用户名: 密码: 验证码:
蛇纹石微粒润滑油添加剂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摩擦、磨损和润滑是目前众多工程领域遇到的最普遍、最重要的问题之一。
     摩擦和磨损损失了世界一次性能源的50%以上,而且磨损是材料和设备报废的三种原因之一。近年来,金属磨损自修复技术以其可以在机械运行过程中,在机械设备不解体的情况下对机械零件磨损区域进行自动补偿,恢复零件原始尺寸和力学性能等优越特性,引起了摩擦学研究领域中众多学者的关注。作为金属磨损自修复添加剂的主要材料,蛇纹石由于具有不与润滑油发生化学反应、不改变润滑油的粘度和性质、使用中无毒副作用、对环境和人体无害、在常温下的化学性质十分稳定等特点,从而成为了金属磨损自修复材料研究的热点。
     本文采用行星球磨机,利用湿法制备了油酸修饰的蛇纹石微粒,经过亲油化度测试分析,得出了制备过程中,修饰剂油酸用量为:油酸与蛇纹石体积比为2时修饰效果最佳,球磨(修饰)效果最佳时间为24h。利用往复式摩擦磨损实验机,在室温下,对蛇纹石微粒含量不同的4012船用润滑油油样,在不同浓度、不同载荷下进行摩擦试验6h。通过对摩擦系数和试样前后质量磨损量的测定,证实了4012船用润滑油在添加了蛇纹石微粒后,具有明显的减摩抗磨效果。在讨论了摩擦系数和质量磨损量与浓度的变化关系后,得出了在以4012船用系统油为基础油时,蛇纹石的最佳质量浓度范围为0.9%-1.0%。对摩擦磨损实验的试样进行了金相显微镜的观察分析并使用电子探针对磨痕进行了测试,判定蛇纹石微粒在摩擦磨损过程中,与试样表面发生了化学或者物理作用,形成一层保护膜附着在试样表面,从而对摩擦副的犁沟磨痕具有填充作用,使得摩擦副表面的粗糙度降低,因此有利于减摩抗磨。根据实验结果以及蛇纹石的微观结构和化学性质,初步推测蛇纹石微粒在润滑过程中减摩抗磨的机理:由于其具有1:1型三八面体层状结构和丰富的活性基团,致使在摩擦磨损过程中形成铺展膜填充在摩擦副之间,对犁沟和微裂纹起到自修复作用,从而减小摩擦系数,起到减摩抗磨作用。
The reason why equipment failure is that wear bring on friction and lubrication is the mostly effective measure that decrease friction and wear. Rational design of lubricating oil can meet the needs of machine and parts about anti-wear and friction reduction. The key of the lubrication effect depends on lubricating additives to a great extent. How to on-line self-repair the early wear and prolong lifetime of machines and equipments has more and more attracted much attention recently. As the main kind of self-repair material, the research of serpentine particle is becoming the focus of tribologic because of its particular microstructure and properties.
     In this thesis, serpentine particles have been prepared by adopting wet method on planetary ball mill. Lipophilic degree tests showed that:as the modification agent, the optimum dosage of oleic acid is when the volume ratio of oleic acid and serpentine particles is 2, and the optimum time of milling (modification) is 24h. Added serpentine particles into 4012 maritime lubricating oil sample, by using reciprocating friction and wear tester, measuring the friction coefficient and the wear loss of test samples, studied its anti-wear and friction reduction properties with different density in different load conditions. The results showed that:4012 maritime lubricating oil with serpentine particles has obvious anti-wear and friction effect. After discussing the relationship of friction coefficient and density, wear loss and density, so as to find out that the optimum dosage range of serpentine particles is 0.9%~1.0%. According to the results of metallurgical microscope observation and electron microprobe analysis, the conclusion can be drawn:during the process of friction and wear, serpentine particles brought on physical or chemical reactions with the surface of test samples, create a layer of protective film, thus this kind of lubricating oil has filling function to the furrow of friction pair surface, so as to decrease the surface roughness, decrease the degree of friction and wear.
引文
[1]戴雄杰主编. 摩擦学基础[M]. 上海:上海科学技术出版社,1984.
    [2]薛景文. 摩擦学及润滑技术[M]. 北京:兵器工业出版社,1992.
    [3]刘维民,薛群基.摩擦学研究及发展趋势[J]. 中国机械工程,2000,11(1)
    [4]叶毅,董浚修.纳米技术用于边界润滑中的探讨[J].合成润滑材料,1998(2):27-32.
    [5]温诗铸,李娜.纳米摩擦学基础研究进展[J].材料研究学报,1997,11(1):1-7.
    [6]温诗铸. 世纪回顾与展望——摩擦学研究的发展趋势[J]. 机械工程学报,2000,36(6):1-5.
    [7]薛群基、刘维民. 摩擦化学的主要研究领域及其发展趋势[J]. 化学进展,1997年第9卷第3期311-317.
    [8]吴晓玲. 我国工业齿轮润滑的问题及对策[J]. 设备润滑液压技术论文集,1997:1721.
    [9]薛群基、党鸿辛. 摩擦学研究的发展概况与趋势[J]. 摩擦学学报,1993, (1) 73-81.
    [10]Jost.H.P. Journal of Janpanese Society of Tribologists.37(1992)2.
    [11]莫易敏、邹岚、赵源等. 磨损自补偿理论设想[J]. 中国机械工程,1998(2):12-14.
    [12]徐滨士、欧忠文、马世宁等.纳米表面工程[J].中国机械工程,2000,11(6):707-711.
    [13]张津、李军、李春天、桑雪梅. 金属摩擦表面耐磨自修复技术的研究[J]. 表面技术,2004,33(5):7-8.
    [14]付尚发. 铜—镀铬摩擦副磨损自补偿添加剂及其摩擦学效应研究. 硕士学位论文,机械电子工业部武汉材保所,2001.
    [15]徐滨士. 表而工程与维修[M]. 北京:机械工业出版社,1996.
    [16]许登君. 世界润滑油发展及其市场展望[J]. 润滑油,2000(6):16.
    [17]张晨辉、林智亮. 设备润滑与润滑油应用[M] 北京:机械工业出版社,1994.
    [18]许斌、冯承明、聂成芳.45"钢渗硼层的脆性对其耐磨性的影响[J].摩擦学学报,1999,19(4):354-357.
    [19]Hu Shubing, Li Zhizhang, Mei Zhi et al. High temperature sliding wear behaviors of ion plating TiN comosite coating with ion nitriding as interlayer on hot work d ie steel. Trans.Nonferrous.Met.Soc.China.2000,10 (6):777-782.
    [20]Chenghui Gao, Dajian Chen, Baiyang Zhou. Nitriding of Hard Fe Electrodeposition and Its Effects on Wear Resistance.J.Mater.Sci.Technology,2001,17 (2):271-274.
    [21]H.Dong and T.Bel. State-of-the-art overview:ion beam surface modification of polymers towards improving tirbological properties. Surface and Coatings Technology,1999,111 (1):
    29-40.
    [22]Ji Hongbing, Xia Lafang, Ma Xinxin et al. Tribological behavior of different films on Ti-6A]-4 V alloy perpared by plas ma-based ion implantation.Trans.Nonferrous Met.Soc. China,2000,10 (4):493-497.
    [23]Ding Jianning, Zhu Shouxing, Fan Zhen et al.Tribological Characteristic of D iamond-like Carbon Films Investigated by Lateral Force Micorscope. Jounral of Wuhan University of Technology. Master.Sci.Ed,2004,19:27-29.
    [24]Wang Jihui, Hua Chen, E.Wiectset al. Comparison of tribological porperties of industrial low friction coatings. Trans. Nonferrous Met. Soc. China,2002,12 (1):78-82.
    [25]A.Erdemir, C.Bindal, G.R.Fenske et al. Characterization of transfer layers forming on surfaces silding against diamond-like carbon. Surface and Coatings Technology,1996,86-87:692-697.
    [26]Wei Zhang, Akibiro Tanaka, Koichiro Wazum. Effect of environment on friction and wear prope rties of diamond-like carbon film. Thin Soild Films,2002,413:104-109.
    [27]Yui chi Aoki, N aoto Ohlake. Tirbological properties of segment-structuredd iamond-like carbon films. Tribology International,2004,37:941-947.
    [28]B.C.Schramm, H.Scheerer, H.Hoche et a.l. Tribological properties and dry machining ch racte istics of PVD-coated carbide inserts.Surface and Coatings Technology, 2004,188-189.
    [29]刘维民.纳米颖粒及其在润滑油脂中的应用.摩擦学学报2003(4):265-267.
    [30]Zhang Zhijun, Zhang Jun, Xue Qunji. The synthesis and characterization of molybdenum disulfide nano cluster.J P hysical Chemistry,1994,99:12973-12977.
    [31]Xue Qunji, Liu Weimin, Zhang Zhijun. Friction and wear properties of a surface-modified TiO2 nano part cle as an additivein liquid paraffin.Wear,1997,213:29-32.
    [32]Zhang Zefu, Iiu Weimin, Xue Qunji. The efect of LaF3 nano cluster modified with Succinimide on the lubricating performance of liquid paraffin steel-on-steel system Tirbology Intenraitonal,2001,34:83-88.
    [33]Chen Shuang, L.iu Weimin. Study on the structure of PbS nanoparticles coated with dialkyldithiophosphate. JmaterRe,,1999,14:2147-2151
    [34]Sun Rong, L.i Mingjing, Gao Yong]ian et al. Study on the cutting properties of water-based emulsified liquid containing OA-TiO2 nanoparticles and teasaponins.T irbology,2002,22(4):254-257.
    [35]刘谦,徐滨士,许一等.纳米铜添加工艺对润滑油摩擦学性能的影响.润滑与密封,2005(3):12-14.
    [36]翁来、杨凯、顾正斌、等. 润滑油添加剂摩擦性能对比试验[J]. 机械设计与研究,1997(2):46-48.
    [37]张建华、赵源、高万振. 磨损自补偿润滑添加剂ZT2的摩擦学特性试验[J]. 机械科学与技术1998,6:164-166.
    [38]张景河 韩长宁. 现代润滑油与燃料添加剂[M]. 北京:中国石化出版社,1991.
    [39]方建锋,柳学全,李红云等.纳米材料在润滑领域中的应用[J].纳米科技与产业,2003(4):63-66.
    [40]Zhou J F, WuZS, Zhang Z J, et al. Tribological behavior and lubricating mechanism of Cu nanopaticles in oil[J]. Tribology Letters,2000 (8):213-218.
    [41]应鹏展,贾良菊,罗勇.纳米颗粒改性PTFE的摩擦学特性研究[J].云南大学学报(自然科学版),2005(3):18-19.
    [42]Hu Z S. Study on antiwear and reducing friction additive of nanometer ferric oxide. Tribology International,1998 (7):350-360.
    [43]曲晓峰,徐元强.纳米材料在汽车发动机机油中的应用[J].车用发动机,2003(4)31-32.
    [44]Hu Z S, Ibng J X, Chen G X. Study on antiwear and reducing friction additive of nanometer ferric oxide [J].Tribology International,1998, (7):355 - 360.
    [45]Qiu S Q, Dong 1 X Chen G X. Tribological properties of CeF3 nanoparticles as additives in lubricating oils [J].VTear,1999 (230):35 - 38.
    [46]Sun L, Zhou J F, Zhang Z J, et al. Synthesis and tribological behavior of surface modified (NH4)3Pmol2O40 nanoparticles [J]. Wear,2004 (256):176 - 181.
    [47]王国佐、王万智. 钢的化学热处理[M]. 北京:中国铁路出版社,1980.
    [48]周培钰.金属自修复材料在铁路内燃机车柴油机上的应用试验[J].铁道机车车辆,2003,23(5): 13-15.
    [49]董伟达.工程机械减摩自修复材料技术[J].机械工程师,2003(3):3-6.
    [50]董伟达.金属自修复材料[J].汽车工艺与材料,2003(5):31-35.
    [51]Jin Yuansheng, Li Shenghua, Zhang Zhengye./n-situ mech-anochemical reconditioning of WOITI ferrous surfaces[J]. Tribology International,2004,37(7):561-567.
    [52]张正业,杨鹤,李生华,等.金属磨损自修复剂在DF型铁路机车柴油机上的应用研究[J].润滑与密封,2004(4):75-76
    [53]欧忠文、徐滨士、马世宁、史佩京,磨损部件自修复原理与纳米润滑材料的自修复设计构思[J],表面技术,2002(12):47-50.
    [54]乔玉林,姜海等.应用纳米材料的新型原位自修复技术[J].工程机械与维修,2002,7:100-101.
    [55]张继辉,陈国需等.纳米锌粉自修复性能的研究[J].合成润滑材料,2004,31 (1):1-3.
    [56]范雄.金属X射线学[M].机械工业出版社,1988:170.
    [57]刘谦,许一,史佩京等.机械零件摩擦磨损表面自修复研究进展[J].中国表面工程.2005,18(5):1-5.
    [58]董伟达.工程机械减摩自修复材料技术[J].工程机械师,2003(3):3-6.
    [59]陈文刚.硅酸盐粉体作为添加剂对金属摩擦副磨损特性影响的研究.硕士学位论文,大连海事大学,2006.
    [60]Wang Feng. Research on microstructure of the auto-restoration layer of worn surface of metals. Materials Science and Engineering,2005, A339:271-275.
    [61]曹娟、张振忠、赵芳霞.超细蛇纹石粉体改善润滑油摩擦磨损性能的研究[J].润滑与密封,2007(12):53-55.
    [62]岳文.陶瓷添加剂对钢/钢接触疲劳及滑动磨损性能的影响及机理研究.硕士学位论文,中国地质大学,2006.
    [63]田斌,王成彪,岳文等.羟基硅酸铝润滑油添加剂对钢/铸铁摩擦副磨损性能的影响[J].润滑与密封,2006, (9):135-140.
    [64]李品.蛇纹石微粉的水热合成及摩擦性能研究.硕士学位论文,中国地质大学,2007.
    [65]陈文刚、高玉周、张会臣.蛇纹石粉体作为自修复添加剂的抗磨损机理[J].摩擦学学报,2008(5):463468.
    [66]孙玉秋、郭小川、蒋明俊.几种层状硅酸盐材料在润滑脂中的摩擦学性能研究[J].重庆科技学院学报(自然科学版),2005(1):55-57.
    [67]高玉周、 张会臣、许晓磊、王亮、陈文刚.硅酸盐粉体作为润滑油添加剂在金属磨损表面成膜机制[J].润滑与密封,2006(10):39-42.
    [68]江绍英主编.蛇纹石矿物学及性能测试[M].北京:地质出版社,1987.
    [69]陈敬中.硅酸盐矿物中准周期非周期结构初步研究[M].武汉:中国地质大学出版社,1997.
    [70]李学军、王丽娟、鲁安怀、王长秋.天然蛇纹石活性机理初探[J].岩石矿物学杂志,2003(4):386-390.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700