生物转鼓净化NO废气及微生物学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮氧化物(NO_x)是导致酸雨、光化学烟雾等一系列严重大气污染的主要污染物之一,随着NO_x污染问题的日趋严重和人们对环境质量要求的不断提高,有关废气脱氮技术的研究已迫在眉睫,而这方面的实用治理技术与基础理论研究(如生物法脱氮)却少有突破。它的发展是继废气脱硫之后所面临的又一亟待解决的重大课题。
     研究采用一种新型的生物过滤器—生物转鼓(Rotating Drum Biofilter,RDB)净化一氧化氮(NO)废气,围绕转动生物膜及络合协同强化NO的去除过程,以传质理论和生化反应动力学为基础,探讨各反应组分在气、液、生物膜三相中的独特传质-反应规律;阐明反硝化(络合协同)去除NO过程中氮素传递、转化等作用机理,建立NO净化过程的物料平衡和动力学模型;运用微生物学和分子生物学技术研究RDB中微生物种群结构和优势菌种。主要内容和结果如下:
     (1)考察了RDB净化NO废气的工艺特征。在250℃-30℃、pH 6.5-7.5、转鼓转速0.5 r/min、空床停留时间(Empty Bed Residence Time,EBRT)86.4 s,进口NO浓度120-584 mg/m~3的条件下,RDB能有效净化NO废气,去除率达60.0%-85.2%。转速影响RDB膜表面更新和液膜厚度,在转速0.5 r/min时NO去除率达最大。在进气负荷小于20 g/m~3·h时,去除负荷随进气负荷增加而线性增加,且去除率在75%以上;随着进气负荷进一步增大,去除负荷上升趋缓并接近极限容量(约27.5 g/m~3·h)。葡萄糖、醋酸钠、甲醇渐次为RDB反硝化NO的合适碳源,由于NO的传质限制,碳源的过量投加并不能有效改善其去除效率。pH=8的弱碱环境有利于系统维持较高的去除效率,在500 mg/m~3的进气浓度下,去除率和负荷分别达75.0%和16.0 g/m~3·h。进气中适量的氧气可以增加NO的氧化度,从而提高NO的气液传质速度和生物净化效率,但过量氧气会破坏RDB的厌氧环境,抑制反硝化菌活性,研究表明此临界值等于6%。温度变化对RBD去除较低浓度NO的影响不大,而随着浓度上升,温度变化的影响加剧,实验表明30℃为最佳反应温度。
     (2)分析了NO在RDB内的转化途径、氮素价态变化和物料平衡。在稳态运行下(130d-40d,NO进气浓度273-378 mg/m~3),出气中N_2和N_2O含量分别达92-131 mg/m~3和9.2 mg/m~3,平均转化率为72.0%和0.5%,而剩余的5%和12%-15%的NO则分别以氧化态形式积累于液相和被微生物同化利用。根据细菌生长总反应方程,对RDB内反硝化过程的氮素计量学进行了推导,发现lmolNO中的氮素可以转化为0.18mol的生物质氮和0.82mol的氮气,这与实验结果基本一致。对RDB内氮素进行了11日物料平衡核算,表明系统内氮素基本守恒,出口氮素质量占进口氮素质量的比例在93.5%-99.6%之间波动。
     (3)开展了络合协同RDB增强NO去除的研究。实验发现,在营养液中添加Fe~(Ⅱ)(EDTA)络合物可显著改善难水溶性NO的气液传质速率,从而提高其去除效率。在转速0.5r/min、EBRT 57.7s、300℃、pH 7.0-8.0的条件下,Fe~(Ⅱ)(EDTA)的逐量增加(0-500 mg/L)可使RDB对380 mg/m~3的NO去除率从61.1%升至99.6%。在此体系下,乙醇优于葡萄糖作为Fe~(Ⅱ)(EDTA)NO反硝化的电子供体,当TOC浓度超过1000 mg/L后,NO的去除率达到稳定。实验最佳pH在8.0左右,最适温度随Fe~(Ⅱ)(EDTA)添加浓度的增加而上升。
     (4)研究了NO在RDB内的传质-反应过程。通过分析NO在气相、液相和生物相的质量平衡,建立了RDB净化NO废气的传质-反应数学模型。该模型可近似描述低浓度(<600 mg/m~3)NO废气在RDB中的浓度分布和去除效率。修正后的方程如下:
     模型预测的结果与实验值基本相符,验证了RDB生物反应器与传统生物反应器相比具有生物量分布均匀、填料不易堵塞等优点。
     (5)探析了RDB内的微生物种群结构。运用PCR-DGGE技术对RDB内的生物多样性进行了解析,共发现16种优势种属,且沿填料径向的种群结构差异性不大;通过样品的聚类分析和多样性指数计算,发现RDB内微生物群落多样性随Fe~(Ⅱ)(EDTA)络合剂的加入呈先增加后下降的趋势,但其在整体演变过程中变化不显著;对DG-DGGE图谱中8个主要条带进行回收、扩增、克隆和测序,结果表明,RDB中微生物群落主要由Clostridium sp.、β-proteobacterium、γ-proteobacterium和Cytopahga-Flexibacte-ria-Bacteroides(CFB) groups Bacteroides组成。反硝化功能与γ-proteobacterium和β-proteobacterium所代表的种属相关。
     (6)分离筛选了1株RDB的好氧反硝化菌DN3,并进行了反硝化性能测试。研究表明,该菌株能较好地反硝化降解硝酸盐,并只产生少量亚硝酸盐。在碳源不足的条件下(C/N=3),DN3对NO_3~--N去除率为72.9%;通过16SrDNA序列分析及同源性比对,DN3与Pseudomonas putida.的相似性为100%。其反硝化最适温度和pH值分别为30℃和7.0,最适宜C/N在5.5-6.0,在该区间内能进行完全的反硝化。
Nitrogen oxides (NO_x) are the hazardous compounds to the environment, which play a key part in the photochemically induced catalytic production of ozone and which also result in nitric acid deposition. The pollution of NO_x has been gaining enormous attention throughout the world, with the increasing emission amount of NO_x to the atmosphere and the increasing demands for the control of environmental quality. Many countries have established stringent regulations on NO_x emissions. Current technologies for NO_x removal from the flue gas have been associated with many problems, such as high cost, produced secondary pollutant and/or low removal efficiency. On the other hand, the difficulty in the removal of NO from flue gas has increased due to the large emission amount of flue gas and the low solubility of NO, the main component of NO_x in the flue gas. Therefore, the research on NO removal from the flue gas has been becoming a hot issue of air pollution control presently.
     An innovative rotating drum biofilter (RDB) has been developed and applied as an effective technique for NO removal in the investigation. The aims of the work are to demonstrate its feasibility and optimize the treatment of NO in RDB utility. The effect of operating parameters such as inlet pollutant loading, temperature and pH, et al., on bioreactor performance has been studied in the RDB packed with an open-pore reticulated polyurethane sponge. In the process of nitric oxide (NO) denitrifying removal by the RDB, a dynamic model has been developed and further validated. In order to enhance the understanding of the relationship between the composition of bacterial population and the performance of the RDB, the total microbial population and the population of the denitrifying bacteria in the RDB are characterized by targeting the 16S rRNA and DGGE. The aims of this work are to provide both a new method and some fundamental data for NO removal from the flue gas. The main experimental results are asfollows:
     1) The experimental results indicated that, under the conditions of temperature of 25℃-30℃, pH at 6.5 to 7.5, rotating speed of 0.5 r/min, empty bed residence time (EBRT) of 86.4 s, nutrient solution amount of 5 L and fresh nutrient solution of 0.2 L/d, it took about 30 days for the biofilm to become mature. In the five months' stable operation, while the inlet NO concentration was 120-584mg/m~3, the removal efficiency (RE) and elimination capacity (EC) were maintained at 60%-85.2% and 5-18g/m~3·h, and the average were 68.7% and 11.6 g/m~3·h, respectively. Drum rotating speed influenced the surface renewal and the liquid film thickness. NO RE reached the maximum when the rotating speed was 0.5r/min. The different carbon source on RDB performance was investigated and glucose was the best carbon source for NO RE. Excessive carbon source could not improve RE, but the expense would rise. EBRT was a key factor for influencing the denitrification process. Moreover, the RE increased as the O_2 concentration went up. At a lower range of NO concentrations (<100 mg/m~3), the temperature had no visible effects on the removal efficiency, whereas if NO concentrations got higher than 150mg/m~3, a non-negligible enhancement of NO removal was found when the temperature was gradually rising from 25℃to 30℃. Furthermore, the results approved that the RDB had more advantages over traditional bioreactors in terms of low mass transfer resistance, high effective utility of packing materials, high even distribution of biomass, and no biomass clogging of packing materials.
     2) The transfer paths of NO in the RDB included chemical oxidization and biotransformation. The investigation focused on the changes of nitrogen valence state and analyzed the nitrogen balance of RDB. The results showed that between the stable operational periods from 130d-140d, the outlet concentration of intermediate (N_2O) was 9.2mg/m~3, the average conversion from NO was 0.5%. The outlet concentration of final product (N_2) was between 92-131 mg/m~3 and the average conversion was 72%. About 5% of inlet NO was accumulated in the liquid, and 12%-15% of NO was assimilated as nitrogen source by bacterium. Based on the above experimental data, the investigation analyzed the N balance of continues 11d operation of RDB. The results showed that the whole N mass balanced basically, and the ratio of N mass between outlet and inlet was 93.5%-99.6%.
     3) Due to the low solubility of nitric oxide (NO) in the liquid phase, improving gas-liquid mass transfer rate of NO was the key step in the whole process of NO denitrifying removal in the RDB. Therefore, the investigation on the addition of Fe~(Ⅱ)(EDTA) into the nutrient solution in the RDB was carried out. With the combination of NO and EDTA, NO dissolved in the liquid quickly. Under the experimental conditions of rotational speed at 0.5r/min, EBRT of 57.7s, temperature at 30℃、pH 7-8, with the increasing of the concentration of Fe~(Ⅱ)(EDTA) from 0 mg/L to 500mg/L, the average NO RE increased from 61.11% to 94.67%. The effects of other experimental conditions such as carbon source, temperature and pH were investigated. As a result, ethanol was better than glucose as the external carbon source on NO removal. As TOC was higher than 1000mg/L, NO RE reached stable. The optimal operating pH was 8, while the optimal temperature was rising with the increase of the concentration of Fe~(Ⅱ)(EDTA).
     4) To illustrate the process of NO denitrifying removal by the RDB, a dynamic model has been developed and further validated. The model analyzed the mass transfer reaction process of NO in the RDB, focusing on the concentration distribution of NO in the gas, liquid, and biofilm phases, which was obtained by the mass component profile of NO at the gas-liquid interface combined with a Monod kinetic equation. The NO distribution equation on the biofilm carrier was thereby obtained, as well as a dynamic model for NO elimination in the test system. Additionally, operating parameters such as inlet NO concentrations and empty-bed residence time (EBRT) were evaluated through a sensitivity analysis for theoretically investigating their respective effects on NO removal efficiency. The model was therefore modified in consideration of the chemical absorption of NO by nutrition liquid in the bottom of RDB. The results demonstrated that the simulated data agreed well with the experimental data. The model made it possible to simultaneously obtain a relatively high NO removal efficiency in RDBs and to minimize the operating cost.
     5) A Denaturing Gradient Gel Electrophoresis of polymerase chain reaction-amplified genes coding for 16S rRNA was used to analyze and determine the changes in bacterial communities in the RDB. The results showed that there was a slight change in the microbial diversity after the addition of Cu~(Ⅱ)(EDTA) to the nutrient solution, which led to an increase in NO removal efficiency. Eight major bands of 16S rRNA gene fragments obtained from the DGGE gels of biofilm samples were further purified, reamplified, cloned and sequenced. The phylogenetic analysis identified sixteen types of microorganisms in the RDB. The sequences of these fragments were compared with those listed in the database of the GeneBank (National Center for Biotechnology Information). The gene analysis of 16S rRNA showed that the major populations were Clostridium sp.,β-proteobacterium,γ-proteobacterium and Cytophaga-Flexibacteria-Bacteroides (CFB) groups. In addition, it was concluded that denitrification was caused by the organism with DNA represented by bands labelled G-5, G-6 and G-8. G-5 was related to aγ-proteobacterium, while those labelled G-6 and G-8 were related to aβ-proteobacterium.
     6) A bacterial strain DN3 screened from the RDB was found capable of aerobic denitrification and the denitrifying capability of strain was studied in batch culture under aerobic condition. When the concentration of carbon source was not abundant(C/N=3), the nitrite accumulation and the removal rate of nitrate by strain DN3 were 41.17% and 72.91%. Phylogenetic analysis based on partial 16S rDNA and performed by MEGA showed that DN3 had 100% sequence similarity with Pseudomonas putida. The results indicated that the suitable temperature and pH value for aerobic denitrification were 30℃and 7.0, respectively. The denitrification performance of strain DN3 was almost not affected by the presence of oxygen and the strain DN3 had a high tolerance of dissolved oxygen concentration. The optimal C/N ratio was 5.5-6.0 and nearly complete denitrificaion could be obtained.
引文
[1] Richter, A., Burrows J.P., Nuss H., Granier C., and Niemeier U., Increase in tropospheric nitrogen dioxide over China observed from space. Nature, 2005.437(7055): 129-132.
    [2] 郝吉明,田贺忠,中国氮氧化物排放现状、趋势及控制对策,2006,http://www.dsdne.org.cn/html/jishuwenzhang/2006/0809/848.html.
    [3] 浙江省环境保护局,浙江省环境状况公报,2006.
    [4] 郝吉明,马广大,大气污染控制工程(第2版),2002,北京:高等教育出版社.
    [5] Wrage, N., Velthof G.L., van Beusichem M.L., and Oenema O., Role of nitrifier denitrification in the production of nitrous oxide. Soil Biology and Biochemistry,2001. 33(12-13):1723-1732.
    [6] 吴忠标,大气污染控制工程,2002,北京:科学出版社.
    [7] Rasmussen, R.A. and Khalil M.A.K., Atmospheric Trace Gases - Trends and Distributions over the Last Decade. Science, 1986.232(4758): 1623-1624.
    [8] 程琰,湿法吸收法同时烟气脱硫脱氮技术进展,化工环保,2006.26(3):209-212.
    [9] 高润良,王睿,氮氧化物污染防治技术进展,环境保护科学,2002.28(112):1-3.
    [10] 孙德荣,吴星五,我国氮氧化物烟气治理技术现状及发展趋势,云南环境科学,2006.22(3):47-50.
    [11] Jirat, J., Stepanek R, Marek M., and Kubicek M., Comparison of design and operation strategies for temperature control during selective catalytic reduction of NO_x. Chemical Engineering & Technology, 2001. 24(1):35-40.
    [12] Maisuls, S.E., Seshan K., Feast S., and Lercher J.A., Selective catalytic reduction of NO_x to nitrogen over Co-Pt/ZSM-5 - Part A. Characterization and kinetic studies. Applied Catalysis B-Environmental, 2001. 29(1):69-81.
    [13] Jin, Y.M., Veiga M.C., and Kennes C, Bioprocesses for the removal of nitrogen oxides from polluted air. Journal of Chemical Technology and Biotechnology,2005. 80(5):483-494.
    [14] Bradford, M., Grover R., and Paul P., Environmental protection - controlling NO_x emissions Part 2. Chemical Engineering Progress, 2002. 98(4):38-42.
    [15] Bradford, M., Grover R., and Paul P., Environmental protection -controlling NO_x emissions part 1. Chemical Engineering Progress, 2002. 98(3):42-46.
    [16] van der Maas, P., van den Brink P., Utomo S., Klapwijk B., and Lens P., NO removal in continuous BioDeNO_x reactors: Fe(Ⅱ)EDTA regeneration, biomass growth, and EDTA degradation. Biotechnology and Bioengineering, 2006. 94(6):575-584.
    [17] van der Maas, P., van den Bosch P., Klapwijk B., and Lens P., NO removal from flue gas by an integrated physicochemical absorption and biological denitrification process. Biotechnology and Bioengineering, 2005. 90(4):433-441.
    [18] Li, W., Wu C.Z., Zhang S.H., Shao K., and Shi Y., Evaluation of microbial reduction of Fe(Ⅲ)EDTA in a chemical absorption-biological reduction integrated NO_x removal system. Environmental Science & Technology, 2007. 41(2):639-644.
    [19] Li, W., Wu C.Z., and Shi Y., Metal chelate absorption coupled with microbial reduction for the removal of NO_x from flue gas. Journal of Chemical Technology and Biotechnology, 2006. 81:306-311.
    [1] Mass, P., Chemically enhanced biological NO_x removal from flue gases-Nitric oxide and ferric EDTA reduction in BioDeNO_x reactors, in Environmental engineering. 2005, Wageningen University: Wageningen.
    [2] Fritz, A. and Pitchon V., The current state of research on automotive lean NO_x catalysis. Applied Catalysis B-Environmental, 1997.13(1): 1-25.
    [3] 李晓东,杨卓如,国外氮源化合物气体治理的研究进展.环境工程,1996.14(2):34-39.
    [4] Rasmussen, R.A. and Khalil M.A.K., Atmospheric Trace Gases - Trends and Distributions over the Last Decade. Science, 1986. 232(4758): 1623-1624.
    [5] Richter, A., Burrows J.P., Nuss H., Granier C., and Niemeier U., Increase in tropospheric nitrogen dioxide over China observed from space. Nature, 2005. 437(7055): 129-132.
    [6] 郝吉明,马广大,大气污染控制(第二版).2002,北京:高等教育出版社.
    [7] 浙江省环境保护局,浙江省环境状况公报.2006.
    [8]. 何息忠,氮氧化物危害及其防治措施初探.云南环境科学,1996.15(2):38-40.
    [9] Stepanov, A.L. and Korpela T.K., Microbial basis for the biotechnological removal of nitrogen oxides from flue gases. Biotechnology and Applied Biochemistry, 1997. 25:97-104.
    [10] Jin, Y.M., Veiga M.C., and Kennes C., Bioprocesses for the removal of nitrogen oxides from polluted air. Journal of Chemical Technology and Biotechnology, 2005. 80(5):483-494.
    [11] Segschneider, H.J., Effects of Atmospheric Nitrogen-Oxides (NO_x) on Plant-Metabolism - a Review. Angewandte Botanik, 1995. 69(1-2):60-85.
    [12] James, S.L., The Effector Function of Nitrogen-Oxides in Host Defense against Parasites. Experimental Parasitology, 1991. 73(2):223-226.
    [13] Barton, P.K. and Atwater J.W., Nitrous oxide emissions and the anthropogenic nitrogen in wastewater and solid waste. Journal of Environmental Engineering-Asce, 2002.128(2): 137-150.
    [14] 陈英旭,环境学.2007,北京:中国环境科学出版社.
    [15] 霍光云,燃烧与传热工程计算图表.1982,天津:天津科学技术出版社.
    [16] 化工第四设计院,深冷手册,上册.1970,北京:燃料化学工业出版社.
    [17] 梁英教,车荫昌,无机热力学数据手册.1993,沈阳:东北大学出版社.
    [18] Awad, H.H. and Stanbury D.M., Autoxidation of No in Aqueous-Solution. International Journal of Chemical Kinetics, 1993. 25(5):375-381.
    [19] Pires, M., Rossi M.J., and Ross D.S., Kinetic and Mechanistic Aspects of the No Oxidation by O_2 in Aqueous-Phase (Vol 26, Pg 12, 1994). International Journal of Chemical Kinetics, 1995. 27(3):309-309.
    [20] Wrage, N., Velthof G.L., van Beusichem M.L., and Oenema O., Role of nitrifier denitrification in the production of nitrous oxide. Soil Biology and Biochemistry, 2001.33(12-13):1723-1732.
    [21] 吴忠标,大气污染控制工程.2002,北京:科学出版社.
    [22] Princiotta, F.T., Stationary source NO_x control technology overview. Proceedings of the US-Dutch International Symposium on Nitrogen Oxides. 1982, Maastricht, The Netherlands: Elsevier.
    [23] 易红宏,宁平,陈亚雄,氮氧化物废气的治理技术.环境科学动态,1998.4:17-20.
    [24] Martin, Q., Kim D.J., and Jan E.J., Influence of mixing on the SNCR process. Chemical Engineering Science, 1997. 52(15):2511-2525.
    [25]. 刘今,发电厂烟气脱硝技术-SCR法.江苏电机工程,1996.15(1):51-55.
    [26]. 邓雅莉,中国燃煤电厂SCR技术的应用现状和发展.工业安全与环保,2008.34(2):15-16.
    [27] 滕加伟,宋庆英,催化法脱除NO,的研究进展.环境污染治理技术与设备,2000.1(1):38-45.
    [28] 荆国华,Fe(Ⅱ)EDTA络合吸收结合生物转化脱除NO研究,环境工程.2004,浙江大学:杭州.
    [29]. 叶代启,烟气中氮氧化物污染的治理.环境保护科学,1999.26(4):1-4.
    [30] Radojevic, M., Reduction of nitrogen oxides in flue gases. Environmental Pollution, 1998.102(81):685-689.
    [31] 严艳丽,魏玺群,NO_x的脱除及回收技术.低温与特气,2000.28(4):24-30.
    [32] Masuda, S. and Nakao H., Control of NO_x by Positive and Negative Pulsed Corona Discharges. Ieee Transactions on Industry Applications, 1990. 26(2):374-383.
    [33] Moo, B.C., Kushner M.J., and Rood M.J., Gas-Phase Removal of No from Gas Streams Via Dielectric Barrier Discharges. Environmental Science & Technology, 1992. 26(4):777-781.
    [34] Penetrante, B.M., Hsiao M.C., Merritt B.T., Vogtlin G.E., and Wallman P.H., Techniques for Nonthermal Plasma Processing of No in N-2. Ieee Transactions on Plasma Science, 1995. 23(4):679-687.
    [35] McLarnon, C.R. and Mathur V.K., Nitrogen oxide decomposition by barrier discharge. Industrial & Engineering Chemistry Research, 2000.39(8):2779-2787.
    [36] Mok, Y.S., Kim J.H., Nam I.S., and Ham S.W., Removal of NO and formation of byproducts in a positive-pulsed corona discharge reactor. Industrial & Engineering Chemistry Research, 2000. 39(10):3938-3944.
    [37] Huang, L., Nakajo K., Ozawa S., and Matsuda H., Decomposition of dichloromethane in a wire-in-tube pulsed corona reactor. Environmental Science & Technology, 2001. 35(6): 1276-1281.
    [38] 黄立维,谭天恩,脉冲电晕法治理甲苯废气实验研究.中国环境科学,1997.17(5):449-453.
    [39] 晏乃强,杨虹,吴祖成,放电等离子体降解三氯乙烯.环境科学,2001.22(3):11-14.
    [40] Friedel, P. and Gourrier S., Review of Oxidation Processes in Plasmas. Journal of Physics and Chemistry of Solids, 1983. 44(5):353-364.
    [41] Onda, K., Kusunoki H., Ito K., Ibaraki H., and Araki T., Numerical simulation of de-NO_x performance by repetitive pulsed discharge when added with hydrocarbons such as ethylene. Journal of Applied Physics, 2005. 97(2).
    [42] Orlandini, I. and Riedel U., Oxidation of propene and the formation of methyl nitrate in non-thermal plasma discharges. Catalysis Today, 2004. 89(1-2):83-88.
    [43] Kirkpatrick, M.J., Finney W.C., and Locke B.R., Plasma-catalyst interactions in the treatment of volatile organic compounds and NO_x with pulsed corona discharge and reticulated vitreous carbon Pt/Rh-coated electrodes. Catalysis Today, 2004. 89(1-2): 117-126.
    [44] Mok, Y.S. and Ham S.W., Conversion of NO to NO_2 in air by a pulsed corona discharge process. Chemical Engineering Science, 1998. 53(9): 1667-1678.
    [45] 黄立维,松田仁树,电晕-吸收法治理NO_x废气技术.化工学报,2004.55:980-984.
    [46] Hua, N.P., Wu Z.Y., Du Y.K., Zou Z.G., and Yang P., Titanium dioxide nanoparticles codoped with Pt and N for photodegradation of CI3CCOOH. Acta Physico-Chimica Sinica, 2005. 21(10):1081-1085.
    [47] Sharma, M.V.P., Kumari, V.D., and Subrahmanyam,A., Photocatalytic degradation of isoproturon herbicide over TiO2/Al-MCM-41 composite systems using solar light Chemosphere, 2008. 72(4):644-651.
    [48] Pelentridou, K., Stathatos E., Karasali H., Dionysiou D.D., and Lianos P., Photocatalytic degradation of a water soluble herbicide by pure and noble metal deposited TiO2 nanocrystalline films. International Journal of Photoenergy, 2008.
    [49] Kowalska, E., Remita H., Colbeau-Justin C., Hupka J., and Belloni J., Modification of titanium dioxide with platinum ions and clusters: Application in photocatalysis. Journal of Physical Chemistry C, 2008.112(4):1124-1131.
    [50] Liu, B.S., Wen L.P., and Zhao X.J., The study of photocatalysis under ultraviolet plus visible two-beam light irradiation using undoped nano-titanium dioxide.Materials Chemistry and Physics, 2008.112(1):35-40.
    [51] Komazaki, Y., Shimizu H., and Tanaka S., A new measurement method for nitrogen oxides in the air using an annular diffusion scrubber coated with titanium dioxide. Atmospheric Environment, 1999. 33(27):4363-4371.
    [52] Hashimoto, K., Wasada K., Toukai N., Kominami H., and Kera Y., Photocatalytic oxidation of nitrogen monoxide over titanium(Ⅳ) oxide nanocrystals large size areas.Journal of Photochemistry and Photobiology a-Chemistry, 2000.136(1-2):103-109.
    [53] Nakamura, I., Negishi N., Kutsuna S., Ihara T., Sugihara S., and Takeuchi E., Role of oxygen vacancy in the plasma-treated TiO2 photocatalyst with visible light activity for NO removal. Journal of Molecular Catalysis a-Chemical, 2000.161(1-2):205-212.
    [54] Hashimoto, K., Wasada K., Osaki M., Shono E., Adachi K., Toukai N., Kominami H., and Kera Y, Photocatalytic oxidation of nitrogen oxide over titania-zeolite composite catalyst to remove nitrogen oxides in the atmosphere. Applied Catalysis B-Environmental, 2001.30(3-4):429-436.
    [55] Ibusuki, T. and Takeuchi K., Removal of Low Concentration Nitrogen-Oxides through Photoassisted Heterogeneous Catalysis. Journal of Molecular Catalysis, 1994.88(1):93-102.
    [56] Chen, S.F. and Wang C.W., Effects of deposition temperature on the conduction mechanisms and reliability of radio frequency sputtered TiO_2 thin films. Journal of Vacuum Science & Technology B, 2002. 20(1):263-270.
    [57] Matsuda, S., Hatano H., and Tsutsumi A., Ultrafine particle fluidization and its application to photocatalytic NO_x treatment. Chemical Engineering Journal, 2001.82(1-3):183-188.
    [58] Cant, N.W. and Cole J.R., Photocatalysis of the Reaction between Ammonia and Nitric-Oxide on Tio_2 Surfaces. Journal of Catalysis, 1992.134(1):317-330.
    [59] Zhang, S.C., Fujii N., and Nosaka Y., The dispersion effect of TiO2 loaded over ZSM-5 zeolite. Journal of Molecular Catalysis a-Chemical, 1998.129(2-3):219-224.
    [60] Tang, Y.C., Huang X.H., Yu H.Q., and Hu C., Effect of ammonia thermal treatment on the structure and activity of titanium oxide photocatalysts. Chinese Journal of Chemical Physics, 2006.19(4):355-361.
    [61] Lim, T.H., Jeong S.M., Kim S.D., and Gyenis J., Photocatalytic decomposition of NO by TiO2 particles. Journal of Photochemistry and Photobiology a-Chemistry, 2000.134(3):209-217.
    [62] Chien, T.W. and Chu H., Removal of SO_2 and NO from flue gas by wet scrubbing using an aqueous NaClO_2 solution. Journal of Hazardous Materials, 2000. 80(1-3):43-57.
    [63] Brink, R.W., Booneveld S., Pels J.R., Bakker D.F., and Verhaak M., Catalytic removal of N_2O in model flue gases of a nitric acid plant using a promoted Fe zeolite. Applied Catalysis B-Environmental, 2001. 32(1-2):73-81.
    [64] Thomas, D. and Vanderschuren J., Removal of tetravalent NO_x from flue gases using solutions containing hydrogen peroxide. Chemical Engineering & Technology, 1998.21(12):975-981.
    [65] 王军民,骆广生,NO_x对大气的污染与燃油的脱氮技术.环境保护科学,1997.1:12-14.
    [66] Izquierdo, M.T. and Rubio B., Influence of char physicochemical features on the flue gas nitric oxide reduction with chars. Environmental Science & Technology, 1998. 32(24):4017-4022.
    [67] Xia, B., Phillips J., Chen C.K., Radovic L.R., Silva I.F., and Menendez J.A., Impact of pretreatments on the selectivity of carbon for NO_x adsorption/reduction. Energy & Fuels, 1999.13(4):903-906.
    [68] Bradford, M., Grover R., and Paul P., Environmental protection - controlling NO_x emissions Part 2. Chemical Engineering Progress, 2002. 98(4):38-42.
    [69] Bradford, M., Grover R., and Paul P., Environmental protection -controlling NO_x emissions part 1. Chemical Engineering Progress, 2002. 98(3):42-46.
    [70] Deshusses, M.A., Hamer G., and Dunn I.J., Behavior of biofilters for waste air biotreatment. 2. Experimental evaluation of a dynamic model. Environmental Science and Technology, 1995. 29(4):1059-1068.
    [71] Devinny, J.S., Deshusses M.A., and Webster T.S., Biofiltration for Air Pollution Control. 1999, New York: Lewis, Boca Raton.
    [72] Devinny, J.S. and Ramesh J., A phenomenological review of biofilter models. Chemical Engineering Journal, 2005.113(2-3): 187-196.
    [73] 羌宁,气态污染物的生物净化技术及应用.环境科学,1996.17(3):87-90.
    [74] Schmidt, I., Sliekers O., Schmid M., Bock E., Fuerst J., Kuenen J.G., Jetten M.S.M., and Strous M., New concepts of microbial treatment processes for the nitrogen removal in wastewater. Fems Microbiology Reviews, 2003.27(4):481-492.
    [75] Van der Maas, P., Chemically enhanced biological NO_x removal from flue gases, in chemical engineering. 2005, Wageningen University: Wageningen, the Netherlands.
    [76]. 王丽丽,赵林,谭欣,不同碳源及其碳氮比对反硝化过程的影响.环境保护学,2004.30(121):15-18.
    [77] 鲍鹰,相建海,硝化细菌的纯菌株和野生菌株在生物膜构建中作用的初步研究.海洋科学,2000.24(11):3.5.
    [78] Sorial, G.A., Smith F.L., Suidan M.T., Biswas P., and Brenner R.C., Evaluation of Trickle-Bed Biofilter Media for Toluene Removal. Journal of the Air & Waste Management Association, 1995. 45(10):801-810.
    [79] Chen, J.M., Chen J., Hershman L., Wang J.D., and Chang D.P.Y., Autotrophic biofilters for oxidation of nitric oxide. Chinese Journal of Chemical Engineering, 2004.12(1):113-117.
    [80] 蒋文举,毕列锋,李旭东,生物法废气脱硝研究.环境科学,1999.3:34-37.
    [81] 郭斌,马一太,任爱玲,生物法净化含NO尾气的研究.环境工程,2003.21(2):37-41.
    [82] 樊凌雯,冯安吉,应用生物技术净化硝酸尾气小试.应用与环境生物学报,1999.5:61-63.
    [83] 徐大伟.氮肥生产中硝酸尾气的生物脱氮技术研究.第八届全国大气环境学术会议论文集.2000.昆明.
    [84] Apel, W.A. and Turick C.E., The use of denitrifying bacteria for the removal of nitrogen-oxides from combustion gases. Fuel, 1993. 72:1715-1718.
    [85] 苏毅,张唯,孙佩石,氮氧化物废气的生化处理技术.化工环保,2004.24(增 刊): 154-156.
    [86] du Plessis, C.A., Kinney K.A., Schroeder E.D., Chang D.P.Y., and Scow K.M., Denitrification and nitric oxide reduction in an aerobic toluene-treating biofilter. Biotechnology and Bioengineering, 1998. 58(4):408-415.
    [87] Barnes, J.M., Apel W.A., and Barrett K.B., Removal of Nitrogen-Oxides from Gas Streams Using Biofiltration. Journal of Hazardous Materials, 1995. 41(2-3):315-326.
    [88] Chou, M.S. and Lin J.H., Biotrickling filtration of nitric oxide. Journal of the Air & Waste Management Association, 2000. 50(4):502-508.
    [89] 张华,矿化垃圾生物反应床处理NO废气的工艺与机理研究,同济大学污染控制与资源化研究国家重点实验室.2002,同济大学:上海.
    [90] Davidova, Y.B., Schreder E.D., and Chang D.P.Y. Biofiltration of Nitric oxide. in Proceedings of the 90 AnnualMeting and Exhibition of A &WMA1. 1997. Canada: Toronto,Ontario,.
    [91] Kyung Nan, M., Ergas S.J., and Harrison J.M., Holow Fiber Membrane Bioreactor for Nitric Oxide Removal, Environmental Engineering Science, 2002. 19 (6):575-583.
    [92] Okuno, K., Hirai M., Sugiyama M., Haruta K., and Shoda M., Microbial removal of nitrogen monoxide (NO) under aerobic conditions. Biotechnology Letters, 2000. 22(1):77-79.
    [93] Woertz, J.R., Kinney K.A., and Szaniszlo P.J., A fungal vapor-phase bioreactor for the removal of nitric oxide from waste gas streams. Journal of the Air & Waste Management Association, 2001. 51(6):895-902.
    [94] Min, K.N., Ergas S.J., and Harrison J.M., Hollow-fiber membrane bioreactor for nitric oxide removal. Environmental Engineering Science, 2002.19(6):575-583.
    [95] Nascimento, D., Hudepohl E.D., and Chang D.P.Y. Bio-oxidation of nitric oxide in a nitrifying, aerobic filter. in air & waste management association 93th annual meeting & exhibition. 2000. Salt Lake City, USA.
    [96] Samdam, G., Microbes nosh on NO_x in flue gas. Chemical Engineering, 1993. 100(10):25-26.
    [97] Flanagan, W.P., Apel W.A., Barnes J.M., and Lee B.D., Development of gas phase bioreactors for the removal of nitrogen oxides from synthetic flue gas streams. Fuel, 2002. 81(15):1953-1961.
    [98] Chagnot, E., Taha S., Martin G, and Vicard J.F., Treatment of nitrogen oxides on a percolating biofilter after pre-concentration on activated carbon. Process Biochemistry, 1998. 33(6):617-624.
    [99] Li, W., Wu C.Z., and Shi Y., Metal chelate absorption coupled with microbial reduction for the removal of NO_x from flue gas. Journal of Chemical Technology and Biotechnology, 2006. 81:306-311.
    [100] Li, W., Wu C.Z., Zhang S.H., Shao K., and Shi Y., Evaluation of microbial reduction of Fe(Ⅲ)EDTA in a chemical absorption-biological reduction integrated NO_x removal system. Environmental Science & Technology, 2007. 41(2):639-644.
    [101] van der Maas, P., Loes H., Sander W., Bram K., and Piet L., Denitrification in aqueous FeEDTA solutions. Journal of Chemical Technology and Biotechnology,2004.79:835-841.
    [102] van der Maas, P., Peng S., Klapwijk B., and Lens P., Enzymatic versus Nonenzymatic Conversions during the Reduction of EDTA-Chelated Fe(Ⅲ) in BioDeNO_x Reactors. Environmental Science & Technology, 2005. 39:2616-2623.
    [103] van der Maas, P., van de Sandt T., Klapwijk B., and Lens P., Biological Reduction of Nitric Oxide in Aqueous Fe(II)EDTA Solutions. Biotechnol. Prog., 2003.19:1323-1328.
    [104] van der Maas, P., van den Bosch P., Klapwijk B., and Lens P., NO removal from flue gas by an integrated physicochemical absorption and biological denitrification process. Biotechnology and Bioengineering, 2005. 90(4):433-441
    [105] van der Maas, P., van den Brink P., Utomo S., Klapwijk B., and Lens P., NO removal in continuous BioDeNO_x reactors: Fe(Ⅱ)EDTA regeneration, biomass growth,and EDTA degradation. Biotechnology and Bioengineering, 2006. 94(6):575-584.
    [106] Zhang, S.H., Cai L.L., Mi X.H., Jiang J.L., and Li W., NO_x removal from simulated flue gas by chemical absorption-biological reduction integrated approach in a biofilter. Environmental Science & Technology, 2008. 42(10):3814-3820.
    [107] Zhang, S.H., Li W., Wu C.Z., Chen H., and Shi Y, Reduction of Fe(Ⅱ)EDTA-NO by a newly isolated Pseudomonas sp strain DN-2 in NO_x scrubber solutioa Applied Microbiology and Biotechnology, 2007. 76(5): 1181-1187.
    [108] Zhang, S.H., Mi X.H., Cai L.L., Jiang J.L., and Li W., Evaluation of complexed NO reduction mechanism in a chemical absorption-biological reduction integrated NO_x removal system. Applied Microbiology and Biotechnology, 2008. 79(4):537-544.
    [109] Li, C. and Moe W.M., Assessment of microbial populations in methyl ethyl ketone degrading biofilters by denaturing gradient gel electrophoresis. Applied Microbiology and Biotechnology, 2004. 64(4):568-575.
    [110] 陈建孟,王家德,庄利,生物滴滤池净化二氯甲烷废气的实验研究.环境科学,2002.23(4):9-13.
    [111] Moe, W.M. and Irvine R.L., Polyurethane foam medium for biofiltration. Ⅰ: Characterization. Journal of Environmental Engineering-Asce, 2000.126(9): 815-825.
    [112] Smith, F.L., Sorial G.A., Suidan M.T., Breen A.W., Biswas P., and Brenner R.C., Development of two biomass control strategies for extended, stable operation of highly efficient biofilters with high toluene loadings. Environmental Science & Technology, 1996.30(5): 1744-1751.
    [113] Kim, B., Zhu X., and Suidan M. An innovative biofilter for treating VOCs in air emissions. in Proceedings of the Air and Waste Management Association's 95th annual conference. 2002. Baltimore, USA.
    [114] Yang, C.P., Chen H., Zeng G.M., Qu W., Zhong Y.Y., Zhu X., and Suidan M.T., Modeling biodegradation of toluene in rotating drum biofilter. Water Science and Technology, 2006. 54(9): 137-144.
    [115] Yang, C.P., Chen H., Zeng G.M., Zhu X.Q., and Suidan M.T., Performance of rotating drum biofilter for volatile organic compound removal at high organic loading rates. Journal of Environmental Sciences-China, 2008. 20(3):285-290.
    [116] Yang, C.P., Suidan M.T., Zhu X., and al. e., Comparison of single-layer and multi-layer rotating drum biofilters for VOC removal. Environmental Progress, 2003. 22(2):87-94.
    [117] Yang, C.P., Suidan M.T., Zhu X., and Kim B.J., Biomass accumulation patterns for removing volatile organic compounds in rotating drum biofilters. Water Science and Technology, 2003. 48(8):89-96.
    [118] Yang, C.P., Suidan M.T., Zhu X., and Kim B.J., Comparison of single-layer and multi-layer rotating drum biofilters for VOC removal. Environmental Progress, 2003. 22(2):87-94.
    [119] Yang, C.P., Suidan M.T., Zhu X., and Kim B.J., Removal of a volatile organic compound in a hybrid rotating drum biofilter. Journal of Environmental Engineering, 2004.130(3):282-291.
    [120] Fischer, S.G. and Lerman L.S., Length-independent separation of DNA restriction fragments in two-dimensional gel electrophoresis. Cell, 1979. 16(1):191-200.
    [121] Muyzer, G., Dewaal E.C., and Uitterlinden A.G., Profiling of Complex Microbial-Populations by Denaturing Gradient Gel-Electrophoresis Analysis of Polymerase Chain Reaction-Amplified Genes-Coding for 16s Ribosomal-Rna. Applied and Environmental Microbiology, 1993. 59(3):695-700.
    [122] Curtis, T.P. and Craine N.G., The comparison of the diversity of activated sludge plants. Water Science and Technology, 1998. 37(4-5):71-78.
    [123] Gillan, D.C., Speksnijder A., Zwart G., and De Ridder C., Genetic diversity of the biofilm covering Montacuta ferruginosa (Mollusca, bivalvia) as evaluated by denaturing gradient gel electrophoresis analysis and cloning of PCR-Amplified gene fragments coding for 16S rRNA. Applied and Environmental Microbiology, 1998. 64(9):3464-3472.
    [124] 陈红歌,胡元森,贾新成,垃圾填埋场细菌种群空间分布及组成多样性研究.环境科学学报,2005.25(6):809-815.
    [125] 殷峻,陈英旭,刘和,应用PCR-DGGE技术研究处理含氨废气的生物滤塔中微生物多样性.环境科学,2004.25(6):12-16
    [126] Ward, D.M., Ferris M.J., Nold S.C., and Bateson M.M., A natural view of microbial biodiversity within hot spring cyanobacterial mat communities. Microbiology and Molecular Biology Reviews, 1998. 62(4):1353-1357.
    [127] 刘新春,吴成强,张昱,PCR-DGGE法用于活性污泥系统中微生物群落结构变化的解析.生态学报,2005.25(4):842-847.
    [128] 滕应,骆永明,赵祥伟,重金属复合污染农田土壤DNA的快速提取及PCR-DGGE分析.土壤学报,2004.41(3):343-347.
    [129] Gich,F., Schubert K., Bruns A., Hoffelner H., and Overmann J., Specific detection, isolation, and characterization of selected, previously uncultured members of the freshwater bacterioplankton community. Applied and Environmental Microbiology, 2005. 71(10):5908-5919.
    [130] Nubel, U., Garcia-Pichel F., Kuhl M, and Muyzer G., Quantifying microbial diversity: Morphotypes, 16S rRNA genes, and carotenoids of oxygenic phototrophs in microbial mats. Applied and Environmental Microbiology, 1999. 65(2):422-430.
    [131] Heuer, H. and Smalla K. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) for studying soil microbial communities, in van Elsas J D, Trevors J T, Wellington E M H, eds.Modern Soil Microbiology New York: Marcel Dekker, Inc.
    [132] Donner, G., Schwarz K., Hoppe H.G., and Muyzer G., Profiling the succession of bacterial populations in pelagic chemoclines. Ergebnisse der Limnologie, 1996. 0(48):7-14.
    [133] Santegoeds, C.M., Muyzer G., and de Beer D. Successional processes in a bacterial biofilm determined with microsensors and molecular techniques. in In: Verachtert H, Verstraete W, eds. Proceedings of the International Symposium on Environmental Microbiology, Ostende. 1997. Belgium: Ghent University Publishers.
    [134] Ferris, M.J. and Ward D.M., Seasonal distributions of dominant 16S rRNA-defined populations in a hot spring microbial mat examined by denaturing gradient gel electrophoresis. Applied and Environmental Microbiology, 1997. 63(4): 1375-1381.
    [135] Santegoeds, C.M., Nold S.C., and Ward D.M., Denaturing gradient gel electrophoresis used to monitor the enrichment culture of aerobic chemoorganotrophic bacteria from a hot spring cyanobacterial mat Applied and Environmental Microbiology, 1996. 62(11):3922-3928.
    [136] Felske, A., Rheims H., Wolterink A., Stackebrandt E., and Akkermans A.D.L., Ribosome analysis reveals prominent activity of an uncultured member of the class Actinobacteria in grassland soils. Microbiology-Uk, 1997.143:2983-2989.
    [137] Teske, A., Sigalevich P., Cohen Y., and Muyzer G, Molecular identification of bacteria from a coculture by denaturing gradient gel electrophoresis of 16S ribosomal DNA fragments as a tool for isolation in pure cultures. Applied and Environmental Microbiology, 1996. 62(11):4210-4215.
    [138] Brinkhoff, T. and Muyzer G., Increased species diversity and extended habitat range of sulfur-oxidizing Thiomicrospira spp., Applied and Environmental Microbiology, 1997. 63(10):3789-3796.
    [139] Jaspers, E. and Overmann J., Separation of bacterial cells by isoelectric focusing, a new method for analysis of complex microbial communities. Applied and Environmental Microbiology, 1997. 63(8):3176-3181.
    [140] Jordan, F.L., Cantera J.J.L., Fenn M.E., and Stein L.Y., Autotrophic ammonia-oxidizing bacteria contribute minimally to nitrification in a nitrogen-impacted forested ecosystem. Applied and Environmental Microbiology,2005. 71(1):197-206.
    [141] Cebron, A., Coci M., Gamier J., and Laanbroek H.J., Denaturing gradient gel electrophoretic analysis of ammonia-oxidizing bacterial community structure in the lower Seine River: Impact of Paris wastewater effluents. Applied and Environmental Microbiology, 2004. 70(11):6726-6737.
    [142] Rowan, A.K., Snape J.R., Fearnside D., Barer M.R., Curtis T.P., and Head I.M., Composition and diversity of ammonia-oxidising bacterial communities in wastewater treatment reactors of different designtreating identical wastewater. Fems Microbiology Ecology, 2003. 43(2): 168-175.
    [143] Freitag, T.E. and Prosser J.I., Community structure of ammonia-oxidizing bacteria within anoxic marine sediments. Applied and Environmental Microbiology,2003. 69(3):1359-1371.
    [144] Vallaeys, T., Topp E., Muyzer G., Macheret V., Laguerre G., Rigaud A., and Soulas G., Evaluation of denaturing gradient gel electrophoresis in the detection of 16S rDNA sequence variation in rhizobia and methanotrophs. Fems Microbiology Ecology, 1997.24(3):279-285.
    [145] BuchholzCleven, B.E.E., Rattunde B., and Straub K.L., Screening for genetic diversity of isolates of anaerobic Fe(Ⅱ)-oxidizing bacteria using DGGE and whole-cell hybridization. Systematic and Applied Microbiology, 1997.20(2):301-309.
    [1] 黄建彬,工业气体手册.2002,北京:化学工业出版社.
    [2] 魏复盛,水和废水监测分析方法.1989,北京:中国环境科学出版社(第三版).
    [3] 奕雨时,包永明,生物工程实验技术手册.2005,北京:化学工业出版社.
    [1] Barnes, J.M., Apel W.A., and Barrett K.B., Removal of Nitrogen-Oxides from Gas Streams Using Biofiltration. Journal of Hazardous Materials, 1995. 41(2-3):315-326.
    [2] Flanagan, W.P., Apel W.A., Barnes J.M., and Lee B.D., Development of gas phase bioreactors for the removal of nitrogen oxides from synthetic flue gas streams. Fuel, 2002.81(15):1953-1961.
    [3] du Plessis, C.A., Kinney K.A., Schroeder E.D., Chang D.P.Y., and Scow K.M., Denitrification and nitric oxide reduction in an aerobic toluene-treating biofilter. Biotechnology and Bioengineering, 1998. 58(4):408-415.
    [4] Woertz, J.R., Kinney K.A., and Szaniszlo P.J., A fungal vapor-phase bioreactor for the removal of nitric oxide from waste gas streams. Journal of the Air & Waste Management Association, 2001. 51(6):895-902.
    [5] 苏毅,张唯,孙佩石,氮氧化物废气的生化处理技术.化工环保,2004.24(增刊):154-156.
    [6] 谢维民,张兰河,汪群慧,高效填料塔生物反应器处理制药废水处理厂含硫 废气.环境科学, 2003.24(6):74-78.
    [7] Potivichayanon, S., Pokethitiyook P., and Kruatrachue M., Hydrogen sulfide removal by a novel fixed-film bioscrubber system. Process Biochemistry, 2006. 41:708-715.
    [8] Zarook, S.M., Shaikh A.A., and Ansar Z., Development, experimental validation and dynamic analysis of a general transient biofilter model. Chemical Engineering Science, 1997. 52(5):759-773.
    [9] 石建敏,黄新文,林春绵,无机盐对生物接触氧化处理法的影响.浙江工业大学学报,2003.31(1):97-100.
    [10] 章非娟,杨殿海,傅威,碳源对生物反硝化的影响.工业给排水,1996.22(7):26-28.
    [11] Wrage, N., Velthof G.L., van Beusichem M.L., and Oenema O., Role of nitrifier denitrification in the production of nitrous oxide. Soil Biology and Biochemistry, 2001.33(12-13):1723-1732.
    [12] 吕锡武,李锋,稻森悠平,氨氮废水处理过程中的好氧反硝化研究.给水排水,2000.26(4):17-20.
    [13] Thorn, M. and Sorensson F., Variation of nitrous oxide formation in the denitrification basin in a wastewater treatment plant with nitrogen removal. Water Research, 1996.30(6):1543-1547.
    [14] Korner, H. and Zumft W.G., Expression of Denitrification Enzymes in Response to the Dissolved-Oxygen Level and Respiratory Substrate in Continuous Culture of Pseudomonas-Stutzeri. Applied and Environmental Microbiology, 1989. 55(7): 1670-1676.
    [15] Frette, L., Gejlsbjerg B., and Westermann P., Aerobic denitrifiers isolated from an alternating activated sludge system. Ferns Microbiology Ecology, 1997. 24(4):363-370.
    [16] Apel, W.A. and Turick C.E., The Use of Denitrifying Bacteria for the Removal of Nitrogen-Oxides from Combustion Gases. Fuel, 1993. 72(12):1715-1718.
    [17] Awad, H.H. and Stanbury D.M., Autoxidation of No in Aqueous-Solution. International Journal of Chemical Kinetics, 1993. 25(5):375-381.
    [18] Yang, W.F., Hsing H.J., Yang Y.C., and Shyng J.Y., The effects of selected parameters on the nitric oxide removal by biofilter. Journal of Hazardous Materials,2007.148(3):653-659.
    [19] Alefounder, P.R., Greenfield A.J., and McCarthy J.E.G., Selection and organization of denitrifying electron transfer pathways in Paracoccus denitrificans.Biochim. Biophys. Acta., 1983. 724:20-39.
    [20] Carr, G.J. and Ferguson S.J., The Nitric-Oxide Reductase of Paracoccus- Denitrificans. Biochemical Journal, 1990. 269(2):423-429.
    [21] Berks, B.C., Baratta D., Richardson D.J., and Ferguson S.J., Purification and Characterization of a Nitrous-Oxide Reductase from Thiosphaera-Pantotropha -Implications for the Mechanism of Aerobic Nitrous-Oxide Reduction. European Journal of Biochemistry, 1993. 212(2):467-476.
    [1] Chou, M.S. and Lin J.H., Biotrickling filtration of nitric oxide. Journal of the Air & Waste Management Association, 2000. 50(4):502-508.
    [2] 于清江,王晓玲,NO和NO_2相互转化过程中体积变化的讨论.烟台师范学院学院,1995.15(2):158-160.
    [3] Barton, P.K. and Atwater J.W., Nitrous oxide emissions and the anthropogenic nitrogen in wastewater and solid waste. Journal of Environmental Engineering- Asce, 2002.128(2): 137-150.
    [4] Ottengraf, S.P.P. and Van Den Oever A.H.C., Kinetics of organic compound removal from waste gases with a biological filter. Biotechnology and Bioengineering, 1983. 25(12):3089-3102.
    [5] Jin, Y.M., Veiga M.C., and Kennes C., Bioprocesses for the removal of nitrogen oxides from polluted air. Journal of Chemical Technology and Biotechnology,2005. 80(5):483-494.
    [6] Ferguson, S.J., Denitrification and Its Control. Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology, 1994.66(1-3):89-110.
    [7] Awad, H.H. and Stanbury D.M., Autoxidation of No in Aqueous-Solution. International Journal of Chemical Kinetics, 1993. 25(5):375-381.
    [8] Pires, M., Rossi M.J., and Ross D.S., Kinetic and Mechanistic Aspects of the No Oxidation by O_2 in Aqueous-Phase. International Journal of Chemical Kinetics, 1995.27(3):309-309.
    [9] Tsuneda, S., Mikami M., Kimochi Y., and Hirata A., Effect of salinity on nitrous oxide emission in the biological nitrogen removal process for industrial wastewater. Journal of Hazardous Materials, 2005.119(1-3):93-98.
    [10] Wrage, N., Velthof G.L., van Beusichem M.L., and Oenema O., Role of nitrifier denitrification in the production of nitrous oxide. Soil Biology and Biochemistry, 2001. 33(12-13):1723-1732.
    [11] Murray, R.E. and Knowles R., Production of NO and N2O in the presence and absenceOf C2H2 by soil slurries and batch cultures of denitrifying bacteria. Soil Biology & Biochemistry, 2003. 35(8): 1115-1122.
    [12] Thorn, M. and Sorensson F., Variation of nitrous oxide formation in the denitrification basin in a wastewater treatment plant with nitrogen removal.Water Research, 1996. 30(6): 1543-1547.
    [13] Itokawa, H., Hanaki K., and Matsuo T., Nitrous oxide production in high-loading biological nitrogen removal process under low COD/N ratio condition. Water Research, 2001. 35(3):657-664.
    [14] du Plessis, C.A., Kinney K.A., Schroeder E.D., Chang D.P.Y., and Scow K.M.,Denitrification and nitric oxide reduction in an aerobic toluene-treating biofilter.Biotechnology and Bioengineering, 1998. 58(4):408-415.
    [1] 荆国华,Fe(Ⅱ)EDTA络合吸收结合生物转化脱除NO研究,2004,浙江大学.
    [2] van der Maas, P., Peng S., Klapwijk B., and Lens P., Enzymatic versus Nonenzymatic Conversions during the Reduction of EDTA-Chelated Fe(Ⅲ) in BioDeNO_x Reactors. Environmental Science & Technology, 2005. 39:2616-2623.
    [3] 章非娟,杨殿海,傅威,碳源对生物反硝化的影响.工业给排水,1996.22(7):26-28.
    [4] 李伟,吴成志,马碧瑶,耀施,半胱氨酸亚铁溶液吸收一氧化氮的研究.中国环境科学,2005.25(3):306-309.
    [5] 荆国华,李伟,施耀,周作明,络合吸收脱除NO体系中Fe(EDTA)的生物还原.环境科学,2005.25(6):19-24.
    [6] 荆国华,李伟,施耀,马碧瑶,谭天恩,Fe~(Ⅱ)(EDTA)络合吸收NO体系中吸收液的生物再生.高校化学工程学报,2004.18(3):351-356.
    [7] Zhang, S.H., Cai L.L., Mi X.H., Jiang J.L., and Li W., NO_x removal from simulated flue gas by chemical absorption-biological reduction integrated approach in a biofilter. Environmental Science & Technology, 2008. 42(10):3814-3820.
    [8] 张志,任洪强,张蓉蓉,pH值对好氧颗粒污泥同步硝化反硝化过程的影响.中国环境科学,2005.25(6):650-654.
    [9] 王少坡,彭永臻,王淑莹,不同硝态氮组成下反硝化过程控制参数pH变化规律.高技术通讯,2005.15(8):91-95.
    [10] Fernandez, B.O., Lorkovic I.M., and Ford P.C., Mechanisms of ferriheme reduction by nitric oxide: Nitrite and general base catalysis. Inorganic Chemistry, 2004. 43(17):5393-5402.
    [11] Jin, Y.M., Guo L., Veiga M.C., and Kennes C., Fungal biofiltration of alpha-pinene: Effects of temperature, relative humidity, and transient loads. Biotechnology and Bioengineering, 2007. 96(3):433-443.
    [12] Ottengraf, S.P.P. and Van Den Oever A.H.C., Kinetics of organic compound removal from waste gases with a biological filter. Biotechnology and Bioengineering, 1983.25(12):3089-3102.
    [13] Diks, R.M.M. and Ottengraf S.P.P., Verification Studies of a Simplified Model for the Removal of Dichloromethane from Waste Gases Using a Biological Trickling Filter. 1. Bioprocess Engineering, 1991. 6(3):93-99.
    [14] Diks, R.M.M. and Ottengraf S.P.P., Verification Studies of a Simplified Model for the Removal of Dichloromethane from Waste Gases Using a Biological Trickling Filter .2. Bioprocess Engineering, 1991. 6(4): 131-140.
    [15] Shareefdeen, Z. and Baltzis B.C., Biofiltration of Toluene Vapor under Steady-State and Transient Conditions - Theory and Experimental Results. Chemical Engineering Science, 1995. 50(17):2843-2843.
    [16] Zarook, S.M., Shaikh A.A., and Ansar Z., Development, experimental validation and dynamic analysis of a general transient biofilter model. Chemical Engineering Science, 1997. 52(5):759-773.
    [17] 孙佩石,黄兵,黄岩华,杨萍,生物法净化挥发性有机废气的吸附—生物膜理论模型与模拟研究.环境科学,2002.23(3):56-59.
    [1] Grady,C.P.L.,DaiggerG.T.,and LimH.C., 废水生物处理 2003:化学工业出版社.
    [2] Hunik, J.H., Tramper J., and Wijffels R.H., A strategy to scale up nitrification processes with immobilized cells of Nitrosomonas europaea and Nitrobacter agilis. Bioprocess Engineering, 1994. 11(2):73-82.
    [3] Hunik, J.H., Meijer H.J.G., and Tramper J., Kinetics of Nitrobacter agilis at extreme substrate, product and salt concentrations. Applied Microbiology and Biotechnology, 1993. 40(2-3):442-448.
    [4] Nascimento, D., Hudepohl E.D., and Chang D.P.Y. Bio-oxidation of nitric oxide in a nitrifying, aerobic filter. in air & waste management association 93th annual meeting & exhibition. 2000. Salt Lake City, USA.
    [5] Catton, K., Hershman L., Chang D.P.Y., and Chen J.M. Aerobic removal of NO on carbon foam packings. in Proceedings of the 95th Air and Waste Management Association Annual Conference. 2002. Baltimore, USA.
    [6] Cussler, E.L., Diffusion Mass Transfer in Fluid Systems: Mass Transfer in Fluid Systems. 1997: Cambridge Univ. Pr.
    [7] Astarita, G., Mass transfer with chemical reaction. 1970, New York: Elsevier.
    [8] 吴俊生,分离工程,1992,华东化工学院出版社.
    [9] 基础化学工程编写组,基础化学工程,1978,上海科学出版社.
    [10] E.L.柯斯乐,扩散—流体系统中的传质(第二版),2002,化学工业出版社.
    [11] Deshusses, M.A., Hamer G., and Dunn I.J., Behavior of biofilters for waste air biotreatment. 2. Experimental evaluation of a dynamic model. Environmental Science and Technology, 1995. 29(4): 1059-1068.
    [12] Kharitonov, V.G., Sundquist A.R., and Sharma V.S., Kinetics of Nitric-Oxide Autoxidation in Aqueous-Solutioa Journal of Biological Chemistry, 1994. 269(8):5881-5883.
    [13] Shenoy, V.R. and Joshi J.B., Kinetics of Oxidation of Aqueous Sulfite Solution by Nitric-Oxide. Water Research, 1992. 26(7):997-1003.
    [14] Glasson, W.A. and Tuesday C.S., The atmospheric thermal oxidation of nitric oxide. Journal of American Chemical Society, 1963. 85:2901-2904.
    [15] Dean, J.A., Lange's Handbook Chemistry. 1999, New York: McGraw Hill Inc.
    [16] Baquerizo, G., Maestre J.P., Sakuma T., Deshusses M.A., Gamisans X., Gabriel D., and Lafuente J., A detailed model of a biofilter for ammonia removal: Model parameters analysis and model validation. Chemical Engineering Journal, 2005.113(2-3):205-214.
    [17] Shi, Y., Littlejohn D., Kettler P.B., and Chang S.G., Removal of nitric oxide from flue gas with iron thiochelate aqueous solution in a turbulent contact absorber. Environmental Progress, 1996.15(3):153-158.
    [18] Shi, Y, Littlejohn D., and Chang S.G., Integrated tests for removal of nitric: Oxide with iron thiochelate in wet flue gas desulfurization systems. Environmental Science & Technology, 1996. 30(11):3371-3376.
    [19] Chang, S.C., Litlejihn D., and Lynn S., Effect of metal chelates on wet flue gas scrubbing chemistry. Environmental Science and Technology, 1983. 17(11):649-653.
    [20] Harriott, P., Smith K., and Benson L.B., Simultaneous Removal of No and So2 in Packed Scrubbers or Spray Towers. Environmental Progress, 1993.12(2): 110-113.
    [21] 谭天恩,金一中,骆有寿,传质—反应过程,1990,杭州,浙江大学出版社.
    [22] 化学工程手册编委会,化学工程手册-气体吸收,1989,北京,化学工业出版社.
    [23] Yih, S.M. and Lii C.W., Absorption of NO and SO_2 in Fe(Ⅱ)-EDTA solution.ⅠAbsorption in a double stirred vessle. Chemical Engineering and communication, 1988.73:43-53.
    [24] 荆国华,Fe(Ⅱ)EDTA络合吸收结合生物转化脱除NO研究,2004,浙江大学,杭州.
    [1] Zwart, G., Huismans R., van Agterveld M.P., Van de Peer Y., De Rijk P., Eenhoorn H., Muyzer G., van Hannen E.J., Gons H.J., and Laanbroek H.J., Divergent members of the bacterial division Verrucomicrobiales in a temperate freshwater lake. Ferns Microbiology Ecology, 1998. 25(2):159-169.
    [2] Cremonsei, L., Firpo S., Ferrari M., Righetti P.G, and Gelfi C., Double-gradient DGGE for optimized detection of DNA point mutations. Biotechniques, 1997. 22(2):326-330.
    [3] James, J.B., Sherman T.D., and Devereux R., Analysis of bacterial communities in seagrass bed sediments by double-gradient denaturing gradient gel electrophoresis of PCR-amplified 16S rRNA genes. Microbial Ecology, 2006. 52(4):655-661.
    [4] 宋业颖,赵丽华,邢德峰,利用时间进程法优化活性污泥DG-DGGE图谱.生物技术,2006.16(2):43-45.
    [5] 魏群,分子生物学实验指导.1999,北京,高等教育出版社.
    [6] 付必谦,张蜂,高瑞如,生态学实验原理与方法.2006,北京,科学出版社.
    [7] 赵翔伟,骆永明,腾应,重金属复合污染农田土壤的微生物群落遗传多样性研究.环境科学学报,2005.25(2):186-191.
    [8] 刘新春,吴成强,张昱,PCR-DGGE法用于活性污泥系统中微生物群落结构变化的解析.生态学报,2005.25(4):842-847.
    [9] Mechichi, T., Stackebrandt E., Gad'on N., and Fuchs G., Phylogenetic and metabolic diversity of bacteria degrading aromatic compounds under denitrifying conditions, and description of Thauera phenylacetica sp nov., Thauera aminoaromatica sp nov., and Azoarcus buckelii sp nov. Archives of Microbiology, 2002.178(1):26-35.
    [10] 张华,赵由才,生物法处理氮氧化物废气的原理与技术研究进展.山东建筑工程学院院报,2005.20(3):69-74.
    [11] Remde, A. and Conrad R., Production and Consumption of Nitric-Oxide by Denitrifying Bacteria under Anaerobic and Aerobic Conditions. Fems Microbiology Letters, 1991. 80(2-3):329-332.
    [12] Schuster, M. and Conrad R., Metabolism of Nitric-Oxide and Nitrous-Oxide During Nitrification and Denitrification in Soil at Different Incubation Conditions. Fems Microbiology Ecology, 1992.101(2):133-143.
    [13] Labbe, N., Juteau P., Parent S., and Villemur R., Bacterial diversity in a marine methanol-fed denitrification reactor at the Montreal biodome, Canada. Microbial Ecology, 2003. 46(1):12-21.
    [14] Yoshie, S., Noda N., Miyano T., Tsuneda S., Hirata A., and Inamori Y., Microbial community analysis in the denitrification process of saline-wastewater by denaturing gradient gel electrophoresis of PCR-amplified 16S rDNA and the cultivation method. Journal of Bioscience and Bioengineering, 2001. 92(4):346-353.
    [15] O'Sullivan, L.A., Weightman A.J., and Fry J.C., New degenerate Cytophaga-Flexibacter-Bacteroides-specific 16S ribosomal DNA-targeted oligonucleotide probes reveal high bacterial diversity in River Taff epilithon. Applied and Environmental Microbiology, 2002. 68(1):201-210.
    [16] Zhilina, T.N., Appel R., Probian C., Brossa E.L., Harder J., Widdel E, and Zavarzin G.A., Alkaliflexus imshenetskii gen. nov. sp. nov., a new alkaliphilic gliding carbohydrate-fermenting bacterium with propionate formation from a soda lake. Archives of Microbiology, 2004.182(2-3):244-253.
    [17] Chen, J.S., Toth J., and Kasap M., Nitrogen-fixation genes and nitrogenase activity in Clostridium acetobutylicum and Clostridium beijerinckii. Journal of Industrial Microbiology & Biotechnology, 2001. 27(5):281-286.
    [1] Devereux, R. and Willis S.G., Amplification of ribosomal RNA sequences. 1995, Netherland: Kluwer Academic Publishers.
    [2] Stewart, B., Nitrate respiration in relation to facultative metabolism in enterobacterial. Microbiol, 1988. 52:190-232.
    [3] 周少奇,厌氧氨氧化与反硝化协同作用化学计量学分析.华南理工大学学报, 2006.34(5):1-4.
    [4] Samuelson, M., Dissimilatory nitrate reducation to nitrite, nitrous oxide and ammonium by Pseudomonas putrefaciens. Appl. Environ. Microbiol., 1985. 50(4):812-815.
    [5] 王宏宇,马放,苏俊峰,左薇,张献旭,张佳,好氧反硝化菌株的鉴定及其反硝化特性研究.环境科学,2007.28(7):1548-1552.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700