可变频充液管道消声器设计与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
离心水泵和阀门是海水管路系统中的主要噪声源,为了有效控制海水管路中的流噪声,在管路中安装水消声器是应用最广泛、最有效的一种方法。传统的固定参数消声器的消声频带和消声性能是确定的。然而,泵的运行工况经常是变化的,管路系统的噪声频率也随之变化。因此固定参数的消声器便不能跟踪噪声频率的变化而达到最佳的消声效果。
     本文针对水管路系统中噪声频率可能变化的情况,研究设计可调频的水管路消声器。提出了两种可调消声器的结构设计方案,一种是基于亥姆霍兹共振器的可调频多线谱水管路消声器,采用改变共振器颈部面积的方式来调节消声器的消声频率,通过在管道周围紧凑的布置多个共振器实现多线谱管路脉动压力衰减;另一种是基于穿孔管消声器的可调频水管路消声器,通过内部穿孔管外侧的移动套筒的移动来实现消声频带的调节。用Ansys分别建立了两种消声器结构的实体模型,用声学软件Sysnoise对消声器的声学性能(传递损失)进行仿真模拟,对各结构参数对其声学性能的影响进行了仿真分析。在此基础上进行了两种消声器的结构优化设计,并确定了具体的设计方案和结构尺寸,设计加工了可变频消声器的原理样机,进行了实验研究。实验结果表明:所设计的可变频充液管路消声器对管路压力脉动的衰减是有效的,取得了良好的消声效果,本文的设计方案是可行的。
In seawater pipeline system Centrifugal pump and valve are the principal noise sources, in order to control flow-noise in seawater pipeline effectively, it is one of the most widely used methods to install water silencer on pipeline. Traditional fixed parameter silencer has identified bandwidth and performance. However, the operating condition of pump is often changed and the noise frequency of pipeline system is often changed too. Fixed parameters silencer will not be able to track changes in the noise frequency and achieve the best attenuation effect.
     In this paper, aiming at the changed situation of noise frequency in pipeline system, tuned frequency water silencer has been researched and designed. Two structure design schemes of tuned frequency water silencer has been put forward, one is multi-line tuned frequency water silencer based on the Helmholtz resonator, the attenuation frequency is controlled by changing the neck area of resonator, several resonators are lied around the pipeline compactly to attenuate dynamic pressure; Another is tuned frequency water silencer based on perforated pipe silencer, the attenuation frequency is controlled by moving the internal mobile sleeve around perforated pipe. The two entity structural models of attenuators are set up by using Ansys software, and using Sysnoise software simulate the acoustic performance (transmission loss) of the attenuator, numerical analysis of structural parameters which affect its acoustic properties is carried out. On this basis structural optimization of two silencers are put up, and specific design scheme and structural dimensions are determined. Process water silencer and put up experimental research. The experimental results show that the designed semi-active tuned frequency water silencer is effective to the pipeline pressure pulsation attenuation, the water silencer make good results, so it verifies the design feasible.
引文
[1]孙雪荣,(?)锡.船舶水下结构噪声的研究概况与趋势[J].振动与冲击学报.2005:106—107页
    [2]彭旭,骆东平.船舶结构建模及水下振动和辐射噪声预报[J].噪声与振动控制学报,2003,9(1):9-12页
    [3]施引,朱石坚,何琳.船舶动力机械噪声及其控制.国防工业出版社,1990:321—332页
    [4]舒国良.潜艇的噪声及其降低的途径.噪声与振动控制,1988,12(2):22—26页
    [5]J.Igarashi, M.Toyama. Fundamental of Acoustical Silencers(1).Report No.339,Aeronautical Research Institute, University of Tokyo,1958:223— 241P
    [6]Pump Noise and Vibrations.1st international symposium,1993:86—94P
    [7]M. Purhouse. Underwater Noise Radiation Due to Transmission Through The Cooling Water. Proceeding of ISSA'86 Shipboard Acoustics,1986:585—611P
    [8]苏尔皇.管道动态分析及液流数值计算方法..哈尔滨工业大学出版社,1985:74—83页
    [9]AMGAD S.ELANSARY et al. Numerical and experimental investigation of transient pipe flow. Journal of Hydraulic Research. Vol.32,1994 No5:689— 706P
    [10]李红梅,李静巍.调节阀的噪声与治理.阀门,2002(5):32—35页
    [11]张志华.动力装置振动数值分析.哈尔滨工程大学出版社,1994:12—18页
    [12]梁仕云,庞庭阶.传递矩阵法在管系液体振动研究中的应用.机床与液压,1993(5):261-262页
    [13]J.W. Sullivan, M.J. Crocker. Analysis of concentric-tube resonators having unpartitioned cavities. Journal of the Acoustical Society of America,1978,64(1):207—215P
    [14]A.I. El-Sharkawy. A.H. Nayfeh. Effect of an expansion chamber on the propagation of sound in circular ducts. Journal of the Acoustical Society of America,1978,63(3):667—674P
    [15]K. Jayaraman. A predictive model for asymmetric mufflers. Nelson Acoustics Conference,1984:435—457P
    [16]L.J. Eriksson, C.A. Anderson, R.H.Hoops, K.Jayaraman. Finite length effects on higher order propagation in silencers.11th ICA, Paris,1983:329—332P
    [17]J.G.. Ih, B.H.Lee. Analysis of higher order mode effects in circular expansion chamber with mean flow. Journal of the Acoustical Society of America,1985, 77(4):1377—1388P
    [18]M.L.Munjal. Acoustics of ducts and mufflers. New York:A Wiley-Interscience,1987:92-102P,254—282P
    [19]A.Selamet, Z.L.Ji. Acoustic attenuation performance of circular expansion chambers with offset inlet/outlet:I. Analytical approach. Journal of Sound and Vibration,1998,213(4):601—617P
    [20]A.Selamet, Z.L.Ji. Acoustic attenuation performance of circular flow-reversing chambers. Journal of the Acoustical Society of America,1998, 104(5):2867—2877P
    [21]A.Selamet, Z.L.Ji. Acoustic attenuation performance of circular expansion chambers with single-inlet and double-outlet. Journal of Sound and Vibration, 2000,229(1):3—19P
    [22]A.Selamet, Z.L.Ji. Circular asymmetric helmholtz resonators. Journal of the Acoustical Society of America,2000,107(5):2360—2369P
    [23]A.Selamet, M.B.Xu, I.-J.Lee. Analytical approach for sound attenuation in perforated dissipative silencers. Journal of the Acoustical Society of America, 2004,115(5):2091—2099P
    [24]R. Kirby, J.B. Lawrie. A point collocation approach to modeling large dissipative silencers. Journal of Sound and Vibration,2005,286(1-2):313—339P
    [25]王福军编著.计算流体动力学分析-CFD软件原理与应用.北京:清华大学出版社,2004:25页,7-11页,27—51页
    [26]D.F. Ross. A finite element analysis of parallel-coupled acoustic systems. Journal of Sound and Vibration,1980,69(4):509—518P
    [27]R.J. Astley, W.Eversman. A finite element formulation of the eigenvalue problem in lined ducts with flow. Journal of Sound and Vibration,1979, 65(1):61—74P
    [28]K.S.Peat. Evaluation of four-pole parameters for ducts with flow by the finite element method. Journal of Sound and Vibration,1982,84(3):389—395P
    [29]R.J. Bernhard. A finite element method for synthesis of acoustical shapes. Journal of Sound and Vibration,1985,98(1):55—65P
    [30]蔡超,宫镇,诸圣国.存在气流时轴对称抗性消声器传递损失的有限元解法.汽车工程,1994,16(5):296—302页
    [31]Liu Yadong, Li Congxin, Ruan Xueyu. Prediction of acoustic performance in expansion chamber mufflers with mean flow by finite element method. Chinese Journal of Mechanical Engineering,2003,16(3):292—295P
    [32]季振林,张志华等.轴对称管道及消声器声学问题的边界元法研究及应用.哈尔滨船舶工程学院学报,1992:23—33页
    [33]季振林,马强等.抗性消声器声学特性的三维边界元分析.哈尔滨船舶工程学院学报,1993:29—35页
    [34]季振林等.轴对称管道及消声器内部声场与管口声辐射问题的边界元法计算.哈尔滨船舶工程学院学报,1993:41-48页
    [35]季振林,张志华,马强.具有线性湿度梯度的管道及消声器声学特性的边 界元法计算..哈尔滨工程大学学报,1993:467—470页
    [36]季振林等.管道及消声器声学特性的边界元法计算.计算物理,1996:1—5页
    [37]T. Tanaka, T. Fujikaw, et al, A method for the analytical prediction of insertion loss of a two-dimensional muffler model based on the transfer matrix derived from the boundary element method, ASME Journal of Vibration, Acoustics Stress and Reliability in Design,1985,107 (1),86—91P
    [38]季振林.消声器声学特性预测的边界元法.哈尔滨船舶工程学院博士论文,1993:18—22页
    [39]R. C. Chanaud. Effects of geometry on the resonance frequency of Helmholtz resonators. Journal of Sound and Vibration,1994:178P,337—348P
    [40]F. P. Mechel. Theory of baffle-type silencers. Acustic,1990:70P,93—111P
    [41]A. Bokor. Attenuation of sound in lined ducts. Journal of Sound and Vibration,1969:390—403P.
    [42]U. J. Kurze, I. L. Ver. Sound attenuation in ducts lined with non-isotropic material. Journal of Sound and Vibration 24,1972:177—187P
    [43]C. Wassilieff. Experimental verification of duct attenuation models with bulk reacting linings. Journal of Sound and Vibration 114,1987:239—251P
    [44]R. Glav. The transfer matrix for a dissipative silencer of arbitrary cross-section. Journal of Sound and Vibration 236,2000:575—594P
    [45]D. E. Sterrett, E. C. Pekrul, and T. P. Turner. Multi-chamber muffler with selective sound absorbent material placement. United States Patent 5783782, 1998
    [46]A.Selamet, I.-J. Lee, and N. T. Huff. Acoustic attenuation of hybrid silencers. Journal of Sound and Vibration 262,2003:509—527P
    [47]Hiroshi. Matsuhisa, Ikuo. Tsujimoto and Susumu Sato. Control of antiresonance by a variable damping active resonator. Transactions of the Japan Society of Mechanical Engineers, Part C,59(562),1993:1824—1829P
    [48]Hiroshi Matsuhisa, Baosheng Ren and Susumu Sato. Semiactive control of duct noise by a volume-variable resonator. JSME International Journal,35(2), 1992:223—228P
    [49]Hiroshi Matsuhisa and Susumu Sato. Semi-active noise control by a resonator with variable parameters. Proceedings of Inter-Noise 90,1990: 1305—1308P
    [50]Eric Little, A. Reza Kashani, J. Kohler and F. Morrison. Tuning of an electrorheological fluid-based intelligent helmholtz resonator as applied to hydraulic engine mounts. Proceedings of ASME DSC Transportation Systems,54,1994:43—51P
    [51]J. S. Lamancusa. An actively tuned passive muffler system for engine silencing. Proceedings of Noise-con 87,1987:313—318P
    [52]J.M. de Bedout, M.A. Franchek, R.J. Bernhard and L. Moungeau. Adaptive-passive noise control with self-tuning helmholtz resonators. Sound and Vibration,202(1),1997:109—123P
    [53]Toshiichi Sawada.et al. Resonator for internal combustion engines. United States Patent. Patent Number:4539947
    [54]Yasuhiko Fukami. Resonator for internal combustion engines. United States Patent. Patent Number:4546733
    [55]C. J. Radcliffe and C. Birdsong. An electronically tunable resonator for noise control. Society of Automotive Engineers, Noise & Vibration conference & Exposition,2001:1502—1511P
    [56]SJ. Esteve, M.E. Johnson. Reduction of sound transmission into a circular cylindrical shell using distributed vibration absorbers and helmholtz resonators.J.A.S.A.,2002,112(6):2840—2848P.
    [57]S.J. Esteve, M.E. Johnson. Development of an adaptive Helmholtz resonator for broadband noise control. Proceedings of IMECE2004. Anaheim,2004: 526—552P.
    [58]S.J. Esteve, Marty E. Johnson. Adaptive Helmholtz resonators and passive vibration absorbers for cylinder interior noise control. Journal of Sound and Vibration,2005,288:1105—1130P
    [59]S. Singh, C. Q. Howard, C. H. Hansen. Tuning a semi-active Helmholtz resonator. Proceedings of the Active 2006 Conference, ADELAID AUSTRALIA,2006:1520—1549P
    [60]杜功焕,朱哲民,龚秀芬.声学基础.南京大学出版社,2001:168-187页
    [61]何柞铺,赵玉芳.声学理论基础.国防工业出版社,1981:51-58页
    [62]季振林.管道及消声器声场的边界元法分析研究.哈尔滨工程大学研究生学位论文,1989:11—12页
    [63]C. Y. R, Cheng, A. F. Seybert, T. W. Wu. A Multidomain Boundary Element Solution for Silencer and Muffler Performance Prediction. Journal of Sound and Vibration,1991 15(1):119—129P
    [64]ANSYS, Inc. Theory Reference.
    [65]D. R. Ross. A finite element analysis of perforated component acoustic system. Journal of Sound and Vibration,1981,79(1):133—143P
    [66]邓凡平.ANSYS 10.0有限元分析自学手册.人民邮电出版社,2007:1—164页
    [67]李增刚.SYSNOISE 5.6详解.国防工业出版社,2005:1—89页
    [68]单岩,谢龙汉,胡挺.CATIA V5简体中文培训教程.清华大学出版社,2004:1—58页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700