problems of wave propagation in an elastic half space containing a cavity. Proceedings of the Cambridge philosophical society, 1987, 63: 1341-1367.
    [37] Gregory R.C., The propagation of waves in an elastic half space containing a circular cylindrical cavity. Proceedings of the Cambridge philosophical society, 1989, 67: 689-710.
    [38] Gregory R.D. and Austin David.M., Scattering of waves by a semi-cylindrical groove in the surface of an elastic half-space. Journal of Mechanics and Applied Mathematics, 1990, 43(3): 293-315.
    [39] El-Akily N. and Datta S.K., Response of a circular cylindrical shell to disturbances in a half-space. Earthquake Engineering and Structural Dynamics, 1980, 8: 469-477.
    [40] El-Akily N. and Datta S.K., Response of a circular cylindrical shell to disturbances in a half-space.----numerical results. Earthquake Engineering and Structural Dynamics, 1981, 9: 477-487.
    [41] Datta S.K., Shah A.H. and Wong K.C., Dynamic stress and displacements in buried pipe. Journal of Engineering Mechanics, ASCE. 1984, 110(10): 1451-1466.
    [42] Wong K.C., Shah A.H. and Datta S.K., Diffraction of elastic waves in a half-space II. Analytical and numerical solutions. Bulletin of the Seismological Society of America, 1985, 75: 69-92.
    [43] Ma Y., Varadan V.V. and Varadan V.K., Multiple scattering theory for wave propagation in discrete random media. Intenational Journal of Engineering Science Volume, 1984, 22: 1139-1148.
    [44] Kanun S.K. and Levin V.M., Propation of elastic waves through media with thin crack---like inclusions. Journal of Applied Mathematics and Mechanics, 1986, 50(2): 231-239.
    [45] Hadley P.K., Askar A. and Cakmak A.S., Earthquake wave propagation in layered media by boundary integral methods. Soil Dynamics and Earthquake Engineering, 1991, 10(3):130-140.
    [46] Naresh Vasudevan, The low frequency scatter of SH waves by a rough interface in an elastic plate. Wave Motion, 1991, 14(4): 333-345.
    [47] Boutin C. and Auriault J.L., Rayleigh scattering in elastic composite materials. International Journal of Engineering Science, 1993, 31(12): 1669-1689.
    [48] Luco J.E. and De Barros F.C.P., Dynamic displacements and stresses in the vicinity of a cylindrical cavity embedded in a half-space. Earthquake Engineering and Structural Dynamics, 1994, 23: 321-340.
    [49] Fellinger P., Marklein R., Langenberg K.J. and Laholz S.K., Numerical modeling of elastic wave propagation and scattering with ETIT-----elastodynamic finite integration technique. Wave Motion, 1995, 21: 47-66.
    [50] Leonid Ryzhik, George Papanicolaou and Joseph B.Keller., Transport equations for elastic and other waves in random media. Wave Motion, 1996, 24: 327-370.
    [51] Manolis G.D. and Shaw R.P., Harmonic elastic waves in continuously heterogeneous random layers. Engineering Analysis with Boundary Elements, 1997, 19: 181-198.
    [52] Manolis G.D. and Karakostas C.Z., A Green’s function method to SH-wave motion in a random continuum. Engineering Analysis with Boundary Elements, 2003, 27: 93-100.
    [53] Manolis G.D. and Pavlou S., Fundamental solutions for SH-wave in a continuum with large randomness. Engineering Analysis with Boundary Elements, 1999, 23: 721-736.
    [54] Dineva P.S. and Manolis G.D., Scattering of seismic waves by cracks in multi-layered geological regions. II. Numerical results. Soil Dynamics and Earthquake Engineering, 2001, 21: 627-641.
    [55] Manolis G.D., Dineva P.S. and Rangelov T.V., Wave scattering by cracks in inhomogeneous continua using BIEM. International Journal of Solids and Structures, 2004, 41: 3905-3927.
    [56] Rafael A. Benites, Peter M. Roberts., Kiyoshi Yomogida and Michael Fehler. Scattering of elastic waves in 2-D composite media. I. Theory and test. Physics of the Earth and Planetary Interiors, 1997, 104: 161-173.
    [57] Sastry J.S. and Munjal M.L., Response of a multi-layered infinite cylinder to a plane wave excitation by means of transfer matrices. Journal of Sound and Vibration, 1998, 209(1): 99-121.
    [58] Lena Frenje and Christopher Juhlin., Scattering of scismic waves simulated by finite difference modeling in rand media: Application to the Gravberg-1 well, Sweden. Tectonophysics, 1998, 293: n61-68.
    [59] Capuni Domenice and Willis Jhon R., Wave propagation in elastic media with cracks. Part II: Transient nonlinear response of a cracked matrix. European Journal of Mechanics A/Solid. 1999, 18: 159-175.
    [60] Martin Tygel and Bjorn Ursin., Weak-contrast edge and vertex diffractions in anisotropicelastic media. Wave Motion, 1999, 29: 363-373.
    [61] Dravinski M. and Zheng T., Numerical evaluation of three-dimensional time-harmonic Green’s functions for a nonisotropic full-space. Wave Motion, 2000, 32: 141-151.
    [62] Abu Alshaikh I., Turhan D. and Mengi Y., Two-dimensional transient wave propagation in viscoelastic layered media. Journal of Sound and Vibration, 2001, 244(5): 837-858.
    [63] Abu-Alshaikh I., Turhan D. and Mengi Y., Transient waves in viscoelastic cylindrical layered media. European Journal of Mechanics A/Solid, 2002, 21: 811-830.
    [64] Antonio J.B. Tadeu, Julieta M.P. and Eduardo kausel, 3D scattering of waves by a cylindrical irregular cavity of infinite length in a homogeneous elastic mediam. Computer methods in applied mechanics and engineering, 2002, 191: 3015-3033.
    [65] Sridhar R., Chakraborty A. and Gopalakrishnan S., Wave propagation analysis in anisotrotropic and inhomogeneous uncracked and cracked structures using pseudospectral finite element method. International Journal of Solids and Structures, 2006, 43: 4997-5031.
    [66] Liu D.K, Gai B.Z and Tao G.Y., Applications of the method of complex functions to dynamic stress concentrations. Wave Motion, 1982, 4: 293-304.
    [67] 胡超,刘殿魁,无限大板开孔弹性波的散射及动应力集中,力学学报,1995,27(增刊): 125-134
    [68] 刘殿魁,刘宏伟,SH 波散射与界面圆孔附近的动应力集中,力学学报,1998,30(3): 597-604
    [69] 林宏,史文谱,刘殿魁,SH 波入射时浅埋结构的动力分析,哈尔滨工程大学学报,2001,22(2):83-87
    [70] 史守峡,刘殿魁,SH 波与界面多孔的散射及动应力集中,力学学报,2001,33(1):60-70
    [71] 王国庆,刘殿魁,SH 波对浅埋相邻多个圆孔作用的动力分析,哈尔滨工程大学学报,2003,24(1):108-113
    [72] 陈志刚,杨在林,刘殿魁,SH 波在浅埋椭圆孔上的散射对地震动的影响,哈尔滨工程大学学报,2006,27(1):5-9
    [73] 史守峡,刘殿魁,杨庆山,SH 波对内含裂纹衬砌结构的散射及动应力集中,爆炸与冲击,2000,20(3):228-234
    [74] 史守峡,杨庆山,刘殿魁,齐辉,SH 波对圆形夹杂与裂纹的散射及动应力集中,复合材料学报,2000,17(3),107-112
    [75] 刘殿魁,史守峡,界面上圆形衬砌结构对平面 SH 波的散射,力学学报,2002,34(5):797-803
    [76] 齐辉,王艳,刘殿魁,半无限空间界面附近 SH 波对圆形衬砌的散射,地震工程与工程振动,2003,23(3):41-46
    [77] 刘殿魁,陈志刚,椭圆孔边裂纹对 SH 波的散射及其动应力强度因子,应用数学与力学,2004,25(9):958-966
    [78] 李宏亮,刘殿魁,SH 波作用下裂纹对圆夹杂散射动应力集中问题的影响,哈尔滨工程大学学报,2005,26(3):359-363
    [79] 崔志刚,邹永超,刘殿魁,SH 波对圆弧形凸起地形的散射,地震工程与工程学报,1998,18(4):8-14
    [80] 曹欣荣,宋天舒,刘殿魁,任意形状凸起地形对平面 SH 波的散射,应用数学和力学,2001,22(9):976-982
    [81] 高相斌,刘殿魁,罗轶锋,SH 波对浅埋圆孔附近多个半圆形凸起地形的散射,哈尔滨工程大学学报,2005,26(4):487-492
    [82] 刘殿魁,王国庆,浅埋圆形孔洞附近的半圆形凸起对 SH 波的散射,力学学报,2006,38(2):209-218
    [83] 曹欣荣,宋天舒,刘殿魁,任意形状凸起地形对平面 SH 波的散射,应用数学和力学,2001,22(9):976-982
    [84] 刘殿魁,刘宏伟,曲线坐标在弹性波散射研究中的应用-SH 波对不等深度凹陷地形的散射,地震工程与工程振动,1996,16(2):14-24
    [85] 刘国利,刘殿魁,隆起或凹陷的非均匀介质起伏地形中的表面波,岩石力学与工程学报,1996,15:370-376
    [86] 胡超,马兴瑞,刘殿魁,黄文虎,各向异性平板开孔动应力集中问题的研究,应用力学学报,1998,15(1):1-9
    [87] 史文谱,刘殿魁,林宏,张耀良,半无限空间中稳态 P 波在衬砌周围的散射,地震工程与工程振动,2002,22(3):21-26
    [88] 梁建文,张郁山,顾晓鲁,Vincent W. Lee, 圆弧形层状沉积河谷场地在平面 SH 波入射下动力响应分析,岩土工程学报,2000,22(4):396-401
    [89] 梁建文,李方杰,顾晓鲁,Rayleigh 波在浅圆凹陷地形附近的散射:高频解答,地震工程与工程振动,2005,25(5):24-29
    [90] 梁建文,张浩,地下双洞室在 SV 波入射下动力响应问题解析解,振动工程学报,2004,17(2):,132-140
    [91] 梁建文,罗昊,任意圆弧形凸起地形中隧洞对入射平面 SH 波的影响,地震学报,2004,26(5):495-508
    [92] 梁建文,严林隽,圆弧形凹陷地形表面覆盖层对入射平面 P 波的影响,固体力学学报,2002,23(4):397-411
    [93] 梁建文,严林隽,Vincent W. Lee, 圆弧形凹陷地形表面覆盖层对入射平面 SV 波的影响,地震学报,2001,23(6):622-636
    [94] 梁建文,严林隽,Vincent W. Lee, 圆弧形层状沉积谷地对入射平面 P 波的散射解析解,地震学报,2001,23(2):167-184
    [95] 梁建文,严林隽,圆弧形层状沉积谷地对入射平面 SV 波散射解析解,固体力学学报,2003,24(2):235-243
    [96] 梁建文,尤红兵,层状半空间中洞室对入射平面 P 波的放大作用,地震工程与工程振动,2005,25(2):16-24
    [97] 林皋,关飞,用边界元法研究地震波在不规则地形处的散射问题,大连理工大学学报,1990,30(2):145-151
    [98] 党卫东,赵慧敏,杨大兵,半球形峡谷对 P 波散射问题的初步研究,河北建筑科技学院学报,2005,22(1):104-107
    [99] Biot M.A., General solutions of the equation of elasticity and consolidation for a porous material. Journal of Applied Mechanics, 1956, 78: 91-95.
    [100] Biot M.A., Theory of propagation of elastic waves in a fluid saturated porous solid. I. Low frequency range. The Journal of the Acoustical Society of America, 1956, 28(2): 168-178.
    [101] Biot M.A., Theory of propagation of elastic waves in a fluid saturated porous solid. II. Higher frequency range. The Journal of the Acoustical Society of America, 1956, 28(2): 179-191.
    [102] Biot M.A., Mechanics of deformation and acoustic propagation in porous media. Journal of Applied Physics, 1962, 33(4): 1482-1498.
    [103] Biot M.A., Generalized theory of acoustic propagation in porous dissipative media. The Journal of the Acoustical Society of America, 1962, 34(5): 1254-1264.
    [104] Jones J.P., Rayleigh waves in a porous, elastic, saturated solid. The Journal of the Acoustical Society of America, 1961, 33(7): 959-962.
    [105] Jones J.P., Effect of a uniform flow on elastic waves in a porous , saturated elastic solid. Journal of the Acoustical Society of America, 1962, 34(9): 1172-1175.
    [106] Deresiewicz H., The effect of boundaries on wave propagation in a liquid-filled porous solid---I. Reflection of plane waves at a free plane boundary (non-dissipative). Bulletin of the Seismological Society of America, 1960, 50(4): 599-607.
    [107] Deresiewicz H., The effect of boundaries on wave propagation in a liquid-filled porous solid---II. Love waves in a porous layer. Bulletin of the Seismological Society of America, 1961, 51(1): 51-59.
    [108] Deresiewicz H., The effect of boundaries on wave propagation in a liquid-filled porous solid---III. Reflection of plane waves at a free plane boundary (general case). Bulletin of the Seismological Society of America, 1962, 52(3): 595-625.
    [109] Deresiewicz H., The effect of boundaries on wave propagation in a liquid-filled porous solid---IV. Surface waves in a half-space. Bulletin of the Seismological Society of America, 1962, 52(3): 627-638.
    [110] Deresiewicz H., The effect of boundaries on wave propagation in a liquid-filled porous solid---V. Transmission across plane interface. Bulletin of the Seismological Society of America, 1964, 54(1): 409-416.
    [111] Deresiewicz H., The effect of boundaries on wave propagation in a liquid-filled porous solid---VI. Love waves in a double surface layer. Bulletin of the Seismological Society of America, 1964, 54(1): 417-423.
    [112] Deresiewicz H., The effect of boundaries on wave propagation in a liquid-filled porous solid---VII. Surface waves in a half-space in the presence of a liquid layer. Seismological Society of America, 1964, 54(2): 425-430.
    [113] Deresiewicz H., The effect of boundaries on wave propagation in a liquid-filled porous solid---VIII. Reflection of plane waves at a irregular boundary. Bulletin of the Seismological Society of America, 1964, 52(5): 1537-1561.
    [114] Deresiewicz H., The effect of boundaries on wave propagation in a liquid-filled porous solid---IX. Love waves in a porous internal stratum. Bulletin of the Seismological Society of America, 1965, 55(5): 919-923.
    [115] Deresiewicz H., The effect of boundaries on wave propagation in a liquid-filled porous solid---X. Transmission through a stratified medium. Bulletin of the Seismological Society of America, 1967, 57(1): 381-392.
    [116] Deresiewicz H., The effect of boundaries on wave propagation in a liquid-filled porous solid---XI. Waves in a plate. Bulletin of the Seismological Society of America, 1974, 64(6): 1901-1907.
    [117] Sve C., Elastic wave propagation in a porous laminated composite. International Journal of Solids and Structures, 1973, 9(8): 937-950
    [118] Paul S., On the displacements produced in a porous elastic half-space by an impulsive line load (non-dissipative case). Pure and applied Geophysics, 1976, 114: 605-614.
    [119] Paul S., On the disturbance produced in a semi-infinite poroelastic medium by a surface load. Pure and applied Geophysics, 1976, 114: 615-627.
    [120] Yew C.H. and Joji N., Study of wave motion in fluid-saturated porous rocks. The Journal of the Acoustical Society of America, 1976, 60: 2-8.
    [121] Maidardi F., Servizi G. and Turchetti G., On the propagation of seismic pulses in a porous elastic solid. Journal of Geophys, 1977, 43: 83-94.
    [122] Varadan V.K. and Varadan V.V., Frequency dependence of elastic(SH) wave velocity and attenuation in anisotropic two phase media. Wave Motion, 1979, 1(1): 53-63
    [123] Mei C.C. and Foda M.A., Wave-induced responses in a fluid-filled poro-elastic solid with a free surface-A boundary layer theory. Geophysics Journal of the Royal Astronomical Society, 1981, 66: 597-631.
    [124] Mynett A. E., Mei C. C., Eartgquake-Induced stresss in a poro-elastic foundation supporting a rigid structure. Geotechnique, 1983, 33(3): 293-305.
    [125] Mei C.C., Si B.I. and Cai D., Scattering of simple harmonic waves by a circular cavity in a fluid-infiltrated poro-elastic medium. Wave Motion, 1984, 6: 265-278.
    [126] Mei C.C. and Auriault J.L., Effect of weak inertia on flow through a porous medium. Journal of Fluid Mechanics, 1991, 222: 647-663.
    [127] Coussy O. and Bourbie T., Propagation of Acoustic Waves in Saturated Porous Media. Revue de l'Institut Francais du Petrole, 1984, 39(1):47-66.
    [128] Krutin V. N., Markov M. G. and Yumatov A. Yu., Scattering of a longitudinal wave by a spherical cavity with a fluid in an elastic porous saturated medium. Applied Mathematics and Mechanics, 1984, 48(2): 238-241.
    [129] Krutin V.N., Markov M.G. and Yumatov A.Y., Normal waves in a fluid-filled cylindrical cavity located in a saturated porous medium. Journal of Applied Mathematics and Mechanics, 1988, 52: 67-74.
    [130] Gurevich B. and Lopatnikov S., Elastic attenuation in non-homogeneous porous materials. Soil Dynamics and Earthquake Engineering, 1991, 235-247.
    [131] Gelinsky S., Shapiro S.A., Mueller T. and Gurevich B., Dynamic poroelasticity of thinly layered structures. Journal of Solids and Structures, 1998, 35: 4739-4751.
    [132] Gurevich B., Kelder O. and Smeulders D.M.J., Validation of the slow compressional wave in porous media: comparison of experiments and numerical simulations. Transport in Porous Media, 1999, 36: 149-160.
    [133] Hirai H., Analysis of Rayleigh waves in saturated porous elastic media by finite element method. Soil Dynamics and Earthquake Engineering, 1992, 11: 311-326.
    [134] Zimmerman C. and Stern M., Scattering of plane compressional waves by spherical inclusions in a porouelastic medium. The Journal of the Acoustical Society of America, 1993, 94(1): 527-536.
    [135] Senjuntichat T. and Rajapakse R.K.N.D., Transient response of a circular cavity in a poroelastic medium. Int. J. Numer Anal Methods Geomech, 1993, 17: 357-383.
    [136] Gomez Alvarez-Arenas, Tomas E. and Riera Franco de Sarabia, Biot's slow wave in porous materials II: Resonant scattering phenomena. Proceedings of the Ultrasonics International Conference, 1993, 845-848.
    [137] Stamos A.A., Theodorakopoulos D.D. and Beskos D.E., Harmonic wave response of tunnels in poroelastic saturated soil. Earthquake resistant engineering structures, 1995: 2: 101-112.
    [138] Stamos A.A. and Beskos D.E., Harmonic wave response of long line tunnels in half-space by a special BEM. Earthquake Resistant Engineering Structures, 1995, 2: 405-415.
    [139] Ramdass Keshavamurthy and Marijan Dravinski., Elastic wave scattering by an inclusion in a multilayered medium submerged in fluid. I. plane strain model. Applied mathematics computation, 1995, 65: 33-60.
    [140] Morochnik V., Bardet J.P., Viscoelastic approximation of poroelastic media for wave scattering problems. Soil Dynamics and Earthquake Engineering, 1996, 15(5): 337-346.
    [141] Kumar R., Miglani A. and Debnath L., Radial displacements of an infinite liquid saturated porous medium with cylindrical cavity. Comput. Math. Appl., 1999, 37: 117-123.
    [142] Kumar R., Miglani A.and Garg N.R., Mechanical response of an anisotropicliquid-saturated porous medium. Acta Mechanica, 2003, 162: 41-56.
    [143] Imomnazarov Kh.Kh. and Matevosyan A.Kh., The diffraction of a nonstationary SH-wave on a semi-infinite crack in a porous elastic medium. Applied Mathematics Letters, 2002, 15(2): 163-166.
    [144] Kim M.H., Koo W.C. and Hong S.Y., Wave interactions with 2D structure on/inside porous seabed by a two-domain boundary element method. Applied Ocean Research, 2000, 22: 255-266.
    [145] Lin C.H., Diffraction of P-waves by underground circular cylindrical cavities in fluid-saturated porous medium. Symposium MMC2001-444 on the dynamic response to transient loads.
    [146] Kattis S.E., Beskos D.E. and Cheng A.H.D., 2D dynamic response of unlined and lined tunnels in poroelastic soil to harmonic body wave. Earthquake Eng Struct Dyn., 2003, 32: 97-110.
    [147] Gatmiri B. and Eslami H., Complex functions approach to scattering of harmonic waves by a circular cavity in porous media. Symposium on the mechanics of physicochemical and electromechanical interactions in porous media, 2003.
    [148] Hasheminejad S.M., Hosseini H., Radiation loading of a cylindrical source in a fluid-filled cylindrical cavity embedded within a fluid-saturated poroelastic medium. Journal of Applied Mechanics, Transactions ASME, 2002, 69(5): 675-683.
    [149] Hasheminejad S.M., Mehdizadeh S., Acoustic radiation from a finite spherical source placed in fluid near a poroelastic sphere. Archive of Applied Mechanics, 2004,74: 59-74.
    [150] Hasheminejad S.M. and Badsar S.A., Elastic wave scattering by two spherical inclusions in a poroelastic medium. Journal of Engineering Mechanics, 2005, 131(9): 953-965.
    [151] Yamamoto Koji and Kitahara Michihiro, A numerical method for wave scattering in poroelastic media. Structural Engineering/Earthquake Engineering, 2004, 21(2): 143-157.
    [152] Markov M.G., Propagation of longitudinal elastic waves in a fluid-saturated porous medium with spherical inclusions. Acoustical Physics, 2005, 51: 115-121.
    [153] Fellah M., Fellah Z.E.A. and Depollier C., Transient wave propagation in inhomogeneous porous materials: Application of fractional derivatives. Signal Processing, 2006, 86(10): 2658-2667.
    [154] 门福录,波在饱含流体的孔隙介质中的传播问题,地球物理学报,1981,24(1):65~76
    [155] 门福录,地震波在含水地层中的弥散和耗散,地球物理学报,27(1):61-73
    [156] 陈龙珠,饱和土中弹性波的传播速度及其应用,[博士学位论文],杭州:浙江大学土木系
    [157] 陈龙珠,吴世明,海底沉积物影响声速的理论探讨,海洋学报,1988,10(3):368-373
    [158] 夏唐代,地基中表面波特性及其应用,[博士学位论文],杭州:浙江大学土木系
    [159] 夏唐代,蔡袁强,陈云敏,吴世明,利用瑞利波特性计算动力响应的进一步探讨,岩土工程学报,1996,18(3):28-34
    [160] 杨峻,层状饱和土中波的传播,[博士学位论文],杭州,浙江大学土木工程系
    [161] 杨峻,吴世明,蔡袁强,饱和土中弹性波的传播特性,振动工程学报,1996,9(2):128-137
    [162] 徐长节,吴世明,蔡袁强,陈云敏,两相介质中波在平面界面上的反射,爆炸与冲击,1998,18(1):8-14
    [163] 胡亚元,王立忠,陈云敏,吴世明,张忠苗,饱和土中平面应变波在圆柱体上的散射和折射,地震学报,1998,20(3);300-307
    [164] 赵成刚,高福平,波在饱和多孔介质与弹性固体介质交界面上的界面效应,地震工程与工程振动,1999,19(1):2-6
    [165] 陆建飞,王建华,饱和土中任意形状孔洞对弹性波的散射,力学学报,2002,34(6):904-913
    [166] 李伟华,赵成刚,饱和土沉积谷场地对平面 p 波的散射,岩土工程学报,2003,25(3):346-351
    [167] 李伟华,赵成刚,圆弧形凹陷饱和土场地对平面 p 波散射问题的解析解,地球物理学报,2003,46(4):539-546
    [168] 李伟华,赵成刚,饱和沉积谷场地对平面 SV 波的散射问题的解析解,地球物理学报,2004,47(5):911-919
    [169] 李伟华,赵成刚,饱和土半空间中圆柱形孔洞对平面 p 波的散射,岩土力学,2004,25(12):1867-1872
    [170] Wang.J.H., Zhou X.L. and Lu J.F., Dynamic stress concentration around elliptic cavities in saturated poroelastic soil under harmonic plane waves. International Journal of Solids and Structures, 2005, 42: 4295-4310.
    [171] 周香莲,周光明,王建华,饱和土中圆形衬砌结构对弹性波的散射,岩石力学与工程学报,2005,24(9):1572-1576
    [172] Greetsma J., Some aspects of elastic wave propagation in fluid-saturated porous solids. Geophys, 1961, 26: 169-181.
    [173] 诸国桢,流体饱和多孔介质中的声波,应用声学,1994,13(4):1-6.
    [174] Zienkiewicz O.C., Chang C.T. and Bettess P., Drained, undrained, consolidating and dynamic behavior assumptions in soils. Geotechnique, 1980, 30: 385-395.
    [175] Stoll R.D. and Kan T.K., Reflection of acoustic waves at a water-sediment interface. The Journal of the Acoustical Society of America, 1981, 70: 149-156.
    [176] 朱百里,沈珠江,计算土力学,上海科技出版社,1990

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700