三维六面体网格自适应生成算法研究及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着计算机技术和数值方法的发展,有限元法、有限体积法和有限差分法等数值方法已成为计算科学与工程问题的重要方法,其数学基础是变分原理,基本思想是离散化和分片插值,即用网格去逼近所分析物体的空间。数值分析或模拟的主要步骤包括几何建模、模型离散、求解、后处理等过程,其中首要任务是模型离散,其依赖于有限元网格生成技术的发展。据调查统计,模型离散(即网榷格划分)通常占整个项目完成时间和费用的80%左右,而且网格的质量直接影响数值分析结果的精度和效率。在三维分析问题中,有四面体和六面体及二者混合单元,目前四面体网格的划分方法和有关商业化软件已渐成熟,而六面体网格由于其复杂的拓扑关系和与物体表面边界的一致性等方面的限制,现有六面体网格划分方法中都存在各自的优缺点。但六面体网格在计算精度、划分数量、抗畸变程度及重划分次数等方面比四面体网格具有明显优势,因此根据三维实体模型几何形状的复杂性,研究在任意三维空间内自动生成过渡均匀、协调、自适应的六面体网格,建立可靠、高效的六面体网格离散算法,可以为金属成形、岩土工程、流体力学、生物医学工程等领域分析大型复杂科学与工程问题建立三维模型离散平台,直接推动工程分析软件的商品化进程。
     本文以基于栅格法六面体网格生成方法作为基础方法,开展了基于实体模型几何形状的六面体网格自适应生成方法的研究。建立了基于STL文件进行三维实体模型几何特征自动识别的关键技术;提出了基于实体模型几何形状的六面体网格单元密度信息场的生成方法、加密准则和加密模板,将基于实体模型几何形状的网格自适应生成技术直接应用于栅格法六面体初始网格的生成;在六面体初始网格自适应生成方法研究的基础上,研究了六面体网格再生成过程的关键技术;建立了三维六面体网格质量评价准则,研究给出了提高网格单元质量的优化方法,主要包括网格质量评价模型的建立、网格单元拓扑关系优化、网格单元形状质量优化等;研究了三维网格显示消隐技术、三维剖切面算法等关键技术,应用计算机图形学知识开发了三维六面体网格自适应生成软件AUTOMESH-3D。
     首先,从力学角度和计算角度并以金属体积成形为例论述了三维有限元分析中六面体单元的优越性。对典型的六面体网格生成方法进行了总结对比,得出基于栅格法六面体网格生成方法具有高度自动化和易于网格局部加密的优点,适合于六面体网格自适应生成和再生成。在此基础上,本文选择基于栅格法的六面体网格自适应生成方法作为深入研究的方法。
     采用CAD造型软件生成的STL文件传递实体模型的表面几何形状信息,并建立了新的具有拓扑关系的STL数据文件,通过计算实体模型表面三角形面片的曲率,实现了几何特征的精确识别,为获得能够全面反映实体模型几何特征的六面体网格奠定了基础;提出了基于实体模型的几何特征建立单元密度信息场技术,给出了基于实体模型表面曲率和局部厚度建立加密源点信息场和单元密度信息场的具体方法和步骤;为保证生成过渡均匀的协调六面体网格,提出了一套六面体网格加密过渡模板。与Schneiders等人提出的加密模板相比较,本文改进了面加密模板和点加密模板,减少了一次加密后网格单元和节点的数目,并增加了两个拐角模板,有效地控制了加密区域的蔓延现象。
     将几何自适应技术与基于栅格法六面体网格生成方法相结合,提出了基于实体模型几何特征的栅格法六面体网格自适应生成方法。主要研究了从外向内栅格法六面体网格生成方法和从内向外栅格法六面体网格生成方法的基本算法和关键技术。鉴于目前常用的“最近距离反复搜索法”不能满足复杂网格模型的边界拟合,本文提出了穿插法边界拟合方法,并建立了相应的拟合规则。研究给出了基于表面四边形单元的六面体单元空隙填充法,提出了基于雅可比矩阵的最优边界拟合方法,基于网格边界单元与实体模型特征边界的相对位置关系,实现了从内向外栅格法六面体网格与实体模型边界的精确拟合,达到了因地制宜的拟合效果。
     网格再划分是金属体积成形等大变形模拟中不可缺少的过程,本文在研究六面体初始网格自适应生成的基础上,深入研究了六面体网格再划分技术。主要包括六面体网格再划分的两个主要标准;工件与模具几何离散造成的干涉和工件网格单元的变形,并给出了两个标准的建议值;提出并建立了新旧网格之间包容测试和方程迭代求解物理量传递的具体算法,经汽车转向节锻压成形过程等工程实例计算表明,该算法具有计算速度快、物理量传递准确的特点。
     网格的质量直接影响着数值模拟结果的精度和效率,本文针对三维六面体网格质量评价准则和优化技术进行了研究。建立了基于六面体单元雅可比矩阵行列式的值和条件数的网格质量评价准则。单元的雅可比矩阵能够全面地反映网格的质量,包括角度、面积、长度等网格质量指标。评价准则量化了六面体网格质量,使网格质量的检测更加简便和精确,确保获得符合有限元数值分析要求的六面体网格单元;研究分析了基于栅格法生成六面体网格的拓扑关系,提出了插入新单元技术和单元退化技术,显著改善了网格单元间的拓扑关系,为网格形状质量优化奠定了基础。提出了六种插入新单元模式和三种单元退化模式,分别适合于六面体网格凸特征边界和凹特征边界单元拓扑关系的调整;研究提出了基于曲率拉普拉斯边界优化方法,该方法不仅能够实现网格边界质量的优化,而且保证了优化后网格边界单元很好地描述实体模型的边界几何特征;提出了基于单位化雅可比矩阵条件数为目标函数的六面体网格表面和内部节点优化方法,建立了基于四边形单元的雅可比矩阵条件数的目标函数,实现了网格表面节点质量的优化,优化后网格保留了原网格的表面几何特征,确保获得的六面体网格符合有限元数值模拟计算的要求;建立了通用的三维六面体网格质量评价准则,并将其与网格质量优化技术相结合,采用C++语言编写了三维六面体网格质量优化程序,将其应用于基于栅格法自适应生成的六面体网格实例中,验证了本文提出算法的有效性和开发的六面体网格优化程序的准确性。
     深入研究了计算机图形学基础及OpenGL技术和可视化技术的基本原理,并给出了自主研发的六面体网格自适应生成软件AUTOMESH-3D的结构及其功能特点。主要通过设计合理的输入输出数据接口,实现了与三维CAD造型软件和DEFORM-3D等数值模拟软件的数据衔接;针对基于三维六面体网格的消隐技术、三维剖切算法进行了研究,实现了任意剖切面上物理量的可视化,方便了用户的操作;通过网格质量检测模块对所生成网格进行跟踪检查,实现了及时检查网格质量,确保获得满足有限元数值模拟计算要求的六面体网格;将OpenGL技术和计算机图形学理论引入到三维六面体网格自动生成软件的开发,自主开发了三维六面体网格自适应生成软件AUTOMESH-3D,可为科学与工程问题数值计算的三维六面体网格模型建立通用平台。
With the development of computer technology and numerical method, numerical simulation methods such as finite element method, finite volume method, and finite difference method, etc. play more and more important roles in the fields of the science researches and engineering applications. The common ground of these numerical methods is to generate a desired mesh or grid system of the analyzed model. The main steps of numerical analysis or numerical simulation include geometric molding, mesh generation, computation and post-process, etc. According to the research and Stat., the step of mesh generation takes eighty percent of all the times and expenses. The accuracy and effectiveness of numerical analysis is strongly dependent on the density and quality of mesh model. In three-dimensional numerical analysis, tetrahedron, hexahedron and a combination of them are used. At present, the method and commercial software of tetrahedron have been fully mature. However, the generation of an all-hexahedral element mesh is algorithmically much more complex than that of an all-tetrahedral element mesh, so the development of hexahedral element mesh generator is still in the research stage. Many numerical simulation results show that hexahedral element mesh is better than tetrahedral element mesh because it can increase the analysis accuracy and decrease the overall element count. According to the geometrical complex of three-dimensional solid model, the automatic generation method of the conformal and adaptive mesh in all the three-dimensional space was studied. And the software for three-dimensional hexahedral element mesh generation was developed for large complex mesh model construction in many science and engineering researching fields, such as metal forming, geo-technical engineering, hydrodynamics, biological physic, et al. It will directly impel the commercial course of the engineering analysis software.
     In this dissertation, grid-based method for hexahedral element mesh generation was used as the basic approach. The method for adaptive hexahedral element mesh generation based on the geometric characters of solid models was studied. The identification technique for the geometrical characters of three-dimensional solid model based on STL file was presented. The technique for the generation of hexahedral element mesh refinement field based on the geometric characters of solid models, the rules for refinement, and the templates for refinement were described. The geometric adaptive technique was directly introduced to the generation of hexahedral element mesh with grid-based method. On the base of the research of initial hexahedral element mesh adaptive generation, the technique of hexahedral element mesh remeshing was studied. Quality metrics for hexahedral element mesh constructed to track timing. The methods for hexahedral element mesh quality improvement were proposed, such as mesh topologic optimization and shape quality improvement. Some key techniques about computer graphics, such as the hidden vision technique, arbitrary section, and et al. were studied. As a result, the software AUT0MESH-3D for three-dimensional hexahedral element mesh automatic generation was developed.
     Firstly, the advantage of hexahedral element mesh in three-dimensional finite element analysis was dissertated by an example of metal forming from the sides of mechanics and computation. The typical methods of hexahedral element mesh generation were compared. Grid-based method is highly automatic and easy to refine, so it is suitable for the adaptive generation and remeshing of hexahedral element mesh. Therefore, an algorithm for hexahedral element mesh adaptive generation with grid-based method was studied deeply in this dissertation.
     The STL file generated with the well-known CAD software UG was used to transfer the surface geometrical data information. A new STL data file with topological connection was constructed for the calculation in the next. The geometric characters of the solid models were correctly identified based on the curvature of the surface triangle facets in the new STL file. The technique for the element refinement information field construction based on the geometric characters of the solid model was proposed. The methods and steps of the refinement source point field construction based on the surface curvature and local thickness of the solid model were described in detail. A set of refinement templates was proposed. Compared with the templates of Schneiders, the number of the mesh elements can decrease with the modification of the face refinement template and node refinement template. As a result of our two added corner refinement templates, the refinement field extending problem was solved successfully.
     To combine the geometric adaptive technique and grid-based mesh for hexahedral element mesh generation, a modified grid-based algorithm for adaptive hexahedral element mesh generation based on the geometrical characters. The basic algorithms and key techniques of the outside-in grid-based method and inside-out grid-based method for hexahedral element mesh generation were studied. An interlude method for the boundary match and the corresponding match rules were proposed in the dissertation. The surface-gap filling method with hexahedral elements based on the surface quadrilateral elements was proposed. The precise boundary match between the hexahedral element mesh generated with inside-out grid-based method and the solid model was carried out with the Jacobian-based approach according to the relative position of boundary elements and the characteristic boundaries of the solid model.
     Automatic remeshing process is an unavoidable necessity in numerical simulation of metal bulk forming. On the base of the research of initial hexahedral element mesh adaptive generation, the technique for hexahedral element mesh remeshing was studied. Two remeshing criteria, i.e. the conditions under which remeshing should be done, were given in this dissertation. One was about geometrical interference of the finite element mesh with the die. Another is about severe distortion of the elements. The algorithm about node container test and transformation of state variables between the new and old mesh system in three-dimensional 8-node hexahedral element mesh is established, and its advantage is effective and accuracy.
     The mesh quality directly impacts on the accuracy and effectiveness of the results of numerical simulations. In the dissertation, the quality metric and improvement technique for three-dimensional hexahedral element mesh were studied. On the base of the determinant and condition number of Jacobian matrix, the quality metrics of hexahedral element mesh were constructed. The Jacobian matrix of element could reflect the quality of mesh, such as angle, area, volume and length. The metrics quantified the quality of hexahedral element mesh and made it easy and accurate to measure timing. On the base of the analysis of the topological connection of hexahedral element mesh generated with grid-based method, new element inserting technique and old element collapsing technique were proposed to improve the topological quality of hexahedral element mesh. The proposed six new element inserting modes and three old element collapsing modes are suitable for the topological connection improvement of the hexahedral elements on the convex edges and concave edges, respectively. The curvature-based Laplacian smooth method for the elements on the characteristic boundaries was proposed. It not only could improve the boundary element quality but also capture the geometrical characters after optimization. An approach, which took the condition number of the normalized Jacobian matrix as the objective function, was introduced to improve the quality of the surface and interior nodes. After the optimization, the mesh could preserve the geometrical characters and satisfy finite element numerical simulation. To combine the quality metric and improvement techniques of hexahedral element mesh, a quality optimization program for three-dimensional hexahedral element mesh was compiled with C++ language. With the applications to the adaptive hexahedral element meshes generated with grid-based method, the effectiveness and accuracy of the proposed algorithm and the developed program in the dissertation were validated.
     In the dissertation, the fundamentals of computer graphics, OpenGL technique and visualization technique were studied. The framework and function of the self-developed software AUT0MESH-3D for hexahedral element mesh adaptive generation were presented. A reasonable in-out data interface was designed. As a result, the data joints with other numerical simulation software were carried out, such as three-dimensional CAD software, three-dimensional simulation software DF0RM-3D, and etc. The visualization in arbitrary section was realized with the study of the hidden technique and cutting technique for three-dimensional hexahedral element mesh. Through following the track of the mesh quality measure, the mesh quality could be examined in time, and the generated mesh, which satisfied finite element simulation, was insured. OpenGL technique and computer graphics were introduced into the development of the software for three-dimensional hexahedral element mesh generation. Three-dimensional hexahedral element mesh generation software AUT0MESH-3D was developed. It could be a current platform for three-dimensional mesh model constructions of the researches in science and engineering fields, such as metal forming, geo-technical engineering, hydrodynamics, biological physic, and et al.
引文
[1]吕军.有限元六面体网格自动生成及法兰镦锻过程数值模拟[D].哈尔滨工业大学博士学问论文,1996
    [2]Steven E.Benzley,Ernest Perry et al.A Comparison of All-Hexahedral and All-Tetrahedral Finite Element Meshes for Elastic and Elastic-Plastic Analysis[C].Proceedings of the 4th international Meshing Roundtable,1995;179-191
    [3]Ho-Le K.Finite Element Mesh Generation Methods;A Review and Classification[J].Computer-Aided Design,1988,20(1);27-38
    [4]Mackerle J.Mesh Generation and Refinement for FEM and BEM-A Bibliography(1990-1993)[J].Finite Element in Analysis and Design,1993,15;177-188
    [5]丁永祥.有限元网格自动生成算法的最新进展[J].中国机械工程.1993,4(6);16-18
    [6]张建华,叶尚辉.有限元网格自动生成算法的最新进展[J].计算机辅助设计与制造.1996,(2);28-31
    [7]Boubez T I.Mesh Generation for Computational Analysis.Part Ⅰ;Electro -magnetic and Technical Considerations for Mesh Generation[J].Journal of Computer-Aided Engineering,1986,3(5);190-195
    [8]Boubez T I.Mesh Generation for Computational Analysis.Part Ⅱ;Geometric and Topological Considerations for Three-dimensional Mesh Generation[J].Journal of Computer-Aided Engineering,1986,3(5);196-201
    [9]Thompson J F,Warsi Z U K,Mastin C Wayne.Numerical Grid Generation;Foundations and Applications[M].New York;Elsevier/North Holland,1985
    [10]Zienkiewicz O C,Phillips D V.An Automatic Mesh Generation Scheme for Plane and Curved Surfaces by Isoparametric Coordinates[J].International Journal for Numerical Methods in Engineering,1971,3;519-528
    [11]Tam T K H,Armstrong C G.2D Finite Element Mesh Generation by Medial Axis Subdivision[J].Advances in Engineering Software,1991,13(5-6);313-324
    [12]Tam T K H,Armstrong C G.Finite Element Mesh Control by Integer Programming[J].International Journal for Numerical Methods in Engineering,1993,36;2581-2605
    [13]Price M A,Armstrong C G,Sabin M A.Hexahedral Mesh Generation by Medial Surface Subdivision;Part Ⅰ;Solid with Convex Edges[J].International Journal for Numerical Methods in Engineering,1995,38;3335-3359
    [14]Price M A,Armstrong C G,Sabin M A.Hexahedral Mesh Generation by Medial Surface Subdivision;Part Ⅱ;Solid with Flat and Concave Edges[J].International Journal for Numerical Methods in Engineering,1997,40;111-136
    [15]李华,程耿东,顾元宪.一种新的全四边形网格快速生成方法—模板法[J].计算结构力学及其应用,1996,13(1);25-39
    [16]李华,李笑牛,程耿东等.一种全四边形网格生成方法—改进模板法[J].计算力学学报,2002,19(1);16-19
    [17]Yerry M A,Shephard M S.A Modified-quadtree Approach to Finite Element Mesh Generation[J].IEEE Computational Graphics Application,1983,2;39-46
    [18]Yerry M A,Shephard M S.Automatic Three-dimensional Mesh Generation by the Modified-Octree Technique[J].International Journal for Numerical Methods in Engineering,1984,20;1965-1990
    [19]Shephard M S,Georges M K.Automatic Three-dimensional Mesh Generation by the Finite Octree Technique[J].International Journal for Numerical Methods in Engineering,1991,32;709-749
    [20]Schroeder W J,Shepard M S.A Combined Octree/Delaunay Method for Fully Automatic 3-D Mesh Generation[J].International Journal Numerical Methods in Engineering,1990,29;37-55
    [21]McMorris H,Kallinderis Y.Octree-advancing Front Method for Generation of Unstructured Surface and Volume Meshes[J].AIAA Journal,1997,35(6);976-984
    [22]Schneiders R.Automatic generation of hexahedral finite element meshes[C].Proceedings of the 4th International Meshing Roundtable,Sandia National Laboratories,October 1995;103-114
    [23]Schneiders R.Refining quadrilateral and hexahedral element meshes[C].Proceedings of the 5th International Conference on.Numerical Grid Generation in Computational Field.Simulations,Mississippi State University,1996;679-688
    [24]Frey P J,Borouchaki H,George P L.3D Delaunay Mesh Generation Coupled with an Advancing-front Approach[J].Computer Methods in Applied Mechanics and Engineering,1998,157;115-131
    [25] Saxena M, Perucchio R. Element Extraction for Automatic Meshing Based on Recursive Spatial Decompositions [J]. Computers & Structures, 1990, 36(3): 513-529
    
    [26] Lohner R, Juan R C. Parallel Advancing Front Grid Generation [C]. Proceedings of the 8th International Meshing Roundtable, South Lake Tahoe, CA, U.S.A., 1999: 67-74
    
    [27] Wordenweber B. Finite Element Mesh Generation [J]. Computer-Aided Design, 1984,16(5): 285-291
    [28] Joe B, Simpson R B. Triangular Meshes for Regions of Complicated Shape [J]. International Journal for Numerical Methods in Engineering, 1986, 23: 751-778
    [29] Joe B. GEOMPACK-A Software Package for the Generation of Meshes Using Geometric Algorithms [J]. Advances in Engineering Software, 1991,13(5): 325-331
    [30] Woo T C, Thomasma T. An Algorithm for Generating Solid Elements in Objects with Holes [J]. Computers & Structures, 1984,18(2): 333-342
    [31] Joe B. Tetrahedral Mesh Generation in Polyhedral Regions Based on Convex Polyhedron Decompositions [J]. International Journal for Numerical Methods in Engineering, 37: 693-713
    [32] Joe B. Construction of Three-dimensional Delaunay Triangulation Using Local Transformations [J]. Computer Aided Geometric Design, 1991, 8:123-142
    [33] Cavendish J C. Automatic Triangulation of Arbitrary Planar Domains for the Finite Element Method [J]. International Journal for Numerical Methods in Engineering, 1974, 8(4): 679-696
    [34] Lo S H. A New Mesh Generation Scheme for Arbitrary Planar Domains [J]. International Journal for Numerical Methods in Engineering, 1985, 21: 1403-1426
    [35] Bowyer A. Computer Dirichlet Tessellations [J]. The Computer Journal, 1981, 24(2): 162-166
    [36] Watson D F. Computing the N-dimensional Delaunay Tessellation with Application to Voronoi Polytopes [J]. The Computer Journal, 1981, 24(2): 167-172
    [37] Lawson C L. Software for Cl Surface Interpolation [J]. Mathematical Software III, 1977, 4: 161-194
    [38] Borouchaki H, Lo S H. Fast Delaunay Triangulation in Three Dimensions [J]. Computer Methods in Applied Mechanics and Engineering, 1995,128:153-167
    [39] Freitag L A, Gooch C O. Tetrahedral Mesh Improvement Using Swapping and Smoothing [J]. International Journal for Numerical Methods in Engineering, 1997, 40: 3979-4002
    [40] Kanaganathan S, Goldstein N B. Comparison of Four-point Adding Algorithms for Delaunay-type Three-dimensional Mesh Generation [J]. IEEE Transactions on Magnetics, 1991,27(3);3444-3451
    [41]Bykat A.Design of a Recursive,Shape Controlling Mesh Generator[J].International Journal for Numerical Methods in Engineering,1983,19;1375-1390
    [42]Lo S H.Volume Discretization into Tetrahedra-I.Verification and Orientation of Boundary Surfaces[J].Computers & Structures,1991,39(5);493-500
    [43]Lo S H.Volume Discretization into Tetrahedra-Ⅱ.Triangulation by Advancing Front Approach[J].Computers & Structures,1991,39(5);501-511
    [44]Lohner R.Progress in Grid Generation via the Advancing Front Technique[J].Engineering with Computers,1996,12;186-210
    [45]Jin H,Wiberg N.Two-dimensional Mesh Generation,Adaptive Remeshing and Refinement[J].International Journal for Numerical Methods in Engineering,1990,29(7);1501-1526
    [46]Jin H,Tanner R I.Generation of Unstructured Tetrahedral Meshes by Advancing Front Technique[J].International Journal for Numerical Methods in Engineering,1993,36(11);1805-1823
    [47]Zhu J Z,Zienkiewicz O C,Hinton E,Wu J.A New Approach to the Development of Automatic Quadrilateral Mesh Generation[J].International Journal for Numerical Methods in Engineering,1991,32(4);849-866
    [48]Wu W T,Oh S I,Altan T,Miller R A.Automated Mesh Generation for Forming Simulation[J].International Computers in Engineering Conference,ASME,USA,1990,1;507-515
    [49]Johnston B P,Sullivan J M.Fully Automatic Two Dimensional Mesh Generation Using Normal Offsetting[J].International Journal for Numerical Methods in Engineering,1992,33(2);425-442
    [50]Johnston B P,Sullivan J M.A Normal Offsetting Technique for Automatic Mesh Generation in Three Dimensions[J].International Journal for Numerical Methods in Engineering,1993,36;1717-1734
    [51]Blacker T D,Stephenson M B.Paving;A New Approach to Automated Quadrilateral Mesh Generation[J].International Journal for Numerical Methods in Engineering,1991,32(4);811-847
    [52]Blacker T D,Meyers R J.Seams and Wedges in Plastering;A 3-D Hexahedral Mesh Generation[J].Engineering with Computers,1993,9(2);83-93
    [53]张洪武,关振群,李云鹏等.有限元分析与CAE技术基础[M].清华大学出版社,2004
    [54]Quadros W R,Shimada K,Owen S J.Skeleton Based Computational Method for the Generation of a 3D Finite Element Mesh Sizing Function[J].Engineering with Computers,2004,20(3);249-264
    [55]Babuska I,Rheinboldt W C.Error Estimates for Adaptive Finite Element Computations[J]. SIAM Journal on Numerical Analysis, 1978,15(4): 736-754
    [56] Babuska I, Rheinboldt W C. A-posteriori Error Estimates for the Finite Element Method [J]. International Journal for Numerical Method in Engineering, 1978,12:1597-1615
    [57] Babuska I, Rheinboldt W C. Adptive Approaches and Reliability Estimations in Finite Element Analysis [J]. Computer Methods in Applied Mechanics and Engineering, 1979, 17(18): 519-540
    [58] Fraeijs de Veubeke B. Displacement and equilibrium models in the finite element method [A]. In: Zienkiewicz O C, Holister G SEds. Stress Analysis [C]. London: John Wiley and Sons Ltd, 1965,145-197
    [59] Ladeveze P, Coffignal G, Pelle J P. Accuracy of Elastoplastic and Dynamic Analysis [A]. In: Accuracy Estimates and Adaptive Refinements in Finite Element Computations [C]. Editedby Babuska I, Zienkiewicz O C, Gago J, and Oliveira E R de A. John Wiley & Sons Ltd. 1986,181-203
    [60] Ladeveze P, Leguillon D. Error Estimate Procedure in the Finite Element Method and Application [J]. SIAM. Journal on Numerical Analysis, 1983, 20(3): 485-509
    [61] Kelly D W, Gago J P de S R, Zienkiewicz O C, Babuska I. A Posteriori Error Estimates and Adaptive Processes in the Finite Element Method: Part I -Error Analysis [J]. International Journal for Numerical Method in Engineering, 1983,19: 1593-1619
    [62] Kelly D W. The Self-equilibration of Residuals and Complementary a Posteriori Error Estimates in the Finite Element Method [J]. International Journal for Numerical Method in Engineering, 1984, 20: 1491-1506
    [63] Stein E, Ohnimus S. Coupled Model- and Solution-adaptivity in the Finite-element Method [J]. Computer Methods in Applied Mechanics and Engineering, 1997, 24: 327-350
    [64] Stein E, Ahmad R. An Equilibrium Method for Stress Calculation Using Finite Element Displacements Models [J]. Computer Methods in Applied Mechanics and Engineering, 1977, 10:175-198
    [65] Demkowicz L. Adaptive Finite Elements for How Problem with Moving Boundaries. Part I : Variational Principles and a Posteriori Error Estimates [J]. Computer Methods in Applied Mechanics and Engineering, 1984, 46:217-251
    [66] Bank R E, Weiser A. Some a Posteriori Error Estimators for Elliptic Partial Differential Equations [J]. Mathematics of Computation, 1985, 44: 283-301
    [67] Zienkiewicz O C, Zhu J Z, Gong N G. Effective and Practical h-p Version Adaptive Analysis Procedures for the Finite Element Method [J]. International Journal for Numerical Method in Engineering, 1989, 28: 879-891
    
    [68]钟万勰.计算机结构力学微机程序设计.北京:水利电力出版社,1986
    [69]Anisworth M,Zhu J Z,Crag A W,Zienkiewicz O C.Analysis of the Zienkiewicz-Zhu a Posteriori Error Estimator in the Finite Element Method[J].International Journal for Numerical Method in Engineering,1989,28;2161-2174
    [70]Zienkiewicz O C,Zhu J Z.Adaptivity and Mesh Generation[J].International Journal for Numerical Method in Engineering,1991,32;783-810
    [71]Zienkiewicz O C,Zhu J Z.The Superconvergence Patch Recovery and a Posteriori Error Estimates.Part 1;The Recovery Technique[J].International Journal for Numerical Method in Engineering,1992,33(7);1331-1364
    [72]Zienkiewicz O C,Zhu J Z.The Superconvergence Patch Recovery and a Posteriori Error Estimates.Part 2;Error Estimates and Adaptivitry[J].International Journal for Numerical Method in Engineering,1992,33(7);1365-1382
    [73]Zienkiewicz O C,Zhu J Z.The Superconvergence Patch Recovery(SPR)and Adaptive Finite Element Refinement[J].Computer Methods in Applied Mechanics and Engineering,1992,101(1-3);207-224
    [74]Zienkiewicz O C,Zhu J Z,Wu J.Superconvergence Patch Recovery Techniques-Some Further Tests[J].Communications in Numerical Methods in Engineering,1993,9;251-258
    [75]Zhu J Z,Zienkiewicz O C.Superconvergence Recovery Tecnique and a Posteriori Error Estimators[J].International Journal for Numerical Method in Engineering,1990,30;1321-1339
    [76]Babuska I,Miller A.A Feedback Finite Element Method with a Posteriori Error Estimation[J].Computer Methods in Applied Mechanics and Engineering,1987,61;1-40
    [77]Babuska I,Yu D H.Asymptotically Exact a Posteriori Error Estimator for Biquadratic Elements[J].Finite Element in Analysis and Design,1987,3;341-354
    [78]余德浩.双奇次有限元的渐进准确误差估计,计算数学(中文),1991,3;304-314;Chinease Journal on Numerical Methods and Computer Applications.(in English)1991,13;82-90
    [79]余德浩.双偶次有限元的渐进准确误差估计,计算数学(中文),1991,1;90-101;Chinese Journal on Numerical Methods and Computer Applications.(in English)1991,13;64-78
    [80]Duran R,Muschietti M A,Rodriquez R.On the Asymptotic Exactness of Error estimators for Linear Triangular Finite Elements[J].Numerische Mathematik.1991,59;107-127
    [81]Duran R,Rodriquez R.On the Asymptotic Exactness of Bank-Weiser's Estimators[J].Numerische Mathematik.1992,62;297-304
    [82]Baranger J,ElAmri H.Estimateurs a posteriori d'erreur pour le calcul adaptatif d'ecoulements quasi-newtoniens.RAIRO Model.Math.Anal.Numer.,1991,25(1);31-47
    [83] Eriksson K, Johnson C. Adaptive finite element methods for parabolic problems I : Alinear model problem [J]. S1AM Journal on Numerical Analysis, 1991, 28: 43-77
    
    [84] K. Eriksson, C. Johnson, Adaptive streamline diffusion finite element methods for stationary convection diffusion problems [J]. Mathematics of Computation, 1993, 80:167-188
    
    [85] Eriksson K, Johnson C. Adaptive finite element methods for parabolic problems II: Optimal Error Estimates in L_∞ (L_2) [J]. SIAM Journal on Numerical Analysis, 1995, 32: 706-740
    [86] Eriksson K, Johnson C. Adaptive finite element methods for parabolic problems IV: Nonlinear Problems [J]. SIAM Journal on Numerical Analysis, 1995,32:1729-1749
    [87] Eriksson K, Johnson C. Adaptive finite element methods for parabolic problems V: Long Time Integration [J]. SIAM Journal on Numerical Analysis, 1995,32: 1750-1763
    [88] Johnson C, Pitkarnta U, Pitkaranta J. Finite element methods for linear Hyperbolic Problems [J]. Computer Methods in Applied Mechanics and Engineering, 1984, 45: 285-312
    [89] Chen Z, Nochetto R H, Schmidt A. A Posteriori Error Control and Adaptivity for a Phase Relaxation model [J]. Math. Anal. Numer., 2000, 34: 775-797
    [90] Chen Z, Nochetto R H, Schmidt A. A Characteristic Galerkin Method with Adaptive Error Control for the Continuous Casting Problem [J]. Computer Methods in Applied Mechanics and Engineering, 2000,189:249-276
    [91] Babuska I, Strouboulis T, Upadhyay C S, Gangaraj SK.A Model Study of the Quality of aPosteriori Estimators for Linear Elliptic Problems Error Estimation in the Interior of Patchwise Uniform Grids of Triangles [J]. Computer Methods in Applied Mechanics and Engineering, 1994,114: 307-378
    [92] Babuska I, Strouboulis T. The Finite Element Method and Its Reliability [D]. Oxford University Press, 1999
    [93] Verfurth R. A Review of A-Posteriori Error Estimation and Adaptive Mesh Refinement Techniques [J]. Wiley and Teubner, New York, 1996
    [94] Lohner R, Parikh R. Three-dimensional Grid Generation by the Advancing Front Method [J]. International Journal for Numerical Methods in Fluids, 1988, 8:1135-49
    [95] Seveno E. Generation Automatique de Maillages Tridimensionnels Isotropes Par une Methode Frontale [D]. PhD Thesis. Universite Pierreet Marie Curie, Paris VI, 1998
    [96] Cunha A, Canann S A, Saigal S. Automatic Boundary Sizing for 2D and 3D Meshes [J]. Trends in Unstructured Mesh Generation, AMD-vol.220. ASME, 1997, 65-72
    [97] Owen S J, Saigal S. Neighborhood-based Element Sizing Control for Finite Element Surface Meshing [C]. Proceedings of the 6th International Meshing Roundtable, Sandia National Laboratories, Park City, UT,1997, 143-154
    [98] Pirzadeh S. Structured Background Grids for Generation of Unstructured Grids by Advancing-front Method [J]. AIAA Journal, 1993,31(2): 257-265
    [99] Yerry M A, Shephard M S. A Modified Quadtree Approach to Finite Element Mesh Generation [J]. IEEE Computer Graphics & Applications, 1983,3(1): 39-46
    [100] Shephard M S. Approaches to the Automatic Generation and Control of Finite Element Meshes [J]. Applied Mechanics Reviews, 1988, 41(4):169~185
    [101] Kallinderis Y. Khawaja A, McMorris H. Hybrid Prismatic/tetrahedral Grid Generation for Complex Geometries [C]. Proceedings of the 33th AIAA Aerospace Sciences Meeting, No. AIAA-95-0211, Reno, NV, 1995
    [102] Zhu J, Blacker T, Smith R. Background Overlay Grid Size Functions [C]. Proceedings of the 11th International Meshing Roundtable, Sandia National Laboratories, Ithaca, NY, 2002: 65-74
    [103] Frey P J. About Surface Remeshing [C]. Proceedings of the 9th International Meshing Roundtable, Sandia National Laboratories, New Orleans, LA, 2000:123-136
    [104] Quadros W R, Shimada K, Owen S J. Skeleton-based Computational Method for Generation of 3D Finite Element Mesh Sizing Function [C]. Proceedings of the 4th Symposium on Trends in Unstructured Mesh Generation, Albuquerque, NM, 2003
    [105] Tchon K F, Hirsch C, Schneiders R. Octree-based Hexahedral Mesh Generator for Viscous Flow Simulations [C]. Proceedings of the 13th AIAA Computational Fluid Dynamics Conference. No. AIAA-97-1980, Snowmass. CO, 1997
    [106] Tchon K F, Khachan M, Guibault F, Camarero R. Constructing Anisotropic Geometric Metrics Using Octrees and Skeletons [C]. Proceedings of the 12th International Meshing Roundtable, 2003: 293-304
    [107] Zienkiewicz O C and Zhu J Z. A Simple Error Estimator and Adaptive Procedure for Practical Engineering Analysis [J]. International Journal for Numerical Methods in Engineering, 1987, 24:337-357
    [108] Frey P J, George P L. Mesh Generation [C]. Application to finite elements. Hermes, Paris, 2000
    [109] Cook W A, Oakes W R. Mapping Methods for Generating Three-dimensional meshes [J]. Computers in mechanical engineering, CIME research supplement. 1982, 67-72
    [110] Shimada K, Mori N, Kondo T, et al. Automated Mesh Generation for Sheet Metal Forming Simulation [J]. International Journal of Vehicle Design. 1999, 21: 278-291
    [111] Tchon K F, Khachan M, Guibault F, Camarero R. Three-dimensional Anisotropic Geometric Metrics Based on Local Domain Curvature and Thickness [J]. Computer-Aided Design, 2005, 37(2): 173-187
    [112]左旭.集成于CAD系统的汽车零件多工位体积成形三维CAE仿真[D].上海交通大学博士论文,1998;1-90
    [113]Tekkaya A E,Kavakli S.3-D Simulation of Metal Forming Processes with Automatic Mesh Generation[J].Steel Research,1995,66(9);377-383
    [114]Schneiders R.A Grid Based Algorithm for the Generation of Hexahedral Element Meshes[J].Engineering with Computers,1996,12;168-177
    [115]Babuska I.The Finite Element Methods with Lagrange Multipliers[J].Numerical Mathematics,1973,20;179-192
    [116]Malkus D S.Eigenproblems Associated with the Discrete LBB Condition for Incompressible Finite Elements[J].International Journal of Engineering Science,1981,19;1299-1310
    [117]吴长春,卞学璜.非协调数值分析与杂交元方法[M].科学出版社,1997;18-22,175-180
    [118]Buell WR,Bush BA.Mesh Generation-a Survey[J].Transactions of the ASME,Journal of Engineering for Industry,1973,95;332-338
    [119]Thacker W C.A Brief Review of Techniques for Generating Irregular Computational Grids[J].International Journal for Numerical Methods in Engineering,1980,15;1335-1341
    [120]Ho-Le K.Finite Element Mesh Generation Methods;a Review and Classification[J].Computer-Aided Design,1988,20;27-38
    [121]Shephard M S.Approaches to the Automatic Generation and Control of Finite Element Meshes[J].Applied Mechanics Reviews,1988,40;169-185
    [122]George P L.Automatic Mesh Generation;Application to Finite Element Methods[C].Wiley;New York,1991
    [123]Benzley,S E,Perry E,Merkley K,Clark B.A Comparison of All Hexagonal and All Tetrahedral Finite Element Meshes for Elastic and Elastic-Plastic Analysis[C].Proceedings of the 4th International Meshing Roundtable,1995;179-191
    [124]Blacker T.Automated Conformal Hexahedral Meshing Constraints,Challenges and Opportunities[J].Engineering with Computers,2001,17(3);201-210
    [125]Zienkiewicz O C,Phillips D V.An Automatic Mesh Generation Scheme for Plane and Curved Surfaces by Isoparametric Coordinated[J].International Journal for Numerical Methods in Engineering,1971,3;519-528
    [126]Matthew L.Staten,Scott A.Cabann,Steven J.Owen.BMSWEEP;Locating Interior Nodes During Sweeping[C].Proceedings of the 7th international Meshing Roundtable,1998;7-18
    [127]Lai M W,et al.A Multiple Source and Target Sweeping Method for Generating All-Hexahedral Finite Element Meshes.During Sweeping[C].Proceedings of the 5th international Meshing Roundtable,1996;217-228
    [128]Li T S,Mckeag R M,Armstrong C G.Hexahedral Meshing Using Midpoint Subdivision and Integer Programming[J].Computer Methods in Applied Mechanics and Engineering,1995,124;171-193
    [129]Owen S J,Staten M L,Canann S A and Saigal S.Q-Morph;An Indirect Approach to Advancing Front Quad Meshing[J].International Journal for Numerical Methods in Engineering,1999,44;1317-1340
    [130]Baehmann PL,et al.Robust Geometrically-Based Automatic Two-Dimensional Mesh Generation[J].International Journal for Numerical Methods in Engineering,1987,24;1043-1078
    [131]Peterson S B,Martins P A F.Finite Element Remeshing;A Metal Forming Approach for Quadrilateral Mesh Generation and Refinement[J].International Journal for Numerical Methods in Engineering,1997,40;1449-1464
    [132]Zhu J,Gotoh M.An Automated Process for 3D Hexahedral Mesh Regeneration in Metal Forming[J].Computational Mechanics,1999,24;373-385
    [133]Kwak D Y,Im Y.Remeshing for Metal Forming Simulation--Part Ⅱ;Three-dimensional Hexahedral Mesh Generation[J].International Journal for numerical methods in engineering 2002,53;2501-2528
    [134]Cass R J,Benzley S E,Meyers R J and Blacker T D.Generalized 3-D Paving;An Automated Quadrilateral Surface Mesh Generation Algorithm[J].International Journal for Numerical Methods in Engineering,1996,39;1475-1489
    [135]White D R and Kinney P.Redesign of the Paving Algorithm;Robustness Enhancements through Element-by-Element Meshing[C].Proceedings of the 6th International Meshing Roundtable,Sandia National Laboratories,1997;323-335
    [136]Owen S J.Non-simplical Unstructured Mesh Generation[D].Disseration of doctor,Carnegie Mellon University,Pittsburgh,PA.USA,1999
    [137]Phillip Tuchinsky,M.Brett W.Clark.The Hex-Tet,Hex-Dominant Automesher;An Interim Progress Report[C],Proceedings of the 6th International Meshing Roundtable,1997;183-193
    [138]Min W D.Generating Hexahedron-Dominant Mesh Based on Shrinking- Mapping Method[C],Proceedings of the 6th International Meshing Roundtable,1997;171-182
    [139]张向.金属体积成形过程有限元模拟中六面体网格生成技术[D].上海交通人学博士学位论文,2000
    [140]Bruce P.Johnston,John M.Sullivan.A Normal Offsetting Technique for Automatic Mesh Generation in Three Dimensions[J].International Journal for Numerical Methods in Engineering, 1993, 36:1717-1734
    [141] Tautges T J, Blacker T and Mitchell S. The Whisker-Weaving Algorithm: A Connectivity Based Method for Constructing All-Hexahedral Finite Element Meshes [J]. International Journal for Numerical Methods in Engineering, 1996, 39: 3327-3349
    [142] Lee Y K, Yang D Y. Development of a Grid-based Mesh Generation Techniques and Its Application to Remeshing During the Finite Element Simulation of a Metal Forming Process[J]. Engineering Computations, 1999,16: 316-336
    
    [143] Rosenfeld A. Digital topology, American Mathematical Monthly [J], 1979, 86(8): 621-630
    [144] Kong T Y, Rosenfeld A. Survey Digital Topology: Introduction and Survey [J]. CVGIP, 1989, 48: 357-393
    [145] Wada Y, Okuda H. Effective Adaptation Technique for Hexahedral Mesh [J]. Concurrency and computation: practice and experience, 2002,14: 451-463
    [146] Weiler F, Schindler R, Schneiders R. Automatic Geometry-adaptive Generation of Quadrilateral and Hexahedral Element Meshes for the FEM [C]. Proceedings of the 5th International Conference on Numerical Grid Generation in ComputatFieldSimmulations, Mississippi State University 1996, 689-697
    [147] Su Y, Lee K H. Automatic Hexahedral Mesh Generation for Multi-domain Composite Models Using a Hybrid Projective Grid-based Method [J]. Computer-Aided Design, 2004, 36(3): 203-215
    [148] Baehmann P L, Shephard M S, Ashley R A, Jay A. Automated Metal Forming Modeling Utilizing Adaptive Remeshing and Evolving Geometry [J]. Computer Structure, 1988, 30 (1/2): 319-325
    [149] Baehmann P L, Collar R R, Hattangady N V, and Shephard M S. Geometry and Mesh Control for Automated Bulk Forming Simulations [J]. Proc. ASME Winter Annual Meeting, Anaheim, CA, 1992: 47-57
    [150] Cheng J H. Automatic Adaptive Remeshing for Finite Element Simulation of Forming Processes [J]. International Journal for Numerical Methods in Engineering, 1989, 26: 1-18
    [151] Cheng J H and Kikuchi N. A Mesh Rezoning Technique for Finite Element Simulations of Metal Forming Processes [J]. International Journal for Numerical Methods in Engineering, 1986, 23: 219-228
    
    [152] Wilkinson J H. The Algebraic Eigenvalue Problem [D], Clarendon Press, Oxford, 1965
    [153] Habraken A M and Cescotto S. An Automatic Remeshing Technique for FiniteElement Simulation of Forming Processes [J]. International Journal for Numerical Methods in Engineering, 1990, 30: 1503-1525
    [154] Dyduch M, Habraken A M, and Cescotto S. Automatic Adaptive Remeshing forNumerical Simulations of Metal Forming [J]. Computer Application Mechanic Engineering, 1992,101: 282-298
    
    [155]王皓等.有限单元畸变度计算方法[M].计算机辅助设计与图形学,2000,(3):179-183
    
    [156] Blacker T. The Cooper tool [C]. Proceedings of the 5th International Meshing Roundtable, 1996:13-29
    [157] Knupp P. Next-Generation Sweep Tool: A Method for Generating All-Hex Meshes on Two-and-One-Half Dimensional Geometries [C]. Proceedings of the 7th International Meshing Roundtable, 1998: 505-514
    [158] Murdoch P, Steven E B. The Spatial Twist Continuum [C]. Proceedings of the 4th International Meshing Roundtable, 1995: 243-251
    [159] Meyers R J, Timothy J T, Tuchinsky P M. The Hex-Tet Hex-dominant Meshing Algorithm as Implemented in CUBIT [C]. Proceedings of the 7th International Meshing Roundtable, 1998:151-158
    [160] Schneiders R, Biinten R. Automatic Generation of Hexahedral Finite Element Meshes [J]. Computer Aided Geometric Design, 1995,12(7): 693-707
    [161] Schneiders R. An Algorithm for the Generation of Hexahedral Element Meshes Based on an Octree Technique [C]. Proceedings of the 6th International Meshing Roundtable, 1995: 183-194
    [162] Zhu J, Blacker T. Overcoming Cartesian Grid Generation Obstacles [C]. Proceedings of the 7th International Conference on Numerical Grid Generation in Computational Field Simulations, September, 2000
    [163] Smith R. A Novel Cartesian Grid Method for Complex Aerodynamic CFD Applications [C]. Proceedings of the 5th International Conference on Numerical Grid Generation in Computational Field Simulations, 1996: 709-718
    [164] Canann S A, Tristano J R, Staten M L. An Approach to Combined Laplacian and Optimization-based Smoothing for Triangular, Quadrilateral, and Quad-dominant meshes [C]. Proceedings of the 7th International Meshing Roundtable, Dearborn, MI, 26-28 October, 1998: 479-494
    [165] Chen C L, Szema K Y, and Chakravarthy S R. Optimization of Unstructured Grid [C]. AIAA 95-0217, 33rd Aerospace Sciences Meeting and Exhibit, Reno, NV, January, 1995: 1-10
    [166] Freitag L A, Jones M, Plassmann P. An Efficient Parallel Algorithm for Mesh Smoothing [C]. Proceedings of the 4th International Meshing Roundtable, New Mexico: Sandia National Laboratories, 1995: 47-58
    [167] Hansbro P. Generalized Laplacian Smoothing of Unstructured Grids [J]. Communications in Numerical Methods in Engineering,1995;455-464
    [168]Knupp P.Hexahedral and Tetrahedral Mesh Untangling[J].Engineering with Comuputers,2001,17(3);261-268
    [169]Zavattier P.Optimization strategies in unstructured mesh generation[J].International Journal for Numerical Methods in Engineering,1996,39;2055-2071
    [170]Calvo N A,Idelsohn SR.All-hexahedral Element Meshing;Generation of the Dual Mesh by Recurrent Subdivision[J].Complementary Methods in Applied Mechanical Engineering,2000,182;371-378
    [171]Zhang H M,Zhao G Q.Adaptive Hexahedral Mesh Generation Based on Local Domain Curvature and Thickness Using a Modified Grid-based Method[J].Finite Elements in Analysis and Design,2007,43;691-704
    [172]Knupp P.Achieving Finite Element Mesh Quality Via Optimization of the Jacobian Matrix Norm and Associated Quantities,Part I-a framework for surface mesh optimization[J].International Journal for Numerical Methods in Engineering,2000,48;401-420
    [173]Knupp P.Achieving Finite Element Mesh Quality Via Optimization of the Jacobian Matrix norm and Associated Quantities,Part Ⅱ-a Framework for Volume Mesh Optimization and Condition Number of the Jacobian Matrix[J],International Journal for Numerical Methods in Engineering,2000,48;1165-1185
    [174]李海生,杨钦,陈其明.根据STL文件生成三维四面体网格[J].中国机械工程,2003,14(11);926-929
    [175]王广春,赵国群.快速成型与快速模具制造技术及其应用[M],机械工业出版社,2004
    [176]郭燕利,胡建军.利用OpenGL三维图形库进行三维实体造型[J].微型电脑应用,1998,6;93-96
    [177]Spillers W R,Law K H.On the Hidden Line Removal Problem[J].Computers & Structures,1987,26;709-717
    [178]左旭,卫原平,阮学榆.塑性成形CAE分析中的三维有限元网格消隐[J].模具技术,1998,(2);20-21
    [179]胡圣荣,陈国华.简便快速三维有限元网格消隐[J].计算机辅助设计与图形学学报,1996,8(5);335-339
    [180]陈良玉,杨文通.一种人型三维有限元网格的显示和高效消隐方法[J].计算机辅助设计与图形学学报,1997,9(2);164-167
    [181]潘云鹤主编.计算机图形学[M].高等教育出版社,2001
    [182]彭颖红编著.金属塑性成形仿真技术[M].上海交通大学山版社,1999

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700