近场非接触水下爆炸舰船新型防护结构抗爆性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以舰船近场非接触水下爆炸防护问题为研究背景,考虑了近场水下爆炸作用于结构过程中冲击波、气泡运动等载荷阶段的影响,分析总结了4种夹层结构在近场非接触水下爆炸载荷作用下的动态响应规律,并将其引入中小型水面舰船舷侧防护设计,对现有防护结构提出改进,为舰船防护设计提供了新思路。
     首先,本文对二战以来的舰船传统防护结构做了介绍和归纳,分别基于平面正冲击波关系、牛顿运动定律和冲击动力学理论,对在舷侧水舱中设置空气隔层结构对冲击波载荷的防护机理、邻近爆炸载荷作用下舷侧防护水舱的动态响应和船底液舱对冲击波载荷的响应进行了总结和修正,分析结果对舰船结构抗爆设计具有一定参考价值。经过分析和总结,认识到传统防护形式对于中小型水面舰船结构防护设计是不可能实现的,必须通过其它途径来改进。
     其次,在水下爆炸流动特性数值模拟研究中,本文基于物态方程和爆炸力学理论,对现有水Gruneisen物态方程参数进行了修正,指出冲击波速度与粒子速度的三次拟合比线性拟合更有效,并对Gruneisen系数对水Hugonoit曲线的影响进行了分析讨论,通过自由场深水球爆问题和气背固支方板水下爆炸动响应问题的数值模拟验证了本文所取修正参数的有效性,新的Gruneisen参数能够更好的反映近场水下爆炸流场的流动特性。
     最后,本文应用多物质耦合有限元法,模拟对比了SPS水下爆炸实验,验证了SPS的抗爆性能。在此基础上,分析比较了质量等效的方孔蜂窝夹层板、波纹夹层板两种格栅式夹层板和厚、薄两种SPS共4种夹层结构在近场非接触水下爆炸载荷作用下的动态响应特性。结果表明,SPS在抗变形能力、吸能特性和保持结构完整性方面均具有优势,是结构性能最优的夹层板。以此为基础,本文将SPS引入中小型水面舰船舷侧防护结构的改进,提出了舰船新型舷侧抗爆防护结构设计。
The primary objective of this thesis is:to research the defensive problem of naval ship under proximity un-contact underwater explosion loading. Considering the effect of both shock and bubble loading, the dynamic response of four different sandwich structures undergo a close-in UNDEX loading are analyzed and some rules are obtained. Based on these researches, some innovation is made to improve the existing shipboard defensive structure design, and the sandwich structure conception is introduced.
     First, this thesis summarizes the major ship defensive types since World War II. Then, theory research on the response of the air interlayer, the defensive water cabin and the fluid cabin in the bottom of ship undergo UNDEX loadings are provided by using plane shock theory, Newton's second law and shock dynamic theory. Some references for the correlative theory research and engineering calculation are provided by the analysis results. Conclusion reveals that for the defensive of medium and small sized ship the traditional design is not available, some other approach must be put forward.
     Then, in order to capture the exact flow behavior, the parameters of Gruneisen equation of state of water are analyzed and some modified parameters which can better capture the propagation of a pressure wave generated by underwater explosion through a fluid medium are proposed. The cubic fit of shock velocity via particle velocity is better than linear fit, and the influence of Gruneisen gamma acts on Hugoniot curve is discussed also. Both infinite field deep water spherical bubble problem and the dynamic characteristic of air-back square steel plate under underwater explosion loading are investigated. The result indicates that the new Gruneisen parameters can exactly capture the flow behavior.
     Finally, the multi-material coupled finite element method is used to simulate the UNDEX experiment of SPS to validate its blast-resistance. Then, four mass equivalent sandwich structures under proximity underwater explosion loading are calculated. The dynamic response of the sandwich having three different types of core topology:continuous elastomer core with different thickness, square honeycomb core and corrugated core are simulated and analyzed. The deflection mechanics and energy absorption characteristics of these sandwich structures are discussed. Results of the study indicate that the steel sandwich plate is an excellent sandwich structure with stronger energy absorption and smaller deflection in all sandwich plates by loading the plates with four different intensities underwater explosion. Based on these results, improvements are advanced to the shipboard defensive of medium and small sized ship.
引文
[1]Best J P. On the Dynamics of the Bubble Created Upon Detonation of a Limpet Mine, DSTO-TR-0439,1996
    [2]Brown A J, Sajdak J. Modeling Longitudinal Damage in Ship Collision, Ship Structure Committee, Report SSC-437/SR-1426
    [3]Chisum J E, Shin Y S. Explosion gas bubbles near simple boundaries[J]. Shock Vibration,1997,4(1):11-25P
    [4]Chisum J E, Shin Y S. Multimaterial Eulerian and Coupled Lagrangian Eulerian Finite Element Analysis of Underwater Shock Problems[D]. Naval Postgraduate School Technical Report NPS-ME-95-001, Monterey, CA,1995
    [5]Costanzo F A, Gordon J D. An Analysis of Bulk Capitation in Deep Water, DTNSRDC, UERD Report, May 1980
    [6]Couch R, Faux D. Simulation of Underwater Explosion Benchmark Experiments with ALE3D. UCRL-JC-123819,1997
    [7]Keith G W. Investigation of Close Proximity Underwater Explosion Effects on a Ship-Like Structure Using the Multi-Material Arbitrary Lagrangian Eulerian Finite Element Method. Master's Thesis[D]. Virginia Polytechnic Institute and State University. 2007
    [8]Marsh. LASL Shock Hugonoit Data. University of California Press, 1980
    [9]Geers T L, Hunter K S. An integrated wave-effects model for an underwater explosion bubble[J]. Journal of the Acoustical Society, America,2002,111 (4),1584-1601P
    [10]Gurtman G A, Kirsch J W, Hastings C R. Analytical Equation of State for Water Compressed to 300 Kbar[J]. Journal of Applied Physics,1971,42(2),851-857P
    [11]Henrych J. The dynamics of explosion and its use[M]. Elsevier: Elsevier scientific publishing company,1979.68-85P
    [12]Miller W E. Simulation of the Underwater Nuclear Explosion and its Effects[D]. Master's Thesis, Naval Postgraduate School, Monterey, CA.1992
    [13]Welch D. The Sandwich Plate System(SPS). Intelligent Engineering (UK) Ltd.2005
    [14]Steinberg D J. Spherical Explosions and the Equation of State of Water[R]. Lawrence Livermore National Laboratory Report UCID-20974.3, February,1987
    [15]Cole P.罗耀杰,韩润泽,官信等译.水中爆炸[M].北京:国防工业出版社,1960
    [16]G. R. Gathers, Selected Topics in Shock Wave Physics and Equation of State Modeling[M], Lawrence Livermore National Laboratory, 1994
    [17]经福谦.实验物态方程导引[M].北京:国防工业出版社,1999
    [18]马晓青.冲击动力学[M].北京:北京理工大学出版社,1992
    [19]孙承纬.应用爆轰物理[M].北京:国防工业出版社,2000
    [20]中国船级社上海规范研究所,钢夹层板材料船舶结构建造指南.中国船级社,2007.4
    [21]赵海鸥.LS-DYNA动力分析指南[M].北京:兵器工业出版社,2003
    [22]朱锡.水面舰艇结构[M].大连:大连海事大学出版社,2000
    [23]杜志鹏,李晓彬,夏利娟.舰船防护水舱在接近爆炸载荷作用下响应的理论研究[J].船舶力学.2007.11(1),119~127页
    [24]樊自建,沈兆武,马宏昊.空气隔层对水中冲击波衰减效果的实验研究[J].中国科学技术大学学报.2007.37(10),1306~1311页
    [25]方斌,朱锡,张振华等.水中爆炸冲击波数值模拟中的参数影响[J]. 哈尔滨工程大学学报,2005,26(4),419~424页
    [26]顾文彬,苏青笠,刘建青.水下平面爆炸冲击作用下空化区域形成及其特征[J].爆破.2004.21(4),8-11页
    [27]李海涛,朱锡,黄晓明.水下爆炸冲击波作用下空化区域形成的特性研究[J].高压物理学报.2008.22(2),181~186页
    [28]李海涛,朱锡,牟金磊.水下近距爆炸作用下弹性钢板处的空化特性研究[J].海军工程大学学报.2008.20(1),21~24页
    [29]刘建湖.舰船非接触水下爆炸动力学理论与应用[D].无锡:中国船舶科学技术研究所,2002
    [30]刘润泉,白雪飞,朱锡.舰船单元结构模型水下接触爆炸破口试验研究[J].海军工程大学学报.2001,13(5),41~46页
    [31]卢天健,何德平,陈长青等.超轻多孔金属材料的多功能特性及应用.[J]力学进展.2006.36(4),517~536页
    [32]卢天健,刘涛,邓子辰.多孔金属材料多功能化设计的若干进展[J].力学与实践.2008.30(1),1-9页
    [33]陆遐龄,梁向前,胡光川等.‘水中爆炸的理论研究与实践[J].爆破.2006,23(2),9-15页
    [34]梅志远,朱锡,张振中.舰船装甲防护的研究与进展[J].武汉造船.2000.5,5-12页
    [35]彭兴宁,聂武,严波.爆炸载荷作用下舰船防护舱壁的薄膜效应研究[J].船舶力学.2007.11(5),744~749页
    [36]任志刚,楼梦麟,田志敏.聚氨酯泡沫复合夹层板抗爆特性分析[J].同济大学学报.2003.31(1),6-10页
    [37]童宗鹏,汪玉,李玉节等.舰船新型冲击防护层的水下爆炸特性研究[J].船舶力学.2007.11(6),924~932页
    [38]王晓峰,陈鲁英.炸药的水下爆炸威力[J].兵工学报.1995.1,30~37页
    [39]王自力,张延昌.基于夹层板的单壳船体结构耐撞性设计[J].中国造 船.2008.49(1),60~66页
    [40]吴成,金俨,李华新.固支方板对水中爆炸作用的动态响应研究[J].高压物理学报.2003.17(4)275~279页
    [41]吴成,倪艳光,郭磊等.水下爆炸载荷作用下气背固支方板的动态响应分析[J].北京理工大学学报.2007.27(3),205~211页
    [42]肖川,宋浦,梁安定.炸药水中爆炸规律的研究进展[J].火炸药学报,2006,29(6),19~26页
    [43]徐小刚.舰船抗爆抗冲击若干问题研究[D].哈尔滨工程大学.2004
    [44]尹群,陈永念,胡海岩.水下爆炸研究的现状和趋势[J].造船技术.2003.6,6-12页
    [45]张延昌,王自力.蜂窝式夹层板耐撞性能研究[J].江苏科技大学学报.2007.21(3),1-6页
    [46]张跃东,陈斌.爆炸荷载作用下夹层板的动力响应仿真分析[J].采矿技术.2005.5(3),90~94页
    [47]张振华,王乘,黄玉盈.舰船底部液舱结构在水下爆炸作用下的动态响应实验研究[J].爆炸与冲击.2007.27(5),431~438页
    [48]张振华,朱锡,白雪飞.水中爆炸冲击波的数值模拟研究[J].爆炸与冲击.2004.24(2),182~188页
    [49]赵桂平,卢天健.多孔金属夹层板在冲击载荷作用下的动态响应[J].力学学报.2008.40(2),195~206页
    [50]朱锡,张振华,刘润泉.水面舰艇舷侧防雷舱结构模型抗爆试验研究[J].爆炸与冲击.2004.24(2),133~140页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700