稻田土壤重金属污染和稻米Cd安全分析及控制技术探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤是陆地生态系统的重要支撑基础,又是地球表层环境的重要组成部分。在维持农作物生产的同时,农业土壤环境污染及其食物安全风险问题是当今农业可持续发展的重大挑战之一。南方稻田重金属污染较为普遍,特别是太湖地区、珠江三角洲地区和江西湖南红壤丘陵地区的土壤重金属污染分布及其食物安全风险评价已有多方面的研究报道。本课题组关于太湖地区重金属(特别是Cd和Zn)的土壤污染特征及农产品重金属积累以及食物安全风险已经进行了一系列的分析研究,但对重金属污染积累的团聚体组成变化及带来的重金属土壤团聚体分配的变化,不同稻区稻米重金属积累差异与稻田土壤性质的关联性等还未有系统研究探讨。污染稻田稻米重金属积累的抑制和控制技术也还未有可靠技术。
     因此,本文基于已有认识,首先研究了重金属污染下稻田土壤团聚体组成变化,分析污染下土壤团聚体形成及重金属的土壤颗粒粒径分配变化,探讨重金属污染对土壤生物物理过程的影响;其次,采集南方不同稻区稻米样品,分析Cd、Zn含量,探讨与稻区土壤类型及其土壤性质特征的关系,最后从影响稻区稻米重金属水平的土壤因素-土壤酸度着手,探讨通过施用改良剂调节土壤Cd活性而降低稻米Cd积累的技术。获得结果如下:
     1.本文采集已报道严重污染的水稻土和未明显污染的同种水田土壤表土样品,分析不同粒径土壤团聚体颗粒组的质量组成和Pb、Cd、Hg、As等重金属元素的含量,讨论重金属污染下土壤团聚体组成和重金属团聚体分配的变化。在重金属污染下,土壤砂粒级团聚体减少,而较细粒径团聚体相对增多;尽管重金属含量随粒径变化的趋势与先前研究认识一致,即在<0.002mm和2-0.2mm粒径的颗粒组中富集,但污染下重金属元素更多地赋存于粉砂组和黏粒组团聚体。因此,重金属污染可能减弱了较大土壤团聚体形成作用,导致细粒径团聚体的相对增多,从而明显提高重金属元素在易移动的粉砂和黏粒组团聚体的分配,这可能进一步加剧污染农田重金属的水迁移和大气颗粒物迁移的风险。
     2.在江西、湖南、安徽和广东等南方典型水稻产区的农产品市场和农户随机采取大米样品共70份,分别测定样品中Cd、Zn和Se的含量,并分析不同产地大米的含量差异及其与产区主要土壤特征的关系。结果表明,70%以上的供试样品Cd含量超出国家食品卫生标准值(0.2mg·kg-1),且Cd/Zn(质量比)超出美国学者建议的0.015临界值。不同产地大米样本间所分析元素的含量及Cd/Zn均呈污染产地>酸性水稻土产地>中性水稻土产地,且以Cd和Se含量的差异幅度较大,Zn较小。说明土壤酸度及Cd有效性是影响供试大米Cd含量的主要因素。因而,土壤-水稻系统中Cd迁移与籽粒积累取决于人为污染和土壤的化学性质的共同作用。分析表明所有供试产地的大米样本对于农民就地消费来说均存在不同程度的潜在Cd暴露风险,以污染土壤产地区和酸性红壤性水稻土产地为严重。
     3.根据前述结果,针对土壤酸度对稻米Cd积累的重要影响,并考虑到Cd-Zn拮抗关系和沉淀钝化作用,采用田间定位试验,探讨了不同用量的钙镁磷肥及叶面喷施锌肥(ZnSO4·7H20)等处理对降低污染稻田水稻籽粒Cd含量的影响。试验表明,不同肥料调节剂处理没有显著提高水稻产量,但籽粒Cd含量有不同程度降低。分析表明,磷肥处理提高了土壤的pH值,且随用量而增高,而土壤中有效态Cd含量相应显著降低。推测主要是由于土壤pH升高而降低了土壤Cd活性。不过,叶面喷施锌肥并未明显提高土壤pH值,但显著降低土壤有效态Cd含量,看来淹水下形成难溶性CdS而钝化了土壤Cd。施用磷肥调节剂可以通过调控土壤酸度而达到钝化稻田土壤Cd从而抑制水稻籽粒中Cd积累的效果。但是,在严重污染稻田中,这些用量尚不能有效控制稻米Cd的安全。建议严重重金属污染的土壤改种其它非Cd强积累作物。
     本文的研究说明,稻田土壤污染可能影响土壤的物理性质,可能带来对土壤中各种过程的进一步影响;同时,稻田土壤污染对食物安全的影响可能受污染物数量和土壤性质的共同影响,土壤酸度差异可能是产地区域稻米Cd分异的主要因素,因而从土壤酸度调节和控制出发研究稻米重金属污染控制技术是一个今后需要努力的方向。
Soils are the physical support for the terrestrial ecosystem and also the most important component of the earth surface environment. Soil pollution and its health risks via food consumption for human is one of the great challenges for the sustainable agriculture together with the need for increasing soil productivity. Soil pollution, however, is very extensive in South China rice area, especially from the Tai Lake region, Pearl River delta region and red earth region of Jiangxi and Hunan provinces. Many studies on soil pollution of heavy metals such as Pb, Cd, As in rice paddies and the exposure risks by dietary intake have been reported. Among these, a number of studies have been conducted at Institute of Resources, Ecosystem and Environment of Agriculture (IREEA) on soil distribution, accumulation in rice grains and evaluation of food exposure risks from the Tai Lake region, Jiangsu. Whereas, the effect of heavy metals on composition of soil aggregates of different size frcationss, and thus, the distribution pattern of these polluted metals in size fractions has not yet been examed. In addition, the relationship of heavy metal concentration in rice grains with the soil properties where the rice were grown has not been elucidated. And at last, there have not yet been feasible measures for depressing the heavy metal level in rice grains for the food security.
     Therefore, this paper has been based on understanding of previous studies, the distribution pattern of polluted metals in size fractions was studied in first,anylised the forming of soil aggregates in polluted paddy field and the distribution pattern of polluted metals in size fractions.the effect of heavy metal pollution on the process of biological and physical in soils was discussed;Second, the rice samples was collected from different producing areas in South China,and anylised the contents of Cd, Zn in rice grain.In addition,the relationship between soil type and the characters of soil on rice producing areas was discussed. Finally, this study discussed the technology of reducing Cd accumulation in rice grain through regulation of soil pH, because soil acidity is main facter to affect the heavy metal in rice grain. The main results were as follows:
     1.Topsoil samples of polluted and non-polluted rice paddy were respectively collected from the Tai Lake region, China.Particle size fractions of soil micro-aggregates were separated using a low-energy dispersion procedure and the mass composition of these fractions were measured. Concentrations of Pb, Cd, Hg and As of the particle size fractions were determined with atomic adsorption spectroscopy and atomic fluorenscence spectroscopy respectively. The changes in composition of and metal distribution in the particle size fractions with soil pollution were discussed. The content of the sand-sized fractions were reduced while that of the clay-sized increased under heavy metal pollution in the rice paddy. The contents of the analyzed metals followed a similar distribution pattern over the different size fractions although their concentrations differed greatly in a single size fraction. The highest concentration was found in the fraction of<0.002 mm in size followed by the sand-sized fraction of 2-0.2mm. However, all the metals were relatively depleted in the silt fractions of 0.02-0.002 mm and 0.2-0.02 mm. The present study show that aggregation of fine particles into large particles may be depressed under heavy metal pollution which, in turn, leads to relative increase in mass of fine particles and the associated allocation of metals in weakly aggregated silt particles. This could further impact the potential translocation of heavy metals through release in water and air particulate material in air in field.
     2.In this study, a total of 70 polished rice were randomly collected at agro-product markets and local farmers from some typical rice areas of South China.Their contents of Cd, Zn and Se were determined by atomic adsorption spectrophotometer (AAS) and astomic fluorescence spectrometry (AFS) respectively, the variation of the contents with rice areas was described in terms of soil conditions.The result showed that over 70% of the total samples have Cd contents exceeding the State Food Security Standards (0.2 mg·kg-1) with Cd/Zn ratios exceeding the suggested critical threshold of 0.015.The extent to which the contents of the analyzed elements varied with rice areas was greater for Cd and Se than for Zn, though the contents followed in the same order:polluted area>acid paddy area and neutral paddy area. This further evidenced a determinacy of soil acidity and Cd availability in rice Cd uptake.Thus, Cd translocation and accumulation in grains could be result from the interactive effect of human activities and the chemical properties of soil. The health risk by Cd exposure to the rice diet from different areas was estimated. The consumption of rice from polluted area and acid paddy area may impose serious health risks for subsistence diet farmers.
     3.Based on former result and the effective control measures of soil acidity and taking into account the antagonistic relationship between the.Cd and Zn in soil. A field experiment was conducted to study the effects on grain Cd concentration of different dosages of calcium magnesium phosphate fertilization and foliar ZnSO4·7H2O fertilization. The results showed that most treatments had not significantly increased rice yield but decreased grain Cd concentration with varying extent. The analysis showed that soil pH was increased under all the phosphate fertilizer treatments, in proportional to the application dosage. Accordingly, significant reduction in bioavailable Cd was observed. Statistical analysis indicated a significantly negative correlation of bioavailable Cd with soil pH.Therefore, the reduction in grain Cd concentration under these phosphorus fertilization treatments was attributed to the reduced mobility of soil Cd under increased soil pH. Foliar application of ZnSO4·7H2O solution was not found to increase soil pH, but again decrease soil bioavailable Cd, which was likely to result from the formation of CdS under submerged condition. Therefore, inactivating soil Cd by the pH-increasing phosphorus fertilization and mobility reducing foliar sulphate could alleviate Cd uptake and accumulation in rice grains. However, grain Cd from this heavily polluted paddy was not reduced to meet the National food safety guideline with the studied dosages. It is suggested that alternative crops with low Cd affinity should be cultivated instead of rice for sound agro-production in polluted rice fields.
     The study showed that soil pollution in rice field may impact on the basic properties of the soil, also further effect all kinds of processes in soil;at the same time,the effect on food quality in polluted rice fields could be result from the common effects of pollutants quantity and the properties of soil.The difference of soil acidity may be the main facter in rice Cd from different producing rice area. Therefore, adjust and control the soil acidity,research control technique of heavy metal polluted in rice should be taken into account in the future.
引文
[1]Behne D,Alber D,KyriakopoulosA.Selenium rsearch in mammals using nuelear analytical methods and related techniques in conjunction with biochemical procedures[J].Journal Radioanaly Nuclear Chemistry,2004,259:435-439
    [2]Brookes P C, Mcgrath S P. Effects of metal toxicity on the size of the soil microbial biomass [J]Journal of Soil Science,1984,35(2):341-346
    [3]Brookes P C. The use of microbial parameters in monitoring soil pollution by heavy metals[J].Bilogy and Fertility of Soils,1995,19(4):269-279
    [4]Chaney R L, Reeves P G, Ryan J A, Simmons R W, et al. An improved understanding of soil Cd risk to humans and low cost methods to phytoextract Cd from contaminated.soils to prevent soil Cd risks[J].Biometals,2004,17:549-553
    [5]Chang A C, Pan G X, Page A L, et al. Human Health-related Chemical Guidelines for Reclaimed Water and Sewage Sludge Applications in Agriculture.2002.[M/OL].Geneva:World Health Organization,2002[2002-05-17].http://www.who.int/water_sanitation_health/wastewater/gwwuchemi cals.pdf.2008-10-10
    [6]Chen M, Lena M Q, Singh S P. Field demonstration of in situimmobilization of soil Pb using P[J]. Advances in Environmental Research,2003,8:93-102
    [7]Codex Alimentarius Commission. Report of the thirty-second session of the Codex Committee on food Additives and Contaminants[R].Beijing:Joint FAO/WHO Food Standards Pr ogramme,2000
    [8]Cuadrado C, Kumpulainen J, Carbajal A, et al. Cereals contribution to the total dietary intake of heavy metals in Madrid,Spain[J].Journal of Food Composition and Analysis.2000,13:495-503
    [9]Ducarouir J, Lamy I. Evidence of trace metal association with soil organic matter using particle size fractionation after physical dispersion treatment[J].Analyst.1995,120:741-745
    [10]Ebbs S D, Lasat M M, Brady D J,et al.Phytoextraction of cadmiumand zinc from acontimated site[J]. Jenviron Qual,1997,26:1424-1430
    [11]Janssen R P T, L Posthuma R, Baerselman H, et al. Equilibrium, partitioning of heavy metals in Dutch field soils.I. Relationship between metal partition coefficients and soil characteristics [J]. Environment.Toxicol. Chemistry,1997,16(12):2479-2488
    [12]Horiguchi H, Oguma E, Sasaki S, et al. Dietary exposure to cadmium at close to the current provisional tolerable weekly intake does not affect renal function among female Japanese farmers[J]. Environment Research,2004,95:20-31
    [13]Kadenler E, Lufienegger G, Schwarz S.Influence of heavy metals on the funct ional diversity of soil microbialcommunit ies[J].Bilogy and Fertility of Soils,1997,23:299-306
    [14]Knight B,Zhao FJ,McGrath S P,et al.Zinc and cadmium uptake by the hyper accumulator Thlaspi caerulescens in contaminated soils and its effects on the concentrtion and chemical speciation of mettals in soils solution[J].Plant and Soil,1997,197:71-78
    [15]Liu J G, Li K. Q, Xu J K, et al. Interaction of Cd and five mineral nutrients for uptake and accumulation in different rice cultivars and genotypes[J].Field Crops Research,2003,83:271-283
    [16]Lombi E.,Sletten R.S.,Wenzel W.W. Sequentially extracted arsenic from different size fractions of contaminated soils[J].Water, Air and Soil Pollution.2000,124:319-332
    [17]Materechera S.A., Kirby J.M., Alston A.M.,et al. Modification of soil aggregation by watering regime and root growing through beds of large aggregates[J].Plant and Soil.1994,160:57-66
    [18]Melamed R, Cao X D,Chen M. Field assessment of lead im-mobilization in a contaminated soil after phosphate application[J].The Science of the Total Environment,2003,305:117-127
    [19]Mitch M L,Nicole S P,Deborah L D,et al.Zinc phytoextraction inThlaspicaerulescens[J].International Journal of Phytoremediation,2001,3:129-144
    [20]Monreal. C. M., Schulten H R. and Kodama H. Age. turnover and molecular diversity of soil organic matter in aggregates of a Gleysol[J].Canadian Journal of. Soil Science.1997,77:379-388
    [21]Paul R,Lucas B,Japenga J,et al.Potentials and drawback of chelate enhanced phytoremediation of soils[J].Environmental Pollution,2002,116:109-121
    [22]Qian J, Shan X-Q, Wang Z-J. Distribution and plant availability of heavy metals in different particle-size fractions of soil[J].The Science of Total Environment,1996,187:131-141
    [23]Reeves P G, Chaney R L.Marginal nutritional status of zinc,iron,and calcium increases cadmium retention in the duodenum and other organs of rats fed rice-based diets[J].Environmental Research, 2004,96:311-322
    [24]Reeves P G, Nielsen E J, Brien-Nimens C, et al.Cadmium bioavailability from edible sun flower kernels:a long-term study with men and women volunteers[J].Environmental Research Section A87,2001:81-91
    [25]Sauve S, Hendershot W, Allen H B. Solid-solution partitioning of metals in contaminated soils: dependent on pH,total metal burden, and organic matter [J].Environment Science Technology,2000a, 34(7),1125-1130
    [26]Schulten H-R,Leinweber P. New insights into organo-mineral particles:composition,properties and models of molecular structure[J].Biology and Fertility of Soils,2000,30:399-432
    [27]Shen Z G,zhao F J,McGrath S P.Uptake and transport of zinc in the hyperaccumulator Thlaspi caerulescens and the nonhyperaccumulator Thlaspiochroleucum[J].Plant Cell and Environment, 1997,20:898-906
    [28]Shi J, Li L Q, Pan G X.Variation of grain Cd and Zn concentrations of 110 hybrid rice cultivars grown in a low-Cd paddy soil[J]. Journal of Environmental Sciences,2009,21(2),1-5
    [29]Simmons R W, Pongsakul P,Chaney R L, et al.The relative exclusion of zinc and iron from rice grain in relation to rice grain cadmium as compared to soybean:Implications for human health [J].Plant and Soil,2003,257:163-70
    [30]Silviera D J, Sommers L E. Extractability of copper, zinc, cadmium, and lead in soils incubated with sewage sludge[J].Journal of Environmental Quality,1977,6:47-52
    [31]Stemmer M, Gerzabek MH, Kandeler E. Organic matter and enzyme activity in particle-size fractions of soils obtained after low-energy sonication[J].Soil Biology Biochemistry,1998,30:9-18
    [32]Stenberg B. Monitoring soil quality of arable land:microbiological indicators [J]. Acta Agricultura Scandinavia Section B,Soil and Plant Science,1999,49(1):1-24
    [33]Stone M.,Gdroppo I.Distribution of lead,copper and zinc in size-fractionated river bed sediment in tow agriculture catchments of southern Ontario,Canada[J].Environmental Pollution.1996,93(3): 353-362
    [34]Tisdall J.M. Oades J.M. Organic matter and water-stable aggregates in soils[J].Soil Science.1982, 33:141-163
    [35]Tripathi R M, Raghunath R, Krishnamurthy T M. Dietary intake of heavy metals in Bombay city, India [J].The Science of the Total Environment.1997,208:149-159
    [36]U.S. Environment Protection Agency.2000.Drinking Water Standards and Health Advisories. List of Substance,EPA 822-B-00-001, summer 2000
    [37]Wang F, Li L Q, Pan G X. Effects of soil organic matter and free iron oxyhydrates on sorption-desorption of Cu2+ by bulk soils and the size fractions of two paddy soils[J].Journal of Environmental Sciences,2009,21:618-624
    [38]Wei Y,Yang Y, Cheng N. Study of thermally immobilized Cu in analogue minerals of contaminated soils [J].Environment Science and Technology,2001,35 (2):416-421
    [39]Wong S C,Li X D,Zhang G, et al.Heavymetals in agricultural soil of the Pearl RiverDelta, South China[J].Environmental Pollution.2002,119:33-44
    [40]World Health Organization. Water, sanitation and health guidelines for drinking water quality: Vol.2.Health criteria and other supporting information [M].2nded.Geneva:WHO,1999:281-283
    [41]Wilck W, Kretaschmar S, Bundt M. Metal content ration in aggregate interiors,exteriors,whole aggregates and bulk of Costa Rican soils[J].Soil Science Society of America Journal,1999,63: 1244-1249
    [42]Zhu Y G, Chen S B, Yang J C. Effects of soil amendments on lead uptake by two vegetable crops from a lead-contaminated soil from Anhui,China [J].Environment International,2004,30:351-356.
    [43]Zwonitzer J C, Pierzynski G M, Ganga M. Effects of phosphorus additions on lead,cadmium,and zinc bioavailabilities in a metal-contaminated soil [J].Water, Air, and Soil Pollution,2003,143: 193-209
    [44]曹仁林,霍文瑞,何宗兰,等.不同改良剂抑制水稻吸收镉的研究—在酸性土壤上[J].农业环境保护,1992,11(5):195-198
    [45]曹仁林,贾晓葵,张建顺.镉污染水稻土防治研究[J].天津农林科技,1999(6):12-17
    [46]陈怀满,郑春荣,涂从,等.中国土壤重金属污染现状与防治对策[J].人类环境杂志,1999,28(2):130-134
    [47]陈世宝,朱永官.不同含磷化合物对中国芥菜(Brassica Oleracea)铅吸收特性的影响[J].环境科学学报,2004,24(4):707-712
    [48]陈涛,吴燕玉,张学询,等.张士灌区镉土改良和水稻镉污染防治研究[J].环境科学,1980,1(5):7-11.
    [49]陈同斌.我国土壤污染现状[J].金属世界.1999,3:10
    [50]陈志良,仇荣亮.重金属污染土壤的修复技术[J].环境保护,2002,29(6):21-23
    [51]成杰民,潘根兴,郑金伟.太湖地区水稻土pH及重金属元素有效态含量变化影响因素初探[J].农业环境保护,2001,20(3):141-144
    [52]成颜君,龚伟群,李恋卿,等.2种杂交水稻对2种不同土壤中Cd吸收与分配的比较[J].农业环境学报,2008,27(5):1895-1900
    [53]邓波儿,刘同仇.不同改良剂降低稻米镉含量的效果[J].华中农业大学学报,1993,12(2):117-121
    [54]邓明,罗春,杨扬,等.汞、镉在城郊农业环境中的行为及影响研究[J].农业环境保护,1989,8(2):20-24
    [55]董慕新,张辉.锌、镉在水稻植株吸收积累中的相互作用[J].植物生理学通讯,1992,28(2):111-113
    [56]付玉华,李艳金.沈阳市郊区蔬菜污染调查[J].农业环境保护,1999,18(1):36-37
    [57]高超,张桃林.太湖地区农田磷素动态及流失风向分析[J].农村生态环境,2000,16(4):24-27
    [58]高粱.土壤污染及其防治措施[J].农业环境保护,1992,11(6):272-273
    [59]关松荫,张德生,张志明.土壤酶及其研究法[M].北京:农业出版社,1986
    [60]龚平,张铁珩,李培军.重金属对土壤微生物的生态效应[J].应用生态学报,1997,8(2):218-224
    [61]龚伟群,李恋卿,潘根兴.杂交水稻对Cd的吸收与籽粒积累-土壤和品种的交互影响[J].环境科学,2006b,27(8):1647-1653
    [62]龚伟群,潘根兴.中国水稻生产中Cd吸收及其健康风险的有关问题[J].科技导报,2006a,24(5):43-47
    [63]顾继光,林秋奇,胡韧,等.土壤-植物系统中重金属污染的治理途径及其研究展望[J].土壤通报,2005,36(1):128-133
    [64]韩润平,陆雍森.用植物消除土壤中的重金属[J].江苏环境科技,2000,13(1):28-29
    [65]何容,杜佳佳,许波峰,等.土壤重金属污染研究概况.山东林业科技,2008,1:85-87
    [66]胡培松.土壤有毒重金属镉毒害及镉低积累型水稻筛选与改良[J].中国稻米,2004,(2):10-12
    [67]华珞,陈承慈,刘全义.土壤污染的治理方法研究[J].农业工程学报,1992,8(增刊):90-99
    [68]黄永源,周秀达,柯世超,等.多种金属污染环境对健康的影响[J].环境与健康杂志,1987,4(2):14-16
    [69]贾学萍.土壤重金属污染的来源及改良措施[J].现代农业科技,2007,9:197-199
    [70]江川,王金英,谢冬容.硒对人体的重要性及水稻硒营养研究[J].福建稻麦科技,2005,23(1):36-38
    [71]蒋定安,成杰民.近十几年来宜兴市水稻土表层土壤pH及B、Cu、Zn、Mn有效态含量的变化[J].南京农业大学学报,1997,20(4):111-113
    [72]蒋冬梅,阿丽娅,王定勇,等.三峡库区居民膳食结构与重金属摄入水平研究[J].生态毒理学报,2007,2(1):83-87
    [73]蒋先军.土壤重金属污染的植物提取修复技术及其应用前景[J].农业环境保护,2000,19(3):179-183
    [74]金亮,李恋卿,潘根兴,等.苏北地区土壤-水稻系统重金属分布及其食物安全风险评价[J].生态与农村环境学报,2007,23(1):33-39
    [75]荆旭慧,李恋卿,潘根兴.不同环境下土壤作物系统中重金属元素迁移分配特点[J].生态环境2007,16(3):812-817
    [76]李东坡,武志杰,陈利军.土壤生物学活性对施入有机肥料的响应--Ⅰ土壤酶活性的响应[J].土壤通报,2003,34(5):463-468
    [77]李恋卿,潘根兴,张平究.太湖地区水稻土颗粒中重金属元素的分布及其对环境变化的响应[J].环境科学学报,2001a,21(5):607-612
    [78]李恋卿,潘根兴,张平究等.植被恢复对退化红壤表层土壤颗粒中有机碳和Pb、Cd分布的影响[J].生态学报,2001b,21(11):1769-1774
    [79]李恋卿,潘根兴,张平究等.太湖地区水稻土表层土壤10年尺度重金属元素积累速率的估计[J].环境科学,2002,23(3):119-123
    [80]李恋卿,张旭辉,潘根兴.退化红壤植被恢复中表层土壤团聚体及其有机碳的分布[J].土壤通报,2000,31(5):193-196
    [81]李天杰,宫世国,肖月芳,等.土壤环境学[M].北京:高等教育出版社,1995,83-86
    [82]李天杰,宁大同,薛纪渝,等.环境地学原理[M].北京:化学工业出版社.2004
    [83]李玉红,宗良纲,等.螯合剂在污染土壤植物修复中的应用[J].土壤与环境,2002,11(3):303-306
    [84]李永华,杨林生,姬艳芳,等.铅锌矿区土壤-植物系统中植物吸收铅的研究[J].环境科学,2008,29(1):196-201
    [85]李正文,张艳玲,潘根兴,等.不同水稻品种籽粒Cd、Cu和Se的含量差异及其人类膳食摄取风险[J].环境科学,2003,24(3):112-115
    [86]廖启林,黄顺生,范迪富,等.微量元素在湖积物、土壤的垂向分布与稻谷中的分配[J].第四纪研究,2005,25(3):331-339
    [87]廖自基.微量元素的环境化学及生物效应[M].北京:中国环境科学出版社,1993,299-302
    [88]柳春红,宋海波.美国食用动物中化学残留物的监控[J].国外医学社会医学分册,2001,18(4):170-172
    [89]刘传德,王强,于波,等.农田土壤重金属污染的特点和治理对策[J].农技服务,2008,25(7):118-119
    [90]刘洪莲,李恋卿,潘根兴.苏南某些水稻土中Cu、Pb、Hg、As的剖面分布及其影响因素[J].农业环境科学学报,2006a,25(5):1221-1227
    [91]刘洪莲,李艳慧,李恋卿,等.太湖地区某地农田土壤及农产品中重金属污染及风险评价[J].安全与环境学报,2006b,6(5):60-63
    [92]刘哲民.宝鸡土壤重金属污染及其防治[J].干旱区资源与环境,2005,19(2):101-104
    [93]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社.2000
    [94]陆正松,赵玲,张硕,等.土壤污染、施肥对稻米和蔬菜品质的影响[J].土壤肥料,2001(4):13-16
    [95]潘根兴,Chang A C,Page A L.土壤-作物系统污染物迁移分配及其食物安全评价模型及其应用.应用生态学报[J],2002,13(7):854-858
    [96]潘根兴,成杰民,高建琴,等.江苏吴县土壤环境中某些重金属元素的变化[J].长江流域资源与环境,2000b,9(1):51-55
    [97]潘根兴.地球表层系统土壤学[M].北京:地质出版社,2000
    [98]潘根兴,高建琴,刘世梁,等.活化率指示苏南土壤环境中重金属污染冲击[J].南京农业大学学报,1999,22(2):46-49
    [99]庞金华.上海粮食中元素的含量及土壤的安全值[J].长江流域资源与环境,1997,6(2):149-154
    [100]闰晓明.污染土壤植物修复技术研究进展[J].中国生态农业学报,2004,12(3):131-133
    [101]史奕,陈欣,沈善敏.土壤团聚体的稳定机制及人类活动的影响[J].应用生态学报,2002,13(11):1491-1494
    [102]孙波.基于空间变异分析的土壤重金属复合污染研究[J].农业环境科学学报,2003,22(2): 248-251
    [103]谭周磁,陈嘉勤,薛海霞.硒(Se)对降低水稻重金属Pb,Cd,Cr污染的研究[J].湖南师范大学自然科学学报,2000,23(3):80-83
    [104]屠乃美,郑华,邹永霞,等.不同改良剂对铅镉污染稻田的改良效应研究[J].农业环境保护,2000,19(6):324-326
    [105]王常任.青岛市农业环境问题对与治理对策的探讨[J].国外农业环境保护,1993(3):32-34
    [106]王芳,李恋卿,潘根兴.黄泥土不同粒径微团聚体cd2+的吸附与解吸研究[J].环境科学,2006,27(3):590-593
    [107]王芳,李恋卿,董长勋,等.黄泥土和乌栅土不同粒径微团聚体对Cu2+的吸附与解吸研究[J].环境化学,2007,26(2):135-140
    [108]王嘉,王来明.污染土壤下的农产品安全与人体健康[J].山东科技大学学报,2005,24(5):117-120
    [109]王凯荣,龚惠群.两种基因型水稻对环境镉吸收与再分配差异性比较研究[J].农业环境保护,1996,15(4):145-176
    [110]王凯荣.我国农田镉污染现状及其治理利用对策[J].农业环境保护,1997,16(6):274-278
    [111]王凯荣,张玉烛,胡荣桂.不同土壤改良剂对降低重金属污染土壤上水稻糙米铅镉含量的作用[J].农业环境科学学报2007,26(2):476-481
    [112]王丽凤,白俊贵,沈阳市蔬菜污染调查及防治途径研究[J].农业环境保护,1994,13(2):84-88
    [113]王叔淳主编.食品卫生检验技术手册[M].3版.北京:化学工业出版社,2002,253-255
    [114]王新.不同作物对重金属复合污染物吸收特征研究[J].农业环境保护,1998,17(5):193-196
    [115]万云兵,仇荣亮.重金属污染土壤中提高植物提取、修复功效的探讨[J].环境污染治理技术与设备,2002,3(4):56-59
    [116]魏丹,杨谦,迟凤琴,等.叶面喷施Se肥对水稻含Se量及产量的影响[J].土壤肥料,2005,(1):39-41
    [117]吴燕玉,陈涛,李书鼎,等.张士灌区镉污染综合防治技术的研究[J].中国环境科学,1985,5(3):1-7
    [118]吴燕玉,周启星,田均良.制定我国土壤环境质量标准(汞、镉、铅和砷)的探讨[J].应用生态学报,1991,2(4):334-339
    [119]肖思思,李恋卿,潘根兴,等.持续淹水和干湿交替预培养对2种水稻土中Cd形态分配及高丹草吸收Cd的影响[J].环境科学,2006.27(2):351-355
    [120]肖鹏飞,李法云,付宝荣,等.土壤重金属污染及其植物修复研究[J].辽宁大学学报,2004,31(3):279-283
    [121]邢新会.环境生物修复技术的研究进展[J].化工进展,2004,23(6):579-584
    [122]熊伟.氢化物-原子荧光法测定土壤中痕量汞[J].光谱学与光谱分析,2001,21(3):382-383
    [123]徐加宽,杨连新,王余龙,等.水稻对有毒重金属元素的吸收与分配机理的研究进展[J].植物学通报,2005,22(5):614-622
    [124]严昶升,周礼恺,张德生.土壤肥力研究法[M].北京:农业出版社,1988
    [125]杨居荣,王素芬,金玉华.我国几种主要土类对重金属污染物的吸附特性[J].农业环境保护,1982,4:8-11
    [126]阎姝,潘根兴,李恋卿.重金属污染降低微生物商并改变PLFA群落结构-苏南某地污染稻田的案例研究[J].生态环境,2008,17(5):1828-1832
    [127]杨志新,刘树庆.重金属Cd、Zn、Pb复合污染对土壤酶活性的影响[J].环境科学学报,2001,21(1):60-63
    [128]张从,夏立江.污染土壤生物修复技术[M].北京:中国环境科学出版社,2000
    [129]张亚丽,沈其荣,姜洋.有机肥料对镉污染土壤的改良效应[J].土壤学报,2001,38(2):212-218
    [130]郑春荣,陈怀满.土壤-水稻体系中污染重金属的迁移及其对水稻的影响[J].环境科学学报,1990,10(2):145-151
    [131]甄燕红,成颜君,潘根兴,等.中国部分市售大米中Cd、Zn、Se的含量及其食物安全评价[J].安全与环境学报,2008,8(1):119-122
    [132]中国农业年鉴编辑委员会,中国农业年鉴[M].中国农业出版社,2001,11
    [133]中华人民共和国卫生部.中国国家标准化委员会.粮食卫生标准GB2715-2005[EB/OL].[2005-01-25].http://ww.xt12365.cn/bz/GB%202715-2005.pdf.
    [134]周根锑,汪雅谷,卢善玲.上海市农畜产品有害物质残留调查[J].上海农业学报,1994,3(4):243-252
    [135]周礼恺.土壤酶的活性[J].土壤学进展,1980,8(4):9-15
    [136]周萍,张旭辉,潘根兴.长期不同施肥对太湖地区黄泥土总有机碳及颗粒态有机碳含量及深度分布的影响[J].植物营养与肥料学报,2006,12(6):765-771
    [137]周启星,吴燕玉,熊先哲.重金属Cd、Zn对水稻的复合污染和生态效应[J].应用生态学报,1994,5(4):438-441
    [138]周锡爵.张士灌区隔污染及其解决和利用的途径.农业环境保护,1987,6(2):17-19
    [139]周以富,董亚英.几种重金属土壤污染及其防治的研究进展[J].环境科学动态,2003,(1):15-17
    [140]周永亮,范浩定,王锡金,等.20年来绍兴土壤肥力的变化及其原因分析[J].浙江农业科学,2004,3:142-145
    [141]朱剑,时南平,王红娟,等.稻米中砷汞铅镉重金属元素含量及分析[J].粮油仓储科技通讯,2009,(1):50-52
    [142]宗良纲,张丽娜,孙静克,等.3种改良剂对不同土壤-水稻系统中Cd行为的影响[J].农业环境科学学报,2006,25(4):834-840

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700