等规聚苯乙烯单链、寡链和多链聚集体的结晶、结构和形态
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以等规聚苯乙烯(i-Ps)为研究对象,在i-PS苯熔液的浓度范围(1.0×10~(-3)g·mL~(-1)~2.0×10~(-5)g·mL~(-1))内,采用溶液雾化-冷冻-升华(SFD)法分别制备了非晶态的i-Ps单链、寡链和多链粒子的聚集体。观察了i-Ps单链、寡链和多链非晶态粒子的形态,计算了粒子的尺寸。研究了不同浓度制备的i-Ps样品的冷结晶行为和晶体形态,测试了粒子聚集体熔体结晶的线生长速度、并进行了晶体结构的研究。通过与i-Ps本体样品结晶行为的对比,揭示了链缠结对聚合物结晶、结构及其形态的影响。基于聚合物结晶理论,计算和分析了i-Ps单链、寡链或多链晶体的热力学参数和晶体尺寸等,旨在从分子水平上对聚合物结晶过程和机制有更深刻的新认识。
     用透射电镜(TEM)观察了分别由1.0×10~(-3)g·mL~(-1)、1.0×10~(-4)g·mL~(-1)和2.0×10~(-5)g·mL~(-1)浓度的溶液经雾化-冷冻-升华法制备的i-PS单链、寡链和多链非晶态聚集体的形态。结果表明,由溶液浓度为2.0×10~(-5)g·mL~(-1)所制备的i-Ps单链、寡链粒子呈非晶态的球体。其中一些小球体的直径两倍于θ状态下计算所得的均方回转半径,表明采用喷雾-冷冻-升华法可以得到单分子线团分散的样品。i-Ps单分子线团聚集体的电子选区衍射结果表明单分子小球中存在一定程度的近程有序结构。红外光谱(FTIR)中的吸收带500-600cm~(-1)经分峰处理后的结果也证实了雾化-冷冻-升华样品中存在局部近程有序结构。FTIR研究还表明用此技术制备的样品中i-Ps链段的堆砌较本体样品更松散。
     采用差热扫描量热法(DSC)研究了i-Ps单寡链、寡链和多链聚集体的冷结晶行为,结果表明,由上述三个溶液制得的试样的冷结晶峰分别比本体样品降低46.3℃、24.9℃和14.7℃。冷结晶峰温的降低,表明单链、寡链聚集体的结晶速度加快。这是因为随着溶液浓度的降低,雾化-冷冻-升华制备的样品中单链或寡链颗粒成了主要组成部分,这些颗粒间很少甚至没有链间缠结。另一方面,单链、寡链或多链生成的晶体的熔点也随制样溶液的浓度降低而逐渐降低,这是因为单链、寡链生成的晶粒体积逐渐减小的结果。对单链、寡链聚集体样品的多次DSC扫描实验表明,随着扫描次数的增加,冷冻升华样品中分子链的缠结程度增加,冷结晶峰和熔点向高温方向移动。i-Ps单链、寡链聚集体在243℃等温40min后,DSC扫描的结果表明其冷结晶行为已与本体相同。此时,单链、寡链分子线团因热扩散而完全贯穿为相互缠结的网络。基于实验结果,提出了分子链在结晶驱动力下从过冷熔体向结晶生长面扩散的过程需要克服缠结的阻滞作用机制。
     在165℃~200℃温度范围,采用热台偏光显微镜(POM)测量了i-Ps本体和单链、寡链和多链聚集体的熔体结晶球晶的线生长速率。基于Hoffmann的表面成核、生长的结晶理论,讨论了线生长速率方程中成核项和扩散项的不同简化条件。根据实验结果,计算得i-Ps本体样品结晶的成核因子K_g和扩散活化能B~*,与文献报道数值一致。同理,对雾化-冷冻-升华样品进行了计算、分析,结果表明晶体生长动力学方程中的指前因子G_0和成核因子K_g均随聚合物链间缠结的减少而减小;反之,扩散活化能B~*则增大。利用Ewards-Philips法讨论了K_g的物理含义。在晶体生长过程中,由于缠结的减少,单链、寡链近邻折叠的比例增加,使得片晶的表面粗糙度降低,因而折叠面上分子链的拥挤程度下降,生成片晶的端表面自由能降低。对实验数据的计算得到了一组新的i-Ps结晶热力学参数,包括G_0,K_g,B~*,σ_e和σ等。该结果表明链间缠结对聚合物结晶和结构有很大的影响。采用由线生长速率数据得到的新σ_e值,将i-Ps单链、寡链聚集体结晶的实验数据进行了重新计算,计算结果与WAXD测试得到的(220)晶面的测定尺寸相吻合。这些研究成果均未见文献报道。
     采用偏光显微镜(POM)观察了i-Ps本体和冷冻升华样品熔体结晶的球晶形态,生成的球晶均为正球晶。利用扫描电镜(SEM)观察了单链、寡链聚集体的冷结晶形态,首次观察到i-Ps单链和寡链聚集体结晶时生成大量的leaflike形状的晶体,讨论了leaflike晶形的生长机制。i-Ps单链、寡链和多链熔体结晶生成的球晶,经高锰酸钾蚀刻后,SEM观察发现其球晶均为捆束状“sheaflike”形态。实验观察表明,寡链和多链熔体结晶时,随着链缠结的减少,球晶的填空生长机理由“branching”转变为“spawn”模式。而单链聚集体熔体结晶的球晶是由非扭转的、无分枝片晶组成。这些实验事实是由我们首次观察到的,证明了链间缠结对聚合物球晶生长机制及形态能产生很大影响。同时在单链聚集体的熔体结晶时也观察到密集海草型(Compact Seaweed CS)晶体形态,说明了晶体生长受扩散控制。i-Ps熔体结晶时CS晶体与球晶共存也是首次观察到实验现象。此外,i-Ps多链聚集体熔体结晶时,观察到多种六边形片晶聚集体,包括:规整、圆弧化或严重退化的六边形形态。该实验现象与Bassett报道的研究结果一致。还观察到有些六边形的片晶聚集体的中心部分为明显的螺旋生长模式,随着螺旋的发展,片晶排列方式由“flat-on”转变为“edge-on”,当用POM观察时,螺旋中心呈负光性。
The isotactic polystyrene (i-Ps) was chosen as a sample, and amorphous aggregates of single-, pauci- and multi-chain particles were prepared by spraying-freeze-drying (SFD) procedure from dilute solution of i-Ps in benzene with concentration ranging from 1.0×10~(-3)g·mL~(-1) to 2.0×10~(-5)g·mL~(-1). The morphology of i-Ps single-, pauci- and multi-chain particles was observed, and the particle dimension was calculated. The investigation of cold crystallization and crystal morphology was carried out for the samples prepared from solutions of various concentrations, and also linear growth rate of spherulites crystallized from the melt of aggregate was measured and the crystal structure was characterized. The influence of entanglements on the crystallization process, structure and morphology was revealed by a parallel study of the properties of these single-, pauci- and multi-chain particles with those of bulk sample,. According to the crystallization theory of macromolecules, the thermodynamics parameters and structure dimension were calculated and analyzed in order to get a better understanding of crystallization process of polymers on a molecular level.
    By means of TEM, we observed the morphologies of amorphous single-, pauci- and multi-chain aggregates prepared by spraying-freeze-drying from solutions with various concentrations. It was found that the i-Ps aggregates prepared from the concentration of 2.0×10~(-5)g·mL~(-1) is composed of isolated globules and most of them
    has a diameter about twice times of the ~(1/2) of i-Ps random coil under θ state.
    This leads to an convincible conclusion that isolated single-chain coil can be prepared by spraying-freeze-drying method from extremely dilute solution. Electron diffraction pattern of i-Ps single-chain globules showed that a certain short-range order is maintained during the freeze-drying process, and it is further confirmed by fourier transform infrared spectrograph (FTIR) spectrum of single-chain aggregates after separation of bands in the region 500-600cm~(-1). The FTIR spectrum also showed that the packing of segments in the aggregates prepared by SFD method is in a more dilated state than that of bulk sample.
    The cold crystallization behaviors of the single-, pauci- and multi-chain aggregates were investigated by DSC. It was found that as the solution concentration decrease, the cold crystallization temperature of the samples prepared from solutions was greatly decreased. For the samples prepared from three solutions mentioned above, the cold crystallization temperature is about 46.3°C, 24.9°C or 14.7°C lower than that of bulk sample, respectively. This depression in cold crystallization temperature
    indicates an acceleration of crystallization rate, which could be ascribed to fewer and even no interchain entanglements in i-Ps aggregates prepared from more dilute solution. On the other hand, the melting point of i-Ps crystals formed in aggregates decreases with decreasing solution concentration, most likely due to the more smaller crystals were obtained in the case of solution with more dilute solution. The sample was heated in DSC cell to the end point of melting peak, followed by quenching to room temperature, and this procedure was repeated several times. It was observed that with the increase of DSC scan times, the cold-crystallization peak and melting peak shift to the higher temperature. Clearly, this is because the increase of entanglement density. While the aggregates were heated at 243°C for 40min, the single- and pauci-chain coils interpenetrated each other by thermal diffusion to form an entangled network with the same entanglement density as the normal bulk, therefore, the recovery of crystallization behavior characterized by bulk i-PS was observed in DSC scan. On the basis of the experimental observation, it could be put forward that during the crystallization the macromolecules should overcome the retardation of entanglement to approach the growth surface by self-diffusion.
    The growth rate of i-Ps bulk and aggregates prepared from various solution concentrations were measured under polarized optical microscope (POM) equipped with a hot stage in the range of 165°C-200°C. Different simplifications and treatments of nucleation term and transport term were discussed based on the LH theory of Surface-Nucleation and Growth. It is found that the nucleation factor K_g and activation energy of transport B~* calculated according to the growth rate are consistent with the classic literature. For i-Ps aggregates prepared by SFD procedure, the prefactor Go and nucleation factor K_g were also obtained, and they are found to decrease with decreasing entanglements, but the transport factor B~* is showed to increase with decreasing entanglements. The physical meaning of K_g were carefully discussed based on the Edwards-Philips method, and it is found that with decreasing entanglements, tight folding is more preferential during the substrate completion in the sample prepared by SFD method, and the end surface become less rough. Thus, it is reasonable to assume that the depression in the congestion of segments at melt-crystal interfacial would lead to a smaller value of end surface free energy. A new series of values were attained for thermodynamics parameters G_0, K_g, B~* , σ_e and σ according to the measurement of growth rate of crystals formed in aggregates melt. A more satisfied coincidence was achieved for the crystal dimension along chain direction from both approaches: one obtained from (220) reflection in WAXD pattern and another calculated by using melting point and new thermodynamics parameter σ_e.
    To our knowledge, all these results mentioned here are firstly reported until now.
    The morphologies of spherulites crystallized from the melt of bulk sample and aggregates prepared from various concentrations were observed by POM, and all spherulites are optically positive. The morphologies of crystals grown from the amorphous state of single- and pauci-chain aggregates at 195°C were investigated by scanning electron microscopy (SEM), abundant leaflike crystals were observed, which have not seen before. Such kind of crystals can be ascribed to the coexistence of low index growth face and high index ones, and they may be formed owing to the lack of available stems. Spherulites grown from the melt of the particle aggregates was observed by SEM after treating with Permanganic etchant, and they are found to be of sheaflike. Observation on the fine texture of spherulites shows that the space-filling mechanism of spherulite growth changes from "branching" to "spawn". While the spherulites grown in single-chain sample is composed of untwisted and unbranched lamellae. These observations are reported for the first time and they indicate that entanglements play a very important role in morphology and growth mechanism of crystals. Meanwhile, the Compact Seaweed (CS) crystal was observed to coexist with sheaflike spherulites in the melt-crystallized single-chain samples, indicating a strong diffusion-controlled characteristic of crystal growth. Various morphologies of hexagonal lamellae aggregates were observed, such as regular, rounded, and polyhedral with a sheaflike interior fibrosity; their formation is dependent on the crystallization condition. Such kind of crystal structure and morphology is consistent with Bassett's observation. What's more, the screw growth of some hexagonal lamellae aggregates is observed at the center of hexagonal lamellae aggregates, and with development of the screw, the lamellae change its arrangement from "flat-on" to "edge-on". The central parts exhibit a negative birefringence while they were observed by using POM.
引文
[1] A. Keller, Single Crystals in Polymers: Evidence of a Folded-Chain Configuration. [J], Phil. Mag., 1957, 2: 1171-1175.
    [2] P. H. Till, The Growth of Single Crystals of Linear Polyethylene[J], J. Polym. Sci., 1957, 24: 301-306.
    [3] E. W. Fischer, Step and Spiral Crystal Growth of High Polymers[J], Zeitschrift fuer Naturforschung, 1957, 12a: 753-754.
    [4] J. I. Jr. Lauritzen, Hoffman, Theory of Formation of Polymer Crystals with Folded Chains in Dilute Solution[J], J. Research Natl. Bur. Standards, 1960, 64(No. 1): 73-102.
    [5] B. Wunderlich, and A. Mehta, Macromolecular Nucleation[J], J. Polym. Sci. Polym. Physics Ed., 1974, 12(2): 255-263.
    [6] D. M. Sadler, Roughnes of Growth Faces of Polymer Crystals: Evidence from Morphology and Implications for Growth Mechanisms and Types of Folding[J], Polymer, 1983, 24: 1401-1409.
    [7] D. M. Sadler, and G. H. Gilmer, A Model for Chain Folding in Polymer Crystals: Rough Growth Faces Are Consistent with the Obsered Growth Rates[J], Polymer, 1984, 25: 1446-1452.
    [8] D. M. Sadler, and G. H. Gilmer, Rate-Theory Model of Polymer Crystallization[J], Physical Revies Letters, 1985, 56(25): 2708-2711.
    [9] D. J. Blundell, and A. Keller, Controlled Crystal-Growing Procedures in Polyethylene Involving Self-Seeding: Some Novel Twinning Habits[J], J. Macrom. Sci. Polym. Phys. Ed., 1968, 2(2): 337-359.
    [10] F. C. Frank, M. Tosi, The Theory of Polymer Crystallization[J], Proc. Roy. Soc. (London), 1961, A263: 323-339.
    [11] F. C. Frank, Nucleation-Controlled Growth on a One Dimensional Growth of Finite Length[J], J. Cryst. Growth., 1974, 22(3): 233-236.
    [12] J. D. Hoffman, Regime Iii Crystallization in Melt-Crystallized Polymers: The Variable Cluster Model of Chain Folding[J], Polymer, 1983, 24(1): 3-26.
    [13] D. Y. Yoon, P. J. Flory, Small-Angle Neutron Scattering by Semicrystalline Polyethylene[J], Polymer, 1977, 18(5): 509-513.
    [14] D. Y. Yoon, P. J. Flory, Small Angle Neutron Scattering by N-Alkane Chains[J], J. Chem. Phys., 1978, 69(6): 2536-2538.
    [15] John D. Hoffman, and Robert L. Miller, Kinetics of Crystallization from the Melt and Chain Folding in Polyethylene Fratctions Revisited: Theory and Experiment[J], Polymer, 1997, 38(13): 3151-3212.
    [16] C. M. Guttman, E. A. Dimarzio, and J. D. Hoffman, Modeling the Amorphous Phase and the Fold Surface of a Semi-Crystalline Polymer-the Gamblers-Ruin Method [J], Polymer, 1981, 22(11): 1466-1479.
    [17] C. M. Guttman, E. A. Dimarzio, Rotational Isomeric Modeling of a Polyethylene-Like Polymer between 2 Plates-Connection to Gamblers Ruin Problem [J], Macromolecules, 1982, 15(2): 525-531.
    [18] M. L. Mansfield, Solution of the Growth Equations of a Sector of a Polymer Crystal Including Consideration of the Changing Size of the Crystal [J], Polymer, 1988, 29(10): 1755-1760.
    [19] M. L. Mansfield, Gambler Ruin Model of Semicrystalline Polymer Systems with Antiparallel Chain Packing [J], J. Physic. Chem., 1989, 1989(93): 19.
    
    [20] M. L. Mansfield, Correction [J], J. Physic. Chem., 1990, 94(15): 6144-6144.
    [21] J. Martinez-Salazar, P. J. Barham, and A. Keller, Studies on Polyethylene Crystallized at Unusually High Supercoolings - Fold Length, Habit, Growth-Rate, Epitaxy [J], J. Polym. Sci. Polym. Physics Ed., 1984, 22(6): 1085-1096.
    [22] S. J. Organ, and A. Keller, Solution Crystallization of Polyethylene at High-Temperatures.l. Lateral Crystal Habits [J], J. Mater. Sci., 1985, 20(5): 1571-1585.
    [23] D. C. Bassett, and R. H. Olley, On Isolated Lamellae of Melt-Crystallized Polyethylene[J], Polymer, 1988,29(9): 1539-1543.
    [24] John I. Lauritzen Jr., and John D, Hoffman, Extension of Theory of Growth of Chain-Folded Polymer Crystals to Large Undercoolings[J], Journal of Applied Physics, 1973, 44(10): 4340-4352.
    [25] T. Kawai, and A. Keller, The Effect of the Crystallization Temperature on the Habit and Fold Length of Polyethylene Single CrystaIs[J], Phil. Mag., 1965, 77(114): 1165-1177.
    
    
    [26] G Ungar, J. Stejny, A. Keller, I. Bidd, and M. C. WHiting, The Crystallization of Ultralong Normal Paraffins - the Onset of Chain Folding [J], Science, 1985,229(4711): 386-389.
    [27] I.C. Sanchez, J. P. Colson, and R.K. Eby, Theory and Observations of Polymer Crystal Thickening[J], Journal of Applied Physics, 1973, 44(\0): 4332-4339.
    [28] I. C. Sanchez, A. Peterlin, and F. L. McCrackin, Theory of Polymer Crystal Thickening During Annealing[J], Journal of Applied Physics, 1974, 45(10): 4216-4219.
    [29] D. Turnbull, J. C. Fischer, Growth Rate of Nucleation in Condensed Systems[J], J. Chem. Phys., 1949,17: 71-73.
    [30] A. Petertlin, E. W. Fischer, and C. Reinhold, Thermodynamic Stability of Polymer Crystals. Ii. Torsional Vibrations of Chain Molecules[J], J. Chem. Phys., 1962, 34: 1403-1408.
    [31] M. L. Huggins, Effect of Intrachain and Interchain Interactions on the Structures of Crystalline Regions in Linear Polymers[J], J. Polym. Sci., 1961, 50: 65-69.
    [32] M. L. Huggins, New Principle of Polymer Structure[J], Makromol. Chem., 1966, 92: 260-276.
    
    [33] H. G. Zachmann, Effect of Configuration Entropy on the Crystallization and Melting Behavior of Polymers[J], Collid. Z. Z. Polym., 1967, 216/217: 180-191.
    [34] John D. Hoffman and John J. Lauritzen, Jr., Crystallizaiton of Bulk Polymer with Chain Folding: Theory of Growth of Lamellar Spherulites[J], Journal of Research of The National Bereau of Standards-A. Physics and Chemistry, 1961, 65A(4): 297-336.
    [35] F. P. Price, Markoff Chain Model for Growth of Polymer Single Crystals[J], J. Chem. Phys., 1961, 35: 1884-1892.
    [36] J. I. Jr. Lauritzen, E. Passaglia, Kinetics of Crystallization in Multicomponent Systems. Ii. Chain-Folded Polymer Crystals[J], J. Res. Nat. Bur. Stds., 1967, 71(4): 261-275.
    [37] I. C. Sanchez, and E. A. Dimarzio, Dilute-Solution Theory of Polymer Crystal Growth. Thermodynamic and Predictive Aspects for Polyethylene[J], Macromolecules, 1971, 4(6): 677-687.
    [38] A. DiMarzio, C. M. Guttman, and J. D. Hoffman, Is Crystallization from the Melt Controlled by Melt Viscosity and Entanglement Effects?[J], Disc. Faraday Soc., 1979, 68: 210-217.
    [39] P. G. de Gennes. Scaling Concepts in Polymer Physics [M]; Corneil: Cornell Univ. Press, 1979: 158-160
    [40] J. Klein, and R. C. Ball, Kinetic and Topological Limits on Melt Crystallization in Polyethylene [J], Disc. Faraday Soc., 1979, 68: 198-209.
    [41] J. D. Hoffman, R. L. Miller, Test of the Reptation Concept-Crystal-Growth Rate as a Function of Molecular-Weight in Polyethylene Crystallized from the Melt [J], Macromolecules, 1988, 21(10): 3038-3051.
    [42] G. B. McKenna, K. L. Ngai, and D. J. Plazek, Differences in the Molecular Weight and the Temperature Dependences of Self-Diffusion and Zero Shear Viscosity in Linear Polyethylene and Hydrogenated Polybutadiene[J], Polymer, 1985, 26(11): 1651-1653.
    [43] C. R. Bartels, B. Crist, and W. W. Graessley, Self-Diffusion Coefficient in Melts of Linear-Polymers-Chain-Length and Temperature-Dependence for Hydrogenated Polybutadiene [J], Macromolecules, 1984, 17(12): 2702-2708.
    [44] C. R. Snyder, H. Marand, and M. L. Mansfield, Lateral Substrate Completion Rate in the Lauritzen-Hoffman Secondary Surface Nucleation Theory: Nature of the Friction Coefficient[J], Macromolecules, 1996, 29(9): 7508-7513.
    [45] C. R. Snyder, and H. Marand, Effects of Chain Transport in the Secondary Surface Nucleation Based Flux Theory and in the Lauritzen-Hoffman Crystal Growh Rate Formlism[J], Macromolecules, 1997, 30(9): 2759-2766.
    [46] S. J. Organ, and A. Keller, Fast Growth-Rates of Polyethylene Single-Crystals Grown at High-Temperatures and Their Relevance to Crystallization Theories [J], J. Polym. Sci. Part B, 1986, 24(10): 2319-2335.
    [47] K. Armitstead, G. GoldbeckWood, Polymer Crystallization Theories [J], Adv. Polym. Sci., 1992, 100: 221-312.
    [48] J. J. Point, Experimental Study of the Mechanism of Crystallization of Poly(Ethylene Oxide) and an Alternative to the Standard Kinetic Theory of Crystallization of Long-Chain Compounds [J], Macromolecules, 1997, 30(5): 1375-1384.
    [49] A. Toda, Growth Mode and Curved Lateral Habits of Polyethylene Single-Crystals [J], Faraday Discussions, 1993, 95: 129-143.
    [50] J. D. Hoffman, L. J. Frolen, G. S. Ross, and J. I. Jr. Hoffman, Growth-Rate of Spherulites and Axialites from Melt in Polyethylene Fractions-Regime-1 and Regime-2 Crystallization [J], J. Res. Nat. Bur Stds., 1975, 79(6): 671-699.
    [51] J. D. Hoffman, R. L. Miller, Surface Nucleation Theory for Chain-Folded Systems with Lattice Strain-Curved Edges [J], Macromolecules, 1989, 22(7): 3038-3054.
    [52] R. L. Miller, and J. D. Hoffman, Nucleation Theory Applied to Polymer Crystals with Curved Edges [J], Polymer, 1991, 32(6): 963-978.
    [53] Ken Taguchi, HIkeki Miyaji, Kunihide Izumi, Akitaka Hoshino, Yoshihida Miyamoto, and Ryohei Kokawa, Growth Shape of Isotactic Polystyrene Crystals in Thin Films[J], Polymer, 2001, 42: 7443-7447.
    [54] D. C. Bassett, and A. S. Vaughan, On the Lamellar Morphology of Melt-Crystallized Isotactie Polystyrene[J], Polymer, 1984, 26: 717-725.
    [55] Ken Taguchi, HIkeki Miyaji, Kunihide Izumi, Akitaka Hoshino, Yoshihida Miyamoto, and Ryohei Kokawa, Crystal Growth of Isotactic Polystyrene in Ultrathin Films: Film Thickness Depedence[J], Journal of Macromolecular Science: Part B-Physics, 2002, B41 (4-6): 1033-1042.
    [56] G. Ungar, and A. Keller, Time-Resolved Synchrotron X-Ray Study of Chain-Folded Crystallization of Long Paraffins [J], Polymer, 1986, 27(12): 1835-1844.
    [57] G. Ungar, and A. Keller, Inversion of the Temperature-Dependence of Crystallization Rates Due to Onset of Chain Folding [J], Polymer, 1987, 28(11): 1899-1907.
    [58] D. M. Sadler, and G. H. Gilmer, Preferred Fold Lengths in Polymer Crystals-Predictions of Minima in Growth-Rates [J], Polym. Commun., 1987, 28(9): 242-246.
    [59] M. I. Abo el Maaty, I. L. Hosier, and D. C. Bassett, A Unified Context for Spherulitic Growth in Polymers[J], Macromolecules, 1998, 31: 153-157.
    [60] 钱人元,曹锑,陈尚贤,用分子间激基缔合物荧光研究聚苯乙烯良溶剂溶液-从稀区到亚浓区和浓区的转变[J],中国科学(B),1983,12:1080-1087.
    [61] E. J. Amis, X. Gao, and N. Ding, Entanglement Effects on Polymer Crystallization Rates from Solution[J], Polymer Preprints, 1995, 36(1): 271-272.
    [62] X. Gao, and E. J. Amis, Model for Molecular-Weight Dependence of Crystallization of Polymer from Dilute-Solutions [D], 1995
    [63] M. Girolamo, A. Keller, K. Miyasaska and N. Overberch, Gelation-Crystallization in Isotactic Polystyrene Solutions and Its Implications to Crystal Morphology, to Origin and Structure of Gels, and to Chemical Homogeneity of Polyolefins [J], J. Polym. Sci. Polym. Phys. Ed., 1976, 14(1): 39-61.
    [64] E. D. T. Atkins, D. H. Isaac, A. Keller, and K. Miyasaka, Analysis of Anomalous X-Ray-Diffraction Effects of Isotactic Polystyrene Gels and Its Implications for Chain Conformation and Isomeric Homogeneity[J], J. Polym. Sci. Polym. Phys. Ed., 1977, 15(2): 211-226.
    [65] E. D. T. Atkins, D. H. Isaac, A. Keller, and K. Miyasaka, Conformation of Polystyrene with Special Emphasis to the near All-Trans Extended-Chain Model Relevant in Polystyrene Gels [J], J. Polym. Sci. Polym. Phys. Ed., 1980, 18(1): 71-82.
    [66] M. Psarski, E. Piorkowska, and A. Galeski, Crystallization of Polyethylene from Melt with Lowered Chain Entanglements[J], Macromolecules, 2000, 33: 916-932.
    [67] D. M. Sadler, M. Barber, G. Lark, and M. J. Hill, Twin Morphology.2. Measurements of the Enhancement in Growth Due to Reentrant Corners [J], Polymer, 1986, 27(1): 25-33.
    [68] D. M. Sadler, New Explanation for Chain Folding in Polymers [J], Nature, 1987, 326(6109): 174-177.
    [69] J. J. Point, New Theoretical Approach of the Secondary Nucleation at High Supercooling [J], Macromolecules, 1979, 12(4): 770-775.
    [70] J. J. Point, Reconsideration of Kinetic Theories of Polymer Crystal-Growth with Chain Folding [J], Disc. Faraday Soc., 1979, 68: 167-176.
    [71] J. J. Point, and A. J. Kovacs, A Critical-Look at Some Conceptual Aspects of Kinetic Theories of Polymer Crystal-Growth [J], Macromolecules, 1980, 13(2): 399-409.
    [72] S. Z. D. Cheng, B. Wunderlich, Molecular Segregation and Nucleation of Poly(Ethylene Oxide) Crystallized from the Melt.1. Calorimetric Study [J], J. Polym. Sci. Polym. Physics Ed., 1986, 24(3): 577-594.
    [73] S. Z. D. Cheng, B. Wunderlich, Molecular Segregation and Nucleation of Poly(Ethylene Oxide) Crystallized from the Melt.2. Kinetic-Study [J], J. Polym. Sci. Polym. Physics Ed., 1986, 24(3): 595-617.
    [74] A. Toda, Growth-Kinetics of Polyethylene Single-Crystals from Dilute-Solution at Low Supercoolings [J], Polymer, 1987, 28(10): 1645-1651.
    [75] P. J. Barham, A. Keller, E. L. Otun, and P. A. Holmes, Crystallization and Morphology of a Bacterial Thermoplastic-Poly-3-Hydroxybutyrate [J], J. Mater. Sci., 1984, 19(9): 2781-2794.
    [76] Tianxi liu, Juergen Petermann, Chaobin He, Zhehui Liu, and Tai-Shung Chung, Tranmission Electron Microscopy Observations on Lamellar Melting of Cold-Crystallized Isotactic Polystyrene[J], Macromolecules, 2001, 34(24).
    [77] Yongxian Duan, Jianming Zhang, Deyan shen, and Shouke yan, In Situ Studies on the Cold-Crystallization Process and Multiple Melting Behavior of Isotactic Polystyrene[J], Macromolecules, 2003, 36: 4874-4879.
    [78] Tianxi Liu, Wuiwui Chauhari Tjiu, and Juergen Petermann, Transmission Eletron Microscopy Observations on Fine Structure of Shish-Kebab Crystals of Isotactic Polystyrene by Partial Melting[J], Journal of Crystal Growth, 2002, 243: 218-223.
    [79] Masaki Tsuji, Masahiro Fujita, TOshiki Shimizu, and Shinzo Kohjia, Fine Structure of Curved Edge-on Lamellae in Crystalline Thin Films of Isotactic Polystyrene as Revealed by Transmission Electron Miscroscopy[J], Macromolecules, 2001, 34: 4827-4833.
    [80] 陈尔强,胡秀兰,卜海山,许胜勇,等规聚苯乙烯的单分子链及单链单晶的尺寸判据[J],高分子学报,1995,4:41-48.
    [81] 陈民,顾方明,卜海山,链缠结对高聚物热转变行为的影响[J],高分子学报,1999,(3):332-337.
    [82] Haishan Bu, Fangming Gu, Min Chen, Lirong Bao, and Jie Cao, Crysatllization and Melting Behavior of Nanopolymeric Particles Containing Single or a Few Chains[J], Journal of Macromolecular Science: Physics, 2000, B39(1): 93-108.
    [83] Haishan Bu, Fangming Gu, and Min Chen, Influence of Entanglements on Crystallization of Macromolecules[J], Macromolecules, 1998, 31: 7108-7110.
    [84] Fangming Gu, Haishan Bu, and Ze Zhang, New Observation on the Formation of "Row-Nucleation" Structure of Isotactic Polystyrene[J], Macromolecules, 2000, 33: 5490-5494.
    [85] Dongshan Zhou, Liang Li, Yuqin Li, Jun Zhang, and Gi Xue, Metastable Isotactic Polystyrene Prepared by Freeze-Extracting Concentrated Solutions in Solvent of Middle Molecular Size[J], Macromolecules, 2003, 36: 4609-4613.
    [86] Kazuyoshi Iwata, Role of Entanglement in Crystalline Polymers 2. Basic Theory[J], Polymer, 2002, 43: 6609-6626.
    [87] Kazuyoshi Iwata, Mitssuya Tanaka, Naoya MIta, Yoshiyuki Kohno, Free Energy of Entanglement-Condensed Systems[J], Polymer, 2002, 43: 6595-6607.
    [88] Shinichi Yamazaki, Masamichi Hikosaka, Akihiko Toda, Isao Wataoka, and Fangming Gu, Role of Entanglement in Nucleation and 'Melt Relaxation' of Polyethylene[J], Polymer, 2002, 13: 6585-6593.
    [89] John G. Van Alsten, Steven R. Lustig, and Benjamin Hsiao, Polymer Diffusion in Semicrystalline Polymers. 2. Atactic Polystyrene-D Transport into Atactic and Isotactic Polystyrene[J], Macromolecules, 1995, 28: 3672-3680.
    [90] Dinghai Huang, Yuming Yang, Guoqing Zhang, and Binyao Li, Influence of Intermolecular Entanglements on the Glass Transition and Structure Relaxation Behaviors of Macromolecules. 2. Polystyrene and Phenophthalein Poly(Ether Sulfone)[J], Macromolecules, 2000, 33: 461-464.
    [91] Yongli Mi, Gi Xue, and Xiaolin Li, A New Perspective of the Glass Transition of Polymer Single-Chain Nanoglobules[J], Macromolecules, 2003, 36: 7560-7566.
    [92] Yuka Saka, Masayuk Imai, Keisuke Kaji, Masaki Tsuji, Tip-Spilitting Crystal Growth Observed in Crystallization from Thin Films of Poly(Ethylene Terephthalate)[J], Journal of Crystal Growth, 1999, 203: 244-254.
    [93] S. J. Sutton, K. Izumi, H. Miyaji, Y. Miyamoto, and S. Miyashita, The Morphology of Isotactic Polystyrene Crystals Grown in the Thin Films: The Effect of Substrate Material [J], Journal of Materials Science, 1997, 32: 5621-5627.
    [94] Sinzo Sawamura, Hideki Miyaji, Kunihide Izumi, Simon J. Sutton, and Yoshihisa Miyamoto, Growth Rate of Isotactic Polystyrene Crytals in Thin Films[J], Journal of Physical Society of Japan, 1998, 67(10): 3338-3344.
    [95] Kathryn L. Beers, Jack F. Douglas, Eric J. Amis, and Alamgir Karim, Combinatorial Measurement of Crystallization Growth Rate and Morphology in Thin Films of Isotactic Polystyrene[J], Langmuir, 2003, (19): 3935-3940.
    [96] Gunter Reiter, and Jens-Uwe Sommer, Polymer Crystallization in Quasi-Two Dimension. I Experimental Results[J], Journal of Chemical Physics, 2000, 112(9): 4376-4383.
    [97] Jens-Uwe Sommer, and Giinter Reiter, Polymer Crystallization in Quasi-Two Dimension. Ii Kinetics Models and Computer Simulations[J], Journal of Chemical Physics, 2000,112(9): 4384-4393.
    [98] Vincent H. Mareau, and Robert E. Prud'homme, In-Site Hot Stage Atomic Force Microscopy Study of Poly(C-Caprolactone) Crystal Growth in Ultrathin Films[J], Macromolecules, 2005, 38: 398-408.
    [99] Akihiko Toda, Kinetics Barrier of Pinning in Polymer Crystallization: Rate Equation Approach [J], Journal of Chemical Physics, 2003, 118(18): 8443-8455.
    [100] R. F. Boyer, and R. D. Heidenreich, Molecular-Weight Studies on High Polymers with the Electron Microscope[J], J. Appl. Phys., 1945,16: 621-639.
    [101] B. M. Siegel, D. H. Johnson, and H. Mark, Molecular-Weight Investigations of High Polymers with the Electron Microscope [J], J. Polym. Sci., 1950, 5: 111-120.
    [102] C. E. Hall, and P. Doty, A Comparison between the Dimensions of Some Macromolecules Determined by Electron Microscopy and by Physical-Chemical Methods[J], J Am. Chem. Soc, 1958, 80: 1269-1274.
    [103] D. V. Quale, An Electron Microscopical Study of Polyacrylamide[J], Polymer, 1967, 8(4): 217-224.
    [104] M. J. Richardson, Molecular Weight of Amorphous Polymers by Electron Microscopy[J], J. Polym. Sci. Part. C, 1963, Pt. C3: 21-29.
    [105] M. J. Richardson, Direct Observation of Polymer Molecules and Determination of Their Molecular Weight[J], Proc. Roy. Soc. (London), 1964, 279(1376;Ser.A):50-61.
    [1] R. F. Boyer, and R. D. Heidenreich, Molecular-Weight Studies on High Polymers with the Electron Microscope[J], J. Appl. Phys., 1945, 16: 621-639.
    [2] B. M. Siegel, D. H. Johnson, and H. Mark, Molecular-Weight Investigations of High Polymers with the Electron Microscope[J], J. Polym. Sci., 1950, 5: 111-120.
    [3] J. Kumaki, Polystyrene Monomolecular Particles Obtained by Spreading Dilute-Solutions on the Water-Surface [J], Macromolecules, 1986, 19(8): 2258-2263.
    [4] J. Kumaki, Accumulation of Monomolecular Polystyrene Particles from a Water-Surface onto a Substrate [J], J. Polym. Sci. Polym. Physics Ed., 1990, 28(1): 105-111.
    [5] 陈尔强,胡秀兰,卜海山,许胜勇,等规聚苯乙烯的单分子链及单链单晶的尺寸判据[J],高分子学报,1995,1:41-48.
    [6] Haishan Bu, Fangming Gu, Min Chen, Lirong Bao, and Jie Cao, Crysatllization and Melting Behavior of Nanopolymeric Particles Containing Single or a Few Chains[J], Journal of Macromolecular Science: Physics, 2000, B39(1): 93-108.
    [7] Haishan Bu, Fangming Gu, and Min Chen, Influence of Entanglements on Crystallization of Macromolecules[J], Macromolecules, 1998, 31: 7108-7110.
    [8] G. Xue, Y. Lu, and J. Gao, Surface Enhanced Raman Scattering Evidence for the Existence of a Critical Concentration for Coil Shrinkage in Polystyrene Solutions[J], Polymer, 1994, 35(14): 3127-3130.
    [9] Gi Xue, Yun Lu, Gaoquan Shi, and Qinpin Dai, Glass Transition of Expanded Polystyrene Coils[J], Polymer, 1994, 35(4): 892-894.
    [10] G. Xue, Y. Wang, S. Liu, and Yih-Tyan Liao, Ft-Ir Study of Concentration Depedence for Crystallization of Isotactic Polystyrene Arising from Freeze-Drying Dilute Solutions[J], Macromolecules, 1995, 28: 4344-4346.
    [11] Dongshan Zhou, Liang Li, Yuqin Li, Jun Zhang, and Gi Xue, Metastable Isotactic Polystyrene Prepared by Freeze-Extracting Concentrated Solutions in Solvent of Middle Molecular Size[J], Macromolecules, 2003, 36: 4609-4613.
    [12] Yongli Mi, Gi Xue, and Xiaolin Li, A New Perspective of the Glass Transition of Polymer Single-Chain Nanoglobules[J], Macromolecules, 2003, 36: 7560-7566.
    [13] P. G. de Gennes. Scaling Concepts in Polymer Physics [M]; Cornell: Cornell Univ. Press, 1979: 158-160
    [14] 利帕托夫主编;闫家宾,张玉昆译.高分子物理化学手册,第一卷:聚合物溶液与混合物的性质[M];北京:中国石化出版社,1995:180-181
    [15] 钱人元,曹锑,陈尚贤,用分子间激基缔合物荧光研究聚苯乙烯良溶剂溶液-从稀区到亚浓区和浓区的转变[J],中国科学(B),1983,12:1080-1087.
    [16] 曹杰,等规聚苯乙烯单链和多链晶体研究[D],上海:复旦大学,1996
    [17] J. B. Helms, G. Challa, Infrared Spectroscopic Study of the Chrystalization of Isotactic Polystyrene from Solution[J], J. Polym. Sci. Polym. Phys. Ed., 1972, 10(4): 761-765.
    [18] J. B. Helms, G. Challa, Temperature Dependence of the Conformation of Isotactic Polystyrene in Toluen[J], J. Polym. Sci. Polym. Phys. Ed., 1972, 10(8): 1447-1459.
    [19] C. Reiss, H. Benoit, Conformation of Polystyrene in Solution[J], J. Polym. Sci. Polym. Symp., 1968, 16(Pt. 6): 3079-3088.
    [20] G. Xue, Y. Wang, X. Gu, Rapid Crystallization of Isotactic Polystyrene by Shock-Cooling and Subsequent Freeze-Drying of Its Very Dilute-Solution [J], Macromolecules, 1994, 27(14): 4016-4017.
    [21] 顾方明,等规聚苯乙烯和聚氧乙烯的单链、寡链结晶研究[D],上海:复旦大学,1999
    [22] 拉贝克著;吴世康等译.高分子科学实验方法;物理原理与应用[M];北京:科学出版社,1987:350-354
    [23] P. C. Painter, and J. L. Koenig, A Normal Vibrational Analysis Isotactic Polystyrene[J], Journal of Polymer Science: Polymer Physics Edition, 1977, 15(11): 1885-1903.
    [24] 沈德言.红外光谱在高分子研究中的应用[M];北京:科学出版社,1982:325-337
    [25] 薛奇.高分子结构研究中的光谱方法[M];北京:高等教育出版社,1993:125
    [26] Y. X. Duan, J. Zhang, D. shen, and S. Yan, In Situ Studies on the Cold-Crystallization Process and Multiple Melting Behavior of Isotactic Polystyrene[J], Macromolecules, 2003, 36: 4874-4879.
    [27] Y. Jiang, Q. Gu, L. Li, D. Shen, X. Jin, and C. Chan, Conformational Changes in the Induction Period of Crystallization as Measured by Ft-Ir[J], Polymer, 2003, 44: 3509-3513.
    [28] T. Nakaoki, C. Katagiri, and M. KObayashi, Gel-Specific Infrared Bands for Isotactic Polystyrene Investigated by Isotope Dilution Using Partially Deuterated Samples[J], Macromolecules, 2002, 35: 7708-7712.
    [29] E. D. T. Atkins, D. H. Isaac, A. Keller, and K. Miyasaka, Conformation of Polystyrene with Special Emphasis to the near All-Trans Extended-Chain Model Relevant in Polystyrene Gels [J], J. Polym. Sci. Polym. Phys. Ed., 1980, 18(1): 71-82.
    [30] E. Petrilio, R. Russo, C. D'Aniello and V. Vittoria, Cold Crystallization of Isotactic Polystyrene[J], Journal of Macromolecular Science: Physics, 1998, B37(1): 15-26.
    [31] Y. Li, and G. Xue, The Rigid Amorphous Fraction of Isotactic Polystyrene Prepared by Freeze-Drying from Dilute Solutions[J], Polymer, 1999, 40: 3165-3169.
    [32] H. Tadokoro, S. Nazakura, T. Kitazawa, Infrared Absorption Bands Possibly Associated with the Helical Structure of Polystyrene, Poly(P-Methylstyrene), and Poly(M-Methylstyrene) Prepared with Ziegler Catalyst[J], Bull. Chem. Sco. Jpn., 1959, 32(313-315).
    [33] C. K. Wu, M. Shen, Pressure Effects on the Vibrational Spectra of Amorphous Polystyrene. I. Line Width and Line Shape[J], J. Macrom. Sci., Phys., 1973, 7(3): 549-557.
    [34] M. Kobayashi, K. Akita, H. Tadokoro, Infrared Spectra and Regular Sequence Lengths in Isotactic Polymer Chains[J], Makromol. Chem., 1968, 118: 324-342.
    [35] M. Kobayashi, K. Tsumura, H. Tadokoro, Infrared Spectra of Polymer Solutions. I. Conformational Stability of Isotactic Polymer Chains in Solution[J], J. Polym. Sci. Polym. Phys. Ed., 1968, 6: 1493-1508.
    [36] S. N. Magonov, I. S. Vaimilovitch, S. S. Sheiko, Ftir Spectroscopy of Polymer-Films under Uniaxial Stretching.1. Atactic Polystyrene [J], Polym. Bull., 1991, 25(4): 491-498.
    [37] G. Pouyet, A. Kohler, J. Dayantis, Density Difference Determinations of Ordinary and Freeze-Dried Polystyrenes in Bulk in the Analytical Ultra-Centrifuge [J], Macromolecules, 1981, 14(4): 1126-1128.
    [38] R. Qian, L. W, D. Shen, D. H. Napper, Single-Chain Polystyrene Glasses[J], Macromolecules, 1993, 26(11): 2950-2953.
    [39] S. N. Magonov, D. Shen, R. Qian, Fourier-Transform Infrared-Spectroscopy of Atactic Polystyrene in the Glass-Transition Region [J], Macromol. Chem., 1989, 190(10): 2563-2570.
    [40] G. Matsuba, K. Kaji, K. Nishida, T. Kanaya, and M. Imai, Conformational Chage and Orientation Fluctuations of Isotactic Polystyrene Porio to Crystallizaiton[J], Polymer Journal, 1999, 31(9): 722-727.
    [1] P. G. de Gennes. Scaling Concepts in Polymer Physics [M]; Cornell: Cornell Univ. Press, 1979: 158-160
    [2] 钱人元,曹锑,陈尚贤,用分子间激基缔合物荧光研究聚苯乙烯良溶剂溶液-从稀区到亚浓区和浓区的转变[J],中国科学(B),1983,12:1080-1087.
    [3] J. D. Hoffman, J. I. Jr. Lauritzen, Crystallizaiton of Bulk Polymer with Chain Folding: Theory of Growth of Lamellar Spherulites[J], Journal of Research of The National Bereau of Standards-A. Physics and Chemistry, 1961, 65A(4): 297-336.
    [4] A. DiMarzio, C. M. Guttman, and J. D. Hoffman, Is Crystallization from the Melt Controlled by Melt Viscosity and Entanglement Effects?[J], Disc. Faraday Soc., 1979, 68: 210-217.
    [5] J. I. Jr. Lauritzen, and J. D. Hoffman, Extension of Theory of Growth of Chain-Folded Polymer Crystals to Large Undercoolings[J], Journal of Applied Physics, 1973, 44(10): 4340-4352.
    [6] J. D. Hoffman, and R. L. Miller, Kinetics of Crystallization from the Melt and Chain Folding in Polyethylene Fratctions Revisited: Theory and Experiment[J], Polymer, 1997, 38(13): 3151-3212.
    [7] D. Y. Yoon, P. J. Flory, Small-Angle Neutron Scattering by Semicrystalline Polyethylene[J], Polymer, 1977, 18(5): 509-513.
    [8] D. Y. Yoon, P. J. Flory, Small Angle Neutron Scattering by N-Alkane Chains[J], J. Chem. Phys., 1978, 69(6): 2536-2538.
    [9] 顾方明,等规聚苯乙烯和聚氧乙烯的单链、寡链结晶研究[D],上海:复旦大学,1999
    [10] H. S. Bu, Y. Pang, D. Song, T. Yu, T. M. Voll, G. Gzornyj, B. Wunderlich, Single-Molecule Single Crystals[J], J. Polym, Sci. Polym. Phys. Ed., 1991, 29(2): 139-152.
    [11] B. Wunderlich, Theory of Cold Crysallization of High Polymers[J], The Journal of Chemical Physics, 1958, 29(6): 1395-1404.
    [12] C. R. Snyder, and H. Marand, Effect of Chain Transport in the Secondary Surface Nucleation Based Flux Theory and in the Lauritzen-Hoffman Crystal Growth Rate Formalism [J], Macromolecules, 1997, 30(2759-2766).
    [13] M. Hikosaka, Unified Theory of Nucleation of Folded-Chain Crystals and Extended-Chain Crystals of Linear-Chain Polymers [J], Polymer, 1987, 28(8): 1257-1264.
    [14] M. Hikosaka, Unified Theory of Nucleation of Folded-Chain Crystals (Fees) and Extended-Chain Crystals (Eccs) of Linear-Chain Polymers. 2. Origin of Fcc and Ecc [J], Polymer, 1990, 31(3): 458-468 458-468.
    [15] L. J. Fetters, D. J. Lohes, D. Richter, T. A. Witten, A. Zirkel, Connection between Polymer Molecular Weight, Density, Chain Dimensions, and Melt Viscoelastic Properties [J], macromolecules, 1994, 27(17): 4639-4647.
    [16] M. Psarski, E. Piorkowska, and A. Galeski, Crystallization of Polyethylene from Melt with Lowered Chain Entanglements[J], Macromolecules, 2000, 33: 916-932.
    [17] 王一任,超高分子量聚乙烯的凝聚态研究[D],上海:复旦大学,2001
    [18] H. S. Bu, F. Gu, and M. Chen, Influence of Entanglements on Crystallization of Macromolecules[J], Macromolecules, 1998, 31: 7108-7110.
    [19] H. S. Bu, F. Gu, Min Chen, L. Bao, and J. Cao, Crysatllization and Melting Behavior of Nanopolymeric Particles Containing Single or a Few Chains[J], Journal of Macromolecular Science: Physics, 2000, B39(1): 93-108.
    [20] J. Kumaki, Accumulation of Monomolecular Polystyrene Particles from a Water-Surface onto a Substrate [J], J. Polym. Sci. Polym. Physics Ed., 1990, 28(1): 105-111.
    [21] 胡家璁.高分子x射线学lM];北京:科学出版社,2003:201-203
    [1] D. Turnbull, J. C. Fischer, Growth Rate of Nucleation in Condensed Systems[J], J. Chem. Phys., 1949, 17: 71-73.
    [2] A. Keller, Single Crystals in Polymers: Evidence of a Folded-Chain Configuration. [J], Phil. Mag., 1957, 2: 1171-1175.
    [3] J. D. Hoffman, J. I. Jr. Lauritzen, Crystallizaiton of Bulk Polymer with Chain Folding: Theory of Growth of Lamellar Spherulites[J], Journal of Research of The National Bereau of Standards-A. Physics and Chemistry, 1961, 65A(4): 297-336.
    [4] J. D. Hoffman, and R. L. Miller, Kinetics of Crystallization from the Melt and Chain Folding in Polyethylene Fratctions Revisited: Theory and Experiment[J], Polymer, 1997, 38(13): 3151-3212.
    [5] D. Y. Yoon, P. J. Flory, Small Angle Neutron Scattering by N-Alkane Chains[J], J. Chem. Phys., 1978, 69(6): 2536-2538.
    [6] D. Y. Yoon, P. J. Flory, Small-Angle Neutron Scattering by Semicrystalline Polyethylene[J], Polymer, 1977, 18(5): 509-513.
    [7] H. S. Bu, F. Gu, Min Chen, L. Bao, and J. Cao, Crysatllization and Melting Behavior of Nanopolymeric Particles Containing Single or a Few Chains[J], Journal of Macromolecular Science: Physics, 2000, B39(1): 93-108.
    [8] H. S. Bu, F. Gu, and M. Chen, Influence of Entanglements on Crystallization of Macromolecules[J], Macromolecules, 1998, 31: 7108-7110.
    [9] F. M. Gu, H. S. Bu, and Z. Zhang, New Observation on the Formation of "Row-Nucleation" Structure of Isotactic Polystyrene[J], Macromolecules, 2000, 33: 5490-5494.
    [10] G. Xue, Y. Wang, X. Gu, Rapid Crystallization of Isotactic Polystyrene by Shock-Cooling and Subsequent Freeze-Drying of Its Very Dilute-Solution [J], Macromolecules, 1994, 27(14): 4016-4017.
    [11] Y. Li, and G. Xue, Rapid Crystallization of Isotactic Polystyrene from Large Molecule Solvent Octadecyl Benzoate[J], Macromolecules, 1999, 32: 3984-3988.
    [12] 何平笙.高分子物理实验[M];合肥:中国科学技术大学出版社,2002
    [13] 何曼君等.高分子物理[M];上海:复旦大学出版社,1998:125-129
    [14] J. N. Hay, Crystallization Kinetics of High Polymers: Isotactic Polystyrene[Jl, Journal of Polymer Science: Part A-2, 1965, 3: 433-447.
    [15] 顾方明,等规聚苯乙烯和聚氧乙烯的单链、寡链结晶研究[D],上海:复旦大学,1999
    [16] T. Suzuki, and A. J. Kovacs, Temperature Dependence of Spherulitic Growth Rate Fo Isotactic Polystyrene. A Crystllization Comparison with the Kinetics of Surface Nucleation [J], Polymer Journal, 1970, 1(1): 82-100.
    [17] J. D. Hoffman, J. J. Weeks, Rate of Spherulitic Crystallization Wiht Chain Folds in Polychlorotrifluoroethylene[J], The Journal of Chemical Physics, 1962, 37(8): 1723-1741.
    [18] B. C. Edwards, and P. J. Philips, Crystallization Studies of Isotatic Polystyrene[J], Polymer, 1974,15: 351-356.
    [19] Y. Miyamoto, Y. Tanzawa, H. MIyaji, and H. Kiho, Concentration Dependence of Lamellar Thickness of Isotactic Polystyrene at High Supercooling'[J], Journal of Physical Society of Japan, 1989, 58(6): 1879-1882.
    [20] Y. Tanzawa, Growth Rate and Morphology of Isotactic Polystyrene Crystals in Solution at High Supercoolings[J], Polymer, 1991, 23(13): 2559-2665.
    [21] Y. Miyamoto, Y. Tanzawa, H. MIyaji, and H. Kiho, Growth Rate of Isotactic Polystyrene Crystals in Concentrated Solutions and in the Melt[J], Polymer, 1992, 23(12): 2496-2501.
    [22] Y. Tanzawa, H. Miyaji, Y. Miyamoto, H. Kiho, Polymer Crystallization at High Supercooling: Molecular-Weight Dependence of Lamellar Thickness in Isotactic Polystyrene[J], Polymer, 1988, 29: 904-908.
    [23] K. L. Beers, J. F. Douglas, E. J. Amis, and A. Karim, Combinatorial Measurement of Crystallization Growth Rate and Morphology in Thin Films of Isotactic Polystyrene[J], Langmuir, 2003, (19): 3935-3940.
    [24] G Reiter, and J. Sommer, Polymer Crystallization in Quasi-Two Dimension. I Experimental Results[J], Journal of Chemical Physics, 2000, 112(9): 4376-4383.
    [25] K.Taguchi, Y. Miyamoto, H. Miyaji,K. Izumi, Undulation of Lamellar Crystals of Polymers by Surface Stresses[J], Macromolecules, 2003, 36(14).
    [26] K. Taguchi, H. Miyaji, K. Izumi, A. Hoshino, Y. Miyamoto, and R. Kokawa, Crystal Growth of Isotactic Polystyrene in Ultrathin Films: Film Thickness Depedence[J], Journal of Macromolecular Science: Part B-Physics, 2002, B4 7(4-6): 1033-1042.
    [27] K. Taguchi, H. Miyaji, K. Izumi, A. Hoshino, Y. Miyamoto, and R. Kokawa, Growth Shape of Isotactic Polystyrene Crystals in Thin FiIms[J], Polymer, 2001, 42: 7443-7447.
    [28] V. H. Mareau, and R. E. Prudhomme, In-Site Hot Stage Atomic Force Microscopy Study of Poly(€-Caprolactone) Crystal Growth in Ultrathin Films[J], Macromolecules, 2005, 38: 398-408.
    [29] S. Sawamura, H.i Miyaji, K. Izumi, S. J. Sutton, and Y. Miyamoto, Growth Rate of Isotactic Polystyrene Crytals in Thin Films[J], Journal of Physical Society of Japan, 1998, 67(10): 3338-3344.
    [30] S.J. Sutton, K. Izumi, H. Miyaji, Y. Miyamoto, and S. Miyashita, The Morphology of Isotactic Polystyrene Crystals Grown in the Thin Films: The Effect of Substrate Material[J], Journal of Materials Science, 1997, 32: 5621-5627.
    [31] S.J. Sutton, K. Izumi, H. Miyaji, K. Fukao, and Y. Miyamoto, The Lamellar Thickness of Melt Crystallized Isotactic Polystyrene as Determined by Atomic Force Microscopy[J], Polymer, 1996, 37(24): 5529-5532.
    [32] E. Petrillo, R. Russo, C.D'Aniello and V. Vittoria, Cold Crystallization of Isotactic Polystyrene[J], Journal of Macromolecular Science: Physics, 1998, 537(1): 15-26.
    [33] E. Petrillo, G Romano, R. Russo and V. Vittoria, Crystallization Behavior of Isotactic Polystyrene Quenched at Different Temperatures[J], Polymers for Advanced Technologies, 1995, 7: 478-482.
    [34] G. Matsuba, K. Kaji, K. Nishida, T. Kanaya, and M. Imai, Conformational Chage and Orientation Fluctuations of Isotactic Polystyrene Porio to Crystallizaiton[J], Polymer Journal, 1999, 31(9): 722-727.
    [35] G Xue, Y. Wang, S. Liu, and Yih-Tyan Liao, Ft-Ir Study of Concentration Depedence for Crystallization of Isotactic Polystyrene Arising from Freeze-Drying Dilute Solutions[J], Macromolecules, 1995,28: 4344-4346.
    [36] Y. X. Duan, J. Zhang, D. shen, and S. Yan, In Situ Studies on the Cold-Crystallization Process and Multiple Melting Behavior of Isotactic Polystyrene[J], Macromolecules, 2003, 36: 4874-4879.
    [37] Y. Jiang, Q. Gu, L. Li, D. Shen, X. Jin, and C. Chan, Conformational Changes in the Induction Period of Crystallization as Measured by Ft-Ir[J], Polymer, 2003,44: 3509-3513.
    [38] D. Turnbull, F. Spaepen, Crystal Nucleation and the Crystal-Melt Interfacial Tension in Linear Hydrocarbons[J], J. Polym. Sci. Poly. Symp., 1978, 63: 237-243.
    [39] J. I.Jr. Lauritzen, Hoffman, Theory of Formation of Polymer Crystals with Folded Chains in Dilute Solution[J], J. Research Natl. Bur. Standards, 1960, 64(No. 1): 73-102.
    [40] J. I. Jr. Lauritzen, and J. D. Hoffman, Extension of Theory of Growth of Chain-Folded Polymer Crystals to Large Undercoolings[J], Journal of Applied Physics, 1973, 44(10): 4340-4352.
    [41] T. X.Liu, J. Petermann, C. He, Z. Liu, and T. Chung, Tranmission Electron Microscopy Observations on Lamellar Melting of Cold-Crystallized Isotactic Polystyrene [J], Macromolecules, 2001, 34(24).
    [42] G Adam, J. H. Gibbs, The Temperature Dependence of Cooperative Relaxation Properties in Glass-Forming Liquids[J], J. Chem. Phys., 1965, 43(1): 139-146.
    [43] F. E. Karasz, H.E. Bair, J. M. O'Reilly, Thermal Properties of Atactic and Isotactic Polystyrene[J], J. Phys. Chem., 1965, 69(8): 2657-2667.
    [44] Hoffman, J. D., Thermodynamic Driving Force in Nucleation and Growth Processes[J], J. Chem. Phys., 1958, 29: 1192-1193.
    [45] L. Mandelkern, N. L.Jain, and H. Kim, Temperature Dependence of the Growth Rate of Spherulites[J], Journal of Polymer Science: Part A-2, 1968, 6: 165-180.
    [46] M. L. Williams, R. F. Landel, J. D. Ferry, The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and Other Glass-Forming Liquids[J], J. Am. Chem. Soc, 1955, 77: 3701-3707.
    [47] A. DiMarzio, C. M. Guttman, and J. D. Hoffman, Is Crystallization from the Melt Controlled by Melt Viscosity and Entanglement Effects?[J], Disc. Faraday Soc., 1979, 68: 210-217.
    [48] P. Lomellini, Willams-Landel-Ferry Versus Arrhenius Behavior: Polystyrene Melt Viscoelasticity Revised[J], Polymer, 1992, 33(23): 4983-4989.
    [49] J. D. Hoffman, Theoretical Aspects of Polymer Crystallization with Chain Folds: Bulk Polymers[J], S PE Trans., 1964, 4(4): 315-362.
    [50] M. H. Cohen, D. T. Turnbull, Molecular Transport in Liquids and Glasses[J], J. Chem. Phys., 1959, 31: 1164-1169.
    [51] A. K. Doolittle, Newtonian Flow. Ii. The Dependence of the Viscosity of Liquids on Free Space.[J], J. Appl. Phys., 1951, 22: 1471-1475.
    [52] D. C. Bassett, and A. S. Vaughan, On the Lamellar Morphology of Melt-Crystallized Isotactic Polystyrene[J], Polymer, 1984, 26: 717-725.
    [53] J. Boon, G. Challa, and D. W. Van Krevelen, Crystallization Kinetics of Isotactic Polystyrene. I Spherulitic Growth Rate[J], Journal of Polymer Science: Part A-2, 1968, 6: 1791-1801.
    [54] M. A. Kennedy, G. Turturro, G. R. Brown, and L. E. Pierre, Retartion of Spherulitic Growth Rate in the Crystallization of Isotactic Polystyrene Due to the Presence of Nucleant[J], Journal of polymer Science: Polymer Physics Edition, 1983, 21: 1403-1413.
    [55] J. D. Hoffman, R. L. Miller, H. Marand, and D. B. Roitman, Relationship between the Lateral Surface Free Energy Σ and the Chain Structure of Melt-Crystallized Polymers[J], Macromolecules, 1992, 25: 2221-2229.
    [56] M. Okada, M. Nishi, M. Takahashi, H. Matsuda, A. Toda, and M. Hikosaka, Molecular Weight Depedence of the Lateral Growth Rate of Polyethlene 2. Folded-Chain Crystals[J], Polymer, 1998, 39(19): 4535-4539.
    [57] A. S. Kenyon, R. C. Gross, and A. L. Wurstner, Kinetics of Spherulite and Crystallite Growth in Isotactic Polystyrene[J], Journal of Polymer Science, 1959, ⅩL: 159-168.
    [58] M. Psarski, E. Piorkowska, and A. Galeski, Crystallization of Polyethylene from Melt with Lowered Chain Entanglements[J], Macromolecules, 2000, 33: 916-932.
    [59] JM. Zhang, YX. Duan, H. Sato, et al., Initial Crystallization Mechanism of Isotactic Polystyrene from Different States [J], J. Phys. Chem., 2005, B 109 (12): 5586-5591.
    [60] P. D. OLMSTED, S. T. MILNER, Strain-Induced Nematic Phase-Separation in Polymer Melts and Gels [J], Macromolecules, 1994, 27(22): 6648-6660.
    [61] 曹杰,等规聚苯乙烯单链和多链晶体研究[D],上海:复旦大学,1996
    [1] A. Keller, Single Crystals in Polymers: Evidence of a Folded-Chain Configuration. [J], Phil. Mag., 1957, 2: 1171-1175.
    [2] H. D. Keith, Habits of Polyethylene Crystals Grown from Paraffinic Solvents and from the Melt[J], J. Appl. Phys., 1964, 35(11): 3115-3126.
    [3] D. M. Sadler, Roughness of Growth Faces of Polymer Crystals: Evidence from Morphology and Implications for Growth Mechanisms and Types of Folding[J], Polymer, 1983, 24: 1401-1409.
    [4] D. M. Sadler, and G. H. Gilmer, A Model for Chain Folding in Polymer Crystals: Rough Growth Faces Are Consistent with the Obsered Growth Rates [J], Polymer, 1984, 25: 1446-1452.
    [5] D. M. Sadler, and G. H. Gilmer, Rate-Theory Model of Polymer Crystallization[J], Physical Revies Letters, 1985, 56(25): 2708-2711.
    [6] D. M. Sadler, M. Barber, G. Lark, and M. J. Hill, Twin Morphology.2. Measurements of the Enhancement in Growth Due to Reentrant Corners [J], Polymer, 1986, 27(1): 25-33.
    [7] D. M. Sadler, and G. H. Gilmer, Preferred Fold Lengths in Polymer Crystals-Predictions of Minima in Growth-Rates IJ], Polym. Commun., 1987, 28(9): 242-246.
    [8] D. M. Sadler, New Explanation for Chain Folding in Polymers [J], Nature, 1987, 326(6109): 174-177.
    [9] D. C. Bassett, and A. S. Vaughan, On the Lamellar Morphology of Melt-Crystallized Isotactic Polystyrene[J], Polymer, 1984, 26: 717-725.
    [10] D. C. Bassett, and R. H. Olley, On Isolated Lamellae of Melt-Crystallized Polyethylene[J], Polymer, 1988, 29(9): 1539-1543.
    [11] 何曼君等.高分子物理[M];上海:复旦大学出版社,1998:125-129
    [12] 巴西特著,张国耀,黎书樨译.聚合物形态学原理[M];北京:科学出版社,1987:159-163
    [13] E. Murayama, Optical Properties of Ringed Spherulites|J], 2002: 1-3.
    [14] D. R. Norton, and A. Keller, The Spherulitic and Lamellar Morphology of Melt-Crystallized Isotactic Polypropylene[J], Polymer, 1984, 26: 704-716.
    [15] C. Nakafuku, M. Sakoda, Melting and Crystallization of Poly(L-Lactic Acid) and Poly(Ethylene Oxide) Binary Mixture [J], Polym. J., 1993, 25(9): 909-917.
    [16] ML. Di Lorenzo, Crystallization Behavior of Poly(L-Lactic Acid) [J], E. Polym. J., 2005, 41(3): 569-575.
    [17] J. N. Hay, Crystallization Kinetics of High Polymers: Isotactic Polystyrene[J], Journal of Polymer Science: Part A-2, 1965, 3: 433-447.
    [18] J. Boon, G. Challa, and D. W. Van Krevelen, Crystallization Kinetics of Isotactic Polystyrene. I Spherulitic Growth Rate[J], Journal of Polymer Science: Part A-2, 1968, 6: 1791-1801.
    [19] 拉贝克著;吴世康等译.高分子科学实验方法;物理原理与应用[M];北京:科学出版社,1987:350-354
    [20] 何平笙.高分子物理实验[M];合肥:中国科学技术大学出版社,2002
    [21] 顾方明,等规聚苯乙烯和聚氧乙烯的单链、寡链结晶研究[D],上海:复旦大学,1999
    [22] A. S. Vaughan, and D. C. Bassett, Early Stages of Spherulite Growth in Melt-Crystallized Polystyrene[J], Polymer, 1988, 29: 13971401.
    [23] T. X. Liu, J. Petermann, C. He, Z. Liu, and T. Chung, Tranmission Electron Microscopy Observations on Lamellar Melting of Cold-Crystallized Isotactic Polystyrene[J], Macromolecules, 2001, 34(24).
    [24] T. X. Liu, and J. Petermann, Multiple Melting Behavior in Isothermally Cold-Crystallized Isotactic Polystyrene[J], Polymer, 2001, 42: 6453-6461.
    [25] T. X. Liu, W. Chauhari Tjiu, and J. Petermann, Transmission Eletron Microscopy Observations on Fine Structure of Shish-Kebab Crystals of Isotactic Polystyrene by Partial Melting[J], Journal of Crystal Growth, 2002, 243: 218-223.
    [26] K. Taguchi, H. Miyaji, K. Izumi, A. Hoshino, Y. Miyamoto, and R. Kokawa, Growth Shape of Isotactie Polystyrene Crystals in Thin Films[J], Polymer, 2001, 42: 7443-7447.
    [27] K. Taguchi, H. Miyaji, K. Izumi, A. Hoshino, Y. Miyamoto, and R. Kokawa, Crystal Growth of Isotactic Polystyrene in Ultrathin Films: Film Thickness Depedence[J], Journal of Macromolecular Science: Part B-Physics, 2002, B41(4-6): 1033-1042.
    [28] K. Taguchi, Y. Miyamoto, H. Miyaji, K. Izumi, Undulation of Lamellar Crystals of Polymers by Surface Stresses[J], Macromolecules, 2003, 36(14).
    [29] 曹杰,等规聚苯乙烯单链和多链晶体研究[D],上海:复旦大学,1996
    [30] V. H. Mareau, and R. E. Prudhomme, In-Site Hot Stage Atomic Force Microscopy Study of Poly(ε-Caprolactone) Crystal Growth in Ultrathin Films[J], Macromolecules, 2005, 38: 398-408.
    [31] F. M. Gu, H. S. Bu, and Z. Zhang, New Observation on the Formation of "Row-Nucleation" Structure of Isotactic Polystyrene[J], Macromolecules, 2000, 33: 5490-5494.
    [32] Y. Tanzawa, Growth Rate of Spherulites in Thin Films: Direct Evidence of Failure of Traditional Growth Theory[J], Journal of Macromolecular Science: Part B-Physics, 2003, B42(3&4): 833-846.
    [33] Y. Saka, M. Imai, K. Kaji, M. Tsuji, Tip-Spilitting Crystal Growth Observed in Crystallization from Thin Films of Poly(Ethylene Terephthalate)[J], Journal of Crystal Growth, 1999, 203: 244-254.
    [34] S. Sawamura, H.i Miyaji, K. Izumi, S. J. Sutton, and Y. Miyamoto, Growth Rate of Isotactic Polystyrene Crytals in Thin Films[J], Journal of Physical Society of Japan, 1998, 67(10): 3338-3344.
    [35] K. L. Beers, J. F. Douglas, E. J. Amis, and A. Karim, Combinatorial Measurement of Crystallization Growth Rate and Morphology in Thin Films of Isotactic Polystyrene[J], Langmuir, 2003, (19): 3935-3940.
    [36] R. H. Olley, A. M. Hodge, and D. C. Bassett, J. Thomson, A Permanganic Etchant for Polyefins[J], Journal of Polymer Science: Polymer Physics Edition, 1979, 17: 627-643.
    [37] R. H. Olley, and D. C. Bassett, J. Thomson, An Improved Permanganic Etchant for Polyolefines[J], Polymer, 1982, 23: 1707-1710.
    [38] M. I. Abo el Maaty, I. L. Hosier, and D. C. Bassett, A Unified Context for Spherulitic Growth in Polymers[J], Macromolecules, 1998, 31: 153-157.
    [39] D. C. Bassett, R. H. Olley, S. J. Sutton and A. S. Vaughan, On Chain Conformation and Spherulitic Growth in Monodisperse N-C_(294)h_(590)[J], Physical Revies Letters, 1996, 37(22): 4993-4997.
    [40] H. D. Keith, F. J. Jr. Padden, A Phenomenological Theory of Spherulitic Crystallization[J], J. Appl. Phys., 1963, 34(8): 2409-2421.
    [41] H. D. Keith, F. J. Jr. Padden, Spherulitic Crystallization from the Melt. I. Fractionation and Impuritiy Segregation and Their Influence on Crystalline Morphology[J], J. Appl. Phys., 1964, 35(4): 1270-1285.
    [42] A. Siegmann, and P.H. Geil, Crystallization of Polycarbonate from the Glassy State. Part I. Thin Film Cast from Solution[J], Journal of Macromolecular Science: Physics, 1970, B4{2): 239-272.
    [43] B. C. Edwards, and P. J. Philips, Crystallization Studies of Isotatic Polystyrene[J], Polymer, 1974,15: 351-356.
    [44] M. Tsuji, M. Fujita, T. Shimizu, and S. Kohjia, Fine Structure of Curved Edge-on Lamellae in Crystalline Thin Films of Isotactic Polystyrene as Revealed by Transmission Electron Miscroscopy[J], Macromolecules, 2001, 34: 4827-4833.
    [45] J. Sommer, and G Reiter, Polymer Crystallization in Quasi-Two Dimension. Ii Kinetics Models and Computer Simulations [J], Journal of Chemical Physics, 2000, 112(9): 4384-4393.
    [46] G Reiter, and J. Sommer, Polymer Crystallization in Quasi-Two Dimension. I Experimental Results[J], Journal of Chemical Physics, 2000, 112(9): 4376-4383.
    [47] H.D. Keith, R.G Vadimsky, F.J. Padden, Crystallization of Isotactic Polystyrene from Solution[J], J. Polym. Sci. Polym. Phys. Ed, 1970, 5(10): 1687-1696.
    [48] H.D. Keith, Relation between Different Morphological Forms in High Polymers[J], J. Polym. Sci. Part A, 1964,2(10): 4339-4360.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700