几类奇异摄动方程的有限元分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要研究了几类稳态奇异摄动方程的有限元数值逼近。针对不同的奇异摄动方程,采用多种单元使用不同方法进行误差分析和数值验证,已经得到一些不依赖摄动参数的一致收敛性结果。
     奇异摄动问题是一类广泛存在于物理工程,流体力学,化学力学等研究领域的重要问题。其特点就是由于受到奇异摄动参数的影响,真解往往会在求解区域的某个子区域内变化剧烈,通常称之为具有层效应。由于此类问题的重要性和其真解的不确定性,采用数值方法求解引起了越来越多学者的关注。
     奇异摄动问题的数值逼近,如果采用通常的有限元方法,在真解剧烈变化的区域会出现数值振荡,得不到满意的收敛效果。同时由于正则性条件的限制,必须要求剖分的足够加密,必然极大地增加计算工作量。为了克服此困难,采用各向异性网格是一种很好的选择。目前常用的一类方法就是改进传统的网格剖分,使用特殊构造的层自适应网格,这里面包括著名的Bakhvalov型和Shishkin型网格,以及新近出现的分层网格。这些网格上的有限元逼近都是需要满足各向异性性质的有限单元。另外常用的方法之一是采用稳定化方法,人工添加黏性项,对检验函数做某种修正来改善使用标准Galerkin方法出现的数值振荡;它属于Petrov-Galerkin方法的范畴,其中最著名的就是流线扩散有限元方法(简记SDFEM)和余项自由泡方法(简记RFB)等等。理论分析的目标就是得到能量模意义下不依赖于摄动参数的一致收敛性分析结果。
     本文的研究对象是稳态奇异摄动方程,包括反应占优的反应扩散型奇异摄动方程和半奇异摄动方程,对流占优的对流扩散型奇异摄动方程,四阶椭圆奇异摄动方程等等。作者分别从先验网格,各向异性单元(包括协调元和非协调元),稳定化方法,高次单元等多个方面进行研究。首先作者给出本文主题的一个一般介绍和一些基础知识。第二章在一类特定的分层网格上,考虑双线性单元同时逼近反应占优的反应扩散型奇异摄动方程和半奇异摄动方程。利用分层网格的性质,通过逐个单元分析,得到了相应加权模意义下的全局一致收敛性逼近结果。然后构造一个适当的插值后处理算子进一步得到超收敛的结果,大量的数值实验也验证了理论结果。第三章考虑一个五节点低阶非协调单元,同时逼近反应占优的反应扩散型奇异摄动方程和半奇异摄动方程,利用分层网格的性质,通过逐个单元分析,得到了上述类似的全部结果。第四章考虑了双二次单元对对流扩散问题的逼近,克服了已有的困难得到了高阶的一致收敛性结果。第五章利用流线扩散有限元方法,将一个新近出现的双参数单元应用于对流扩散问题,得到了理想的收敛性结果。第六章考虑数值求解带有简支边界条件的四阶椭圆奇异摄动问题,由双参数方法构造了一个新的非协调单元,在各向异性网格下证明了关于摄动参数的一致收敛性,并且得到了最优的收敛阶,给出的数值试验也验证了理论分析的结果。最后一章作者给出本文工作的一个总结和未来工作的展望。
The finite element approximations of some steady-state singular perturbation equations are investigated in this paper. For different singular perturbed equations, applying different methods with distinct elements for the sake of error estimates and numerical test, some uniform convergence results are obtained which are independent of the singular perturbation parameter.
     Singular perturbation problems (SPP) arise in ninny application areas, such as in physics engineering, fluid dynamics and chemical kinetics, etc. Its special character is that the solution of such problems undergo rapid changes within very thin subdomains, which is called layer, owing to the singular perturbation parameter. For the importance and indeterminacy of the true solutions, more and more scholars are interested in their numerical solutions.
     The numerical approximations for solving singular perturbation problems, applying the classical finite element methods, may arise severe oscillation across the layer, so one can not get the satisfying convergence. And due to the regular condition, the finite element meshes need to be refined enough, which will enlarge the computation works enormously. For conquering this, applying anisotropic mesh may be a finer choice. Now, one common kind of methods is improving the classical meshes, using the appropriately layer-adapted meshes, including the well known Bakhvalov-type and Shishkin-type meshes, and the graded meshes which is appeared recently. The finite element approximations on these meshes need anisotropic elements. Another kind of methods is the stabilized methods, adding the artificial viscosity terms and modifying the test functions, in order to improving the numerical oscillation arose by standard Galerkin methods, and these methods belong to the so called Petrov-Galerkin methods, including the well known streamline diffusion finite element methods (SDFEM) and residual free bubbles (RFB), etc. The main aim of theoretical analysis is to get the uniform convergence error estimates independent of the singular perturbation parameter in energy norm.
     The topic of this thesis is some steady-state singular perturbation equations, including reaction dominated reaction-diffusion type singular perturbed equations and semisingular perturbed equations, convection dominated convection-diffusion type singular per- turbed equations, and fourth order elliptic singular perturbation equations, etc. The author endeavored to improve the convergence results in many aspects, such as refining a priori meshes, using anisotropic element (conforming and nonconforming element), applying stabilized methods or higher order elements, and so on. Firstly, we give a general introduction on singular perturbation problems and some basic informations. In Chapter 2, on the appropriately graded meshes, the bilinear element approximations of the reaction dominated reaction-diffusion type singular perturbed equations and semisingular perturbed equations are considered at the same time, by using the special character of graded meshes and analyzing element by element, the global uniformly convergence results in the corresponding weighted norm are obtained. And by constructing a appropriately interpolation postprocessing operator, the superconvergence results are derived, then some numerical experiments are also given to confirm the theoretical analysis. In Chapter 3, a lower order five node nonconforming element is used to approximate the reaction dominated reaction-diffusion type singular perturbed equations and semisingular perturbed equations simultaneously, and by using the special character of graded meshes and analyzing element by element, all the above similar results are achieved. In Chapter, biquadratic element approximation of convection-diffusion-reaction equation is considered under graded meshes, overcoming some difficulties, and some higher order uniformly convergence results are obtained. By using the streamline diffusion finite element methods with a double set parameter nonconforming element constructed recently, are used for the convection dominated convection-diffusion-reaction equation in the following chapter, and convergence results are derived. In Chapter 6, a new nonconforming element constructed by double set parameter method, is applied to the fourth order elliptic singular perturbation problem with simple support boundary condition. The convergence uniformly in the perturbation parameter, is proved under the anisotropic meshes, and optimal convergence rate is obtained. Numerical results support the theoretical analysis. In the last chapter, the author give some conclusions about this paper and suggestions on future works.
引文
[1] G.Acosta. Lagrange and average interpolation over 3D anisotropic elements [J]. J.Comp. Appl.Math., 2001, 135:91-109.
    
    [2] G.Acosta, R.G.Duran. The maximum angle condition for mixed and non conforming elements: application to the Stokes equations [J]. SIAM J.Numer.AnaL, 1999, 37(1):18-36.
    
    [3] G.Acosta, R.G.Duran. Error estimates for Q_1 isoparametric elements satisfying a weak angle condition [J]. SIAM J.Numer.AnaL, 2000, 38(4):1073-1088.
    
    [4] S.Adjerid, M.Aiffa, J.E.Flaherty. High-order finite element methods for singularly perturbed elliptic and parabolic problems [J]. SIAM J.Appl.Math., 1995, 55(2):520-543.
    
    [5] M.Ainsworth, J.T.Oden. A posteriori error estimation in finite element analysis [M]. Wiley- Interscience, New York, 2000.
    
    [6] T.Apel. Anisotropic finite elements: local estimates and applications [M]. B.G.Teubner Stuttgart,Leipzig, 1999.
    
    [7] T.Apel, M.Dobrowolski. Anisotropic interpolation with applications to the finite element method [J]. Computing, 1992, 47:227-293.
    
    [8] T.Apel, G.Lube. Anisotropic mesh refinement for a singularly perturbed reaction diffusion model problem [J]. Appl.Numer.Math., 1998, 26:415-433.
    
    [9] T.Apel, S.Nicaise, J.Schoberl. Crouzeix-Raviart type finite elements on anisotropic meshes [J]. Numer.Math., 2001, 89:193-223.
    
    [10] R.Araya, E.Behrens, R.Rodriguez. An adaptive stabilized finite element scheme for the advection-reaction-diffusion equation [J]. Appl.Numer.Math., 2005, 54:491-503.
    
    [11] I.Babuska, A.K.Aziz. On the angle condition in the finite element method [J]. SIAM J.Numer.AnaL 1976, 13:214-226.
    
    [12] N.S.Bakhvalov. Towards optimization of methods for solving boundary value problems in the presence of boundary layers [J]. Zh.Vychisl.Mat.i Mat.Fiz., 1969, 9:841-859. In Russian.
    [13] S. C. Brenner, L. R. Scott. The mathematical theory of finite element methods [M]. Springer-Verlag, New York, 1994.
    [14] F. Brezzi, A. Russo. Choosing bubbles for advection-diffusion problems [J]. Math. Models Methods Appl. Sci., 1994, 4:571-587.
    [15] F. Brezzi, D. Marini, E. Süli. Residual-free bubbles for advection-diffusion problems: the general error analysis [J]. Numer. Math., 2000, 85: 31-47.
    [16] Chen Long, Sun Pengtao, Xu Jinchao. Optimal anisotropic meshes for minimizing interpolation errors in L~p-norm [J]. Math. Comput., 2007, 76(257):179-204.
    [17] Chen Long, Xu Jinchao. An optimal streamline diffusion finite element method for a singular perturbed problem [J]. In Z. C. Shi, Z. Chen, T. Tang, D. Yu, editors, Recent Advances in Adaptive Computation. AMS, 2005.
    [18] Chen Shaochun, Shi Dongyang. Accuracy analysis of quasi-Wilson element [J]. Acta Mathematica Scientia, 2000, 20(1):44-48.
    [19] Chen Shaochun, Shi Dongyang, Zhao Yongcheng. Narrow arbitrary quadrilateral quasi-Wilson element [J]. IMA J. Numer. Anal., 2004, 24:77-95.
    [20] Chen Shaochun, Shi Zhongci. Double set parameter method of constructing a stiffness matrix [J], Chinese J. Numer. Math. Appl., 1991, 4:55-69.
    [21] Chert Shaochun, Zhao Yongcheng, Shi Dongyang. Anisotropic interpolation with application to nonconforming elements [J]. Appl. Numer. Math., 2004, 49(2):135-152.
    [22] Chen Shaochun, Zhao Yongcheng, Shi Dongyang. Non C~O nonconforming elements for elliptic fourth order singular perturbation problem [J]. J. Comput. Math., 2005, 23(2):185-198.
    [23] Chen Zhiming, Ji Guanghua. Adaptive computation for convection dominated diffusion problems [J]. Science in China (Series A) 2004, 47:22-31.
    [24] Chen Zhiming, Ji Guanghua. Sharp L~1 a posteriori error analysis for nonlinear convectiondiffusion problems [J]. Math.Comput. 2006, 75: 43-71.
    [25] P. G. Ciarlet. The finite element method for elliptic problems [M]. North-Holland, Amsterdam, 1978.
    [26] P.G.Ciarlet. Basic error estimates for elliptic problems [M]. Handbook of Numerical Analysis, Vol.11, Finite Element Methods (Part 1), P.G.Ciarlet and J.L.Lions eds.. North-Holland, Amsterdam, 1991.
    
    [27] B.Cockburn, G.E.Karniadakis, Shu Chiwang (Eds.). Discontinuous Galerkin methods-theory, computation and applications [M]. Springer, Berlin, 2000.
    
    [28] C.Comstock. Singular perturbations of elliptic equations. I [J]. SIAM J.Appl.Math., 1971,20(3):491-502.
    
    [29] R.G.Duran. Error estimates for 3-d narrow finite elements [J]. Math.Comput. 1999, 68(225):187-199.
    
    [30] R.G.Duran. Error estimates for anisotropic finite elements and applications [J]. Proceedings of the International Congress of Mathematicians, 2006.
    
    [31] R.G.Duran, A.L.Lombardi. Error estimates on anisotropic Q_1 elements for functions in weighted Sobolev spaces [J]. Math.Comput. 2005, 74(252):1679-1706.
    
    
    [32] R.G.Duran, A.L.Lombardi. Finite element approximation of convection diffusion problems using graded meshes [J]. Appl.Numer.Math., 2006, 56:1314-1325.
    
    [33] K.Eriksson, C.Johnson. Adaptive streamline diffusion finite element methods for stationary convection-diffusion problems [J]. Math.Comput., 1993, 60(201):167-188.
    
    [34] K.Eriksson, D.Step, P.Hansbo, C.Johnson. Computational differential equations [M]. Cambridge University Press, Cambridge, 1996.
    
    [35] R.E.Ewing, Wang Hong. A summary of numerical methods for time-dependent advection-dominated partial differential equations [J]. J.Comput.Appl.Math., 2001, 128:423-445.
    
    [36] P.A.Farrell, J.J.H.Miller, E.O'Riordan, G.I.Shishkin. A uniformly convergent finite difference scheme for a singularly perturbed semilinear equation [J]. SIAM J.Numer.Anal.,1996, 33(3):1135-1149.
    
    [37] L.Formaggia, S.Micheletti, S.Perotto. Anisotropic mesh adaptation in computational fluid dynamics: application to the advection-diffusion-reaction and the Stokes problems [J]. Appl.Numer.Math. 2004, 51:511-533.
    
    
    [38] L.Formaggia, S.Perotto. New anisotropic a priori error estimates [J]. Numer.Math., 2001, 89:641-667.
    [39] L.Formaggia, S.Perotto. Anisotropic error estimates for elliptic problems [J]. Nu- mer.Math., 2003, 94:67-92.
    
    [40] L.P.Franca, L.Tobiska. Stability of the residual free bubble method for bilinear finite elements on rectangular grids [J]. IMA J.Numer.Anal, 2002, 22:73-87.
    
    [41] E.C Gartland. Graded-mesh difference schemes for singularly perturbed two-point boundary value problems. Math.Comput., 1988, 51(184):631-657.
    
    [42] Han Houde. Nonconforming elements in the mixed finite element method [J]. J.Comp.Math., 1984, 2(3):223-233
    
    [43] Han Houde, R.B.Kellogg. Differentiability properties of solutions of the equation -ε~2△u + ru = f(x,y) in a square [J]. SIAM J.Math.Anal., 1990, 21(2):394-408.
    
    [44] M.H.Holmes. Introduction to perturbation methods [M]. Springer-Verlag, New York, 1995.
    
    [45] P.Houston, C.Schwab, E.Siili. Discontinuous hp-finite element methods for advection- diffusion-reaction problems [J]. SIAM J.Numer.Anal., 2002, 39:2133-2163.
    
    [46] T.J.R.Hughes, A.N.Brooks. A multidimensional upwind scheme with no crosswind diffusion [J]. In T.J.R.Hughes, editor, Finite Element Methods for Convection Dominated Flows. ASME, New York, 1979, AMD, 34:19-35.
    
    [47] W.Hundsdorfer, J.Verwer. Numerical solution of time-dependent advection-diffusion-reaction equations [M]. Springer, Berlin, 2003.
    
    [48] P.Jamet. Estimations d'erreur pour deselements finis droits presque degeneres [J]. RAIRO, Anal.Numer [J]. 1976, 10:46-71.
    
    [49] V.John. A numerical study of a postriori error estimators for convection-diffusion equations [J]. Comput.Methods Appl.Mech.Engrg. 2000, 190:757-781.
    
    [50] V.John, G.Matthies, F.Schieweck, L.Tobiska. A streamline-diffusion method for nonconforming finite element approximations applied to convection-diffusion problems [J]. Comput.Methods Appl.Mech.Engrg. 1998, 166:85-97.
    
    [51] V.John, J.M.Maubach, L.Tobiska. Nonconforming streamline-diffusion-finite- element- methods for convection-diffusion problems [J]. Numer.Math. 1997, 78:165-188.
    
    [52] C.Johnson, J.Saranen. Streamline diffusion methods for the incompressible Euler and Navier-Stokes equations [J]. Math.Comput. 1986, 47(175):1-18.
    [53] C.Johnson, A.H.Schatz, L.B.Wahlbin. Crosswind smear and pointwise errors in streamline diffusion finite element methods [J]. Math.Comput., 1987, 49(179): 25-38.
    
    [54] R.S.Johnson. Singular perturbation theory [M]. Springer, New York, 2005.
    
    
    [55] R.B.Kellogg, M.Stynes. Corner singularities and boundary layers in a simple convection - diffusion problem [J]. J. Diff.Equat., 2005, 213(l):81-120.
    
    [56] N.Kopteva. Maximum norm a posreriori error estimates for a one-dimensional convection- diffusion problem [J]. SIAM J.Numer.Anal., 2001, 39:423-441.
    
    [57] N.Kopteva. How accurate is the streamline-diffusion FEM inside characteristic (boundary and interior) layers? [J]. Comput.Methods Appl.Mech.Engrg., 2004, 193:4875-4889.
    
    [58] N.Kopteva, M.Stynes. A robust adaptive method for a quasi-linear one-dimensional convection-diffusion problem [J]. SIAM J.Numer.Anal., 2001, 39:1446-1467.
    
    [59] M.Krizek. On the maximum angle condition for linear tetrahedral elements [J]. SIAM J.Numer.Anal., 1992, 29(2):513-520.
    
    [60] P.Lascaux, P.Lesaint. Some noncomforming finite element for the plate bending problem [J]. RAIRO Anal.Numer., 1975, R-l:9-53.
    
    [61] Li Jichun. Convergence and superconvergence analysis of finite element methods on highly nonuniform anisotropic meshes for singularly perturbed reaction-diffusion problems [J]. Appl.Numer.Math., 2001, 36:129-154.
    
    [62] Li Jichun, I.M.Navon. Global uniformly convergent finite element methods for singularly perturbed elliptic boundary value problems: higher-order elements [J]. Comput.Methods Appl.Mech.Engrg., 1999, 171:1-23.
    
    [63] Li Jichun, M.F.Wheeler. Uniform convergence and superconvergence of mixed finite element methods on anisotropically refined grids [J]. SIAM J.Numer.Anal., 2000, 38(3):770-798.
    
    [64] Lin Qun, L.Tobiska, Zhou Aihui. Superconvergence and extrapolation of nonconforming low order finite element applied to the Poisson equation [J]. IMA J.Numer.Anal., 2005, 25:160-181.
    
    [65] T.Linss. Analysis of Galerkin finite element method on a Bakhvalov-Shishkin mesh for a linear convection-diffusion problem [J]. IMA J.Numer.Anal., 2000, 20:621-632.
    [66] T.Linss. Uniform superconvergence of a Garlerkin finite element method on Shishkin type meshes [J]. Numer.Meth.Part.Diff.Equat., 2000, 16:426-440.
    
    [67] T.Linss. Anisotropic meshes and streamline-diffusion stabilization for convection-diffusion problems [J]. Commun.Numer.Meth.Engng., 2005, 21:515-525.
    
    [68] T.Linss. Layer-adapted meshes for convection-diffusion problems [M]. Habilitationsschrift, Technische Universitat Dresden, German, 2006.
    
    [69] T.Linss, H.G.Roos, R.Vulanovic. Uniform pointwise convergence on Shishkin-type meshes for quasi-linear convection-diffusion problems [J]. SIAM J.Numer.Anal., 2000, 38(3) :897- 912.
    
    [70] T.Linss, M.Stynes. Asymptotic analysis and Shishkin-type decomposition for an elliptic convection-diffusion problem [J]. J. Math.Anal.Appl., 2001, 261:604-632.
    
    [71] T.Linss, M.Stynes. Numerical methods on Shishkin meshes for linear convection-diffusion problems [J]. Comput.Methods Appl.Mech.Engrg., 2001, 190:3527-3542.
    
    [72] Liu Guoqing, Su Yucheng. A uniformly convergent difference scheme for the singular perturbation problem of a higher order elliptic differential equation [J]. Appl.Math.Mech., 1996, 17(5):413-421.
    
    [73] Mao Shipeng, Chen Shaochun, Sun Huixia. A quadrilateral, anisotropic, superconvergent nonconforming double set parameter element [J]. Appl.Numer.Math., 2006, 56(7): 937- 961.
    
    [74] G.Matthies, L.Tobiska. The streamline-diffusion method for conforming and nonconforming finite elements of lowest order applied to convection-diffusion problems [J]. Computing, 2001, 66:343-364.
    
    [75] J.M.Melenk. Hp—finite element methods for singular perturbations [M]. Springer, New York, 2002.
    
    [76] J.J.H.Miller, E.O'Riordan, G.I.Shishkin. Fitted numerical methods for singular perturbation problems — error estimates in the maximum norm for linear problems in one and two dimensions [M]. World Scientific, Singapore, 1996.
    
    [77] K.W.Morton. Numerical solution of convection-diffusion problems [M]. Chapman & Hall, London, 1996.
    [78] T.K.Nilssen, Tai Xuecheng, R.Winther. A robust nonconforming H~2— element [J]. Math. Comput., 2000, 70(234):489-505.
    
    [79] R.E.O'Malley. Singular perturbation methods for ordinary differential equations [M]. Springer-Verlag, New York, 1991.
    
    [80] C.Park, D.Sheen. P_1 nonconforming quadrilateral finite element methods for second-order elliptic problems [J]. SIAM J.Numer.Anal., 2003, 41(2):624-640.
    
    [81] A.Quarteroni, A.Valli. Numerical approximation of partial differential equations [M]. Springer-Verlag, Berlin, 1994.
    
    [82] R.Rannacher, S.Turek. Simple nonconforming quadrilateral Stokes element [J]. Numer. Meth.Part.Diff.Equat., 1992, 8:97-111.
    
    [83] U.Risch. Convergence analysis of the residual free bubble method for bilinear elements [J]. SIAM J.Numer.Anal., 2001, 39(4): 1366-1379.
    
    [84] U.Risch. Superconvergence of a nonconforming low order finite element [J]. Appl. Numer. Math., 2005 54:324-338.
    
    [85] H.G.Roos. Layer-adapted grids for singular perturbation problems [J]. Z.Angew. Math. Mech. 1998, 78:291-309.
    
    [86] H.G.Roos. Error estimates for linear finite elements on Bakhvalov-type meshes [J]. Appl.Math., 2006, 51(1):63-72.
    
    [87] H.G.Roos. Superconvergence on a hybrid R-T-mesh for singularly perturbed problems with exponential layers [J]. Z.Angew.Math.Mech., 2006, 86(8):649 - 655.
    
    [88] H.G.Roos, M.Stynes, L.Tobiska. Numerical methods for singularly perturbed differential equations (convection-diffusion and flow problems) [M]. Springer-Verlag, Berlin, 1996.
    
    [89] A.Russo. Streamline-upwind Petrov/Galerkin method (SUPG) vs residual-free bubbles (RFB) [J]. Comput .Methods Appl.Mech.Engrg., 2006, 195:1608-1620.
    
    [90] G.Sangalli. Global and local error analysis for the residual-free bubbles method applied to advection-diffusion problems [J]. SIAM J.Numer.Anal., 2000, 38:1496-1522.
    
    [91] G.Sangalli. A robust a posteriori estimator for the residual-free bubbles method applied to advection-diffusion problems [J]. Numer.Math., 2001, 89:379-399. A.H.Schatz, L.B.Wahlbin. On the finite element for singularly perturbed reaction-diffusion problems in two and one dimensions [J]. Math.Comput., 1983, 40:47-89.
    
    [93] C.Schwab. P- and hp-finite element methods: theory and applications in solid and fluid mechanics [M], The Clarendon Press (Oxford Universiry Press), New York, 1998.
    
    [94] L.R.Scott, Zhang Shangyou. Finite element interpolation of nonsmooth functions satisfying boundary conditions [J]. Math.Comput., 1990, 54(190):483-493.
    
    [95] N.A.Shenk. Uniform error estimates for certain narrow Lagrange finite elements [J], Math.Comput., 1994, 63:105-119.
    
    [96] Shi Dongyang, Chen Shaochun, I.Hagiwara. Convergence analysis of a membrane noncon- forming elemnt on anisotropic meshes [J]. J.Comput.Math., 2005, 23(4):373-382.
    
    [97] Shi Dongyang, Mao Shipeng, Chen Shaochun. An anisotropic nonconforming finite element with some superconvergence results [J]. J.Comput.Math., 2005, 23(3):261-274.
    
    [98] Shi Zhongci. The F-E-M-Test for convergence of nonconforming finite elements [J]. Math. Comput. 1987, 49(180):391-405.
    
    [99] Shi Zhongci. Nonconforming finite element methods [J]. J.Comput. Appl. Math., 2002, 149:221-225.
    
    [100] G.I.Shishkin. Grid approximation of singularly perturbed elliptic and parabolic equations [M]. Second doctorial thesis, Keldysh Institute, Moscow, 1990. In Russian.
    
    [101] M.Stynes. Steady-state convection-diffusion problems [J]. Acta Numerica, 2005, 14:445- 508.
    
    [102] M.Stynes. Convection-diffusion problems, SDFEM/SUPG and a priori meshes [J]. Proceedings of the International Conference on Boundary and Interior Layers, 2006.
    
    [103] M.Stynes, E.O'Riordan. A uniformly convergent Galerkin method on a Shishkin mesh for a convection-diffusion problem [J]. J.Math.Anal.Appl., 1997, 214: 36-54.
    
    [104] M.Stynes, L.Tobiska. The streamline-diffusion method for nonconforming Q_1~(rot) elements on rectangular tensor-product meshes [J]. IMA J.Numer.Anal., 2001, 21: 123-142.
    
    
    [105] M.Stynes, L.Tobiska. The SDFEM for a convection-diffusion problem with a boundary layer: optimal error analysis and enhancement of accuracy [J]. SIAM J.Numer.Anal., 2003, 41(5):1620-1642.
    [106] Sun Guangfu, M. Stynes. Finite-element methods for singular perturbed high-order elliptic two-point boundary value problems. Ⅰ: reaction-diffusion-type problems [J]. IMA J. Numer. Anal. 15(1995), 117-139.
    [107] Sun Guangfu, M. Stynes. Finite-element methods for singular perturbed high-order elliptic two-point boundary value problems. Ⅱ: convection-diffusion-type problems [J]. IMA J. Numer. Anal. 15(1995), 197-219.
    [108] R. Vulanovié. A priori meshes for singularly perturbed quasilinear two-point boundary value problems [J]. IMA J. Numer. Anal., 2001, 21(1):349-366.
    [109] L. B. Wahlbin. Local behavior in finite element methods [M]. Handbook of Numerical Analysis, Vol. Ⅱ, Finite Element Methods (Part 1), P. G. Ciarlet and J. L. Lions eds., North-Holland, Amsterdam, 1991.
    [110] L. B. Wahlbin. Superconvergence in Galerkin finite element methods [M]. Springer-Verlag, Berlin, 1995.
    [111] Wang Ming, Xu Jinchao, Hu Yucheng. Modified Morley element method for a fourth order elliptic singular perturbation problem [J]. J. Comput. Math., 24:2(2006), 113-120.
    [112] P. Wesseling. Uniform convergence of discretization error for a singular perturbation problem [J]. Numer. Meth. Part. Diff. Equat., 1996, 12:657-671.
    [113] A. Zenisek, M. Vanmaele. The interpolation theorem for narrow quadrilateral isotropic metric finite elements [J]. Numer. Math., 1995, 72:123-141.
    [114] Zhang Zhimin. Finite element superconvergence on Shishkin mesh for 2-D convectiondiffusion problems [J]. Math. Comput., 2003, 72(243): 1147-1177.
    [115] Zhou Guohui, R. Rannacher. Pointwise superconvergence of the streamline diffusion finite element method[J]. Numer. Meth. Part. Diff. Equat., 1996, 12: 123-145.
    [116] Zhou Guohui. How accurate is the streamline diffusion finite element methods? [J]. Math. Comput., 1997, 66(217):31-44.
    [117] P.G.Ciarlet著,蒋尔熊,曹志浩,郭毓騊译.有限元素法的数值分析[M].上海,上海科学技术出版社,1978.
    [118] R.E.O’Malley著,江福汝,尚汉冀,高汝熹译.奇异摄动引论[M].北京,科学出版社,1983.
    [119] 章国华,F.A.Howes著,林宗池,倪守平,郑钦贵译.非线性奇异摄动现象:理论和应用[M].福州,福建科学技术出版社,1989.
    [120] 陈绍春.有限元的双参数法分析.博士论文,中国科技大学,1988.
    [121] 陈绍春,石东洋.非协调板元的一般性误差估计式[J].计算数学,2000,22(3):295-300.
    [122] 陈绍春,石东洋.关于Poincaré不等式[J].工程数学学报,2003,20(1):27-32.
    [123] 陈绍春,石东洋.双参数元的误差估计[J].工程数学学报,2005,22(4):599-605.
    [124] 陈绍春,石钟慈.构造刚度矩阵的双参数法[J].计算数学,1991,13(3):286-296.
    [125] 冯康.基于变分原理的差分格式[J].应用数学与计算数学,1965,2(4):238-262.
    [126] 李开泰,黄艾香,黄庆怀.有限元方法的及其应用[M].北京,科学出版社,2006.
    [127] 李立康.索伯列夫空间引论[M].上海,上海科技出版社,1981.
    [128] 林群,严宁宁.高效有限元构造与分析[M].保定,河北大学出版社,1996.
    [129] 刘儒勋,舒其望.计算流体力学的若干新方法[M].北京,科学出版社,2003.
    [130] 罗振东.混合有限元法基础及其应用[M].北京,科学出版社,2006.
    [131] 钱伟长.Asymptotic behavior of a thin clamped circular plate under uniform normal pressure at very deflection [J]. 清华大学理科报告第五卷第一期,1-24页,1948.
    [132] 石东洋.非协调有限元问题的研究.博士论文,西安交通大学,1997.
    [133] 石东洋,陈绍春.一类改进的Wilson任意四边形单元[J].高等学校计算数学学报,1994,16(2):161-167.
    [134] 石东洋,陈绍春.一类六参数非协调任意凸四边形单元[J].高校应用数学学报,1996,11(2):231-238.
    [135] 苏煜城.奇异摄动中的边界层校正法[M].上海,上海科学技术出版社,1983.
    [136] 苏煜城,刘国庆.四阶椭圆型方程奇异摄动问题的渐近解[J].应用数学和力学,1990,11(7):597-610.
    [137] 王烈衡,许学军.有限元方法的数学基础[M],北京,科学出版社,2004.
    [138] 伍卓群,尹景学,王春朋.椭圆与抛物型方程引论[M].北京,科学出版社,2003.
    [139] 张恭庆,林源渠.泛函分析讲义(上册)[M].北京,北京大学出版社,1987.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700