好氧颗粒污泥中细菌藻酸盐的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以一类细菌胞外多糖物质-细菌藻酸盐为研究对象,对好氧颗粒污泥中的细菌藻酸盐进行了提取和鉴定,采用紫外-可见光谱、红外和拉曼光谱、核磁共振谱、质谱、X衍射、原子力显微镜、钌红染色-扫描电镜和透射电镜观察等先进的现代仪器分析技术,对好氧颗粒污泥细菌藻酸盐提取物的分子结构、特征基团、结晶度、超分子自组装特性等进行了全方位的剖析,证实细菌藻酸盐在好氧颗粒污泥中的含量可达到35.1%。它们化学测定式为C_6H_(10)O_6Na,是非结晶的、聚甘露糖醛酸残基和聚古洛糖醛酸残基比值为0.85、部分O-乙酰化的、分子量较小的藻酸盐寡糖的混合物,是细菌藻酸盐裂合酶作用的产物。细菌藻酸盐提取物在Ca~(2+)离子的诱导下可以发生分子自组装,聚集体由无规分布、粒径较小的球状体(平均粒径50nm)向有序的三维网状体(平均粒径>10um)转变。藻酸盐提取物与Fe3+,Ca~(2+)和Cu~(2+)等金属离子作用形成凝胶颗粒。它们具有与好氧颗粒污泥相近的比重和沉降速度。藻酸盐-金属凝胶构成了好氧颗粒污泥的骨架,在很大程度上决定着颗粒的形状、粒径、比重和沉降速度。
     钌红染色-扫描电镜和透射电镜多糖原位可视化研究表明,细菌藻酸盐在好氧颗粒污泥中广泛分布,以凝胶形式存在。它们的分子自组装特性不仅使污泥表面负电荷量下降、密度增加,粒径增大,而且显著提高了污泥的沉降速率,并使颗粒污泥的含水率远低于活性污泥的含水率,改善了污泥的沉降性能,提高了泥水分离能力。在好氧颗粒污泥中丝状菌大量增殖的时期,细菌藻酸盐凝胶核心的存在对抑制丝状菌膨胀现象的出现起到了重要作用。
     在综合分析细菌藻酸盐提取物的特性和对颗粒形成的作用的基础上,提出了好氧颗粒污泥以细菌藻酸盐为骨架的形成机制,即SBR颗粒污泥反应器的周期性贫营养阶段诱导细菌藻酸盐的分泌,产生的细菌藻酸盐经异构酶和裂解酶作用后,成为含有一定量聚古洛糖醛酸残基的寡糖,在反应器中Ca~(2+)等金属离子的诱导下,通过分子自组装最终形成细菌藻酸盐-金属凝胶,使好氧颗粒污泥成为以细菌藻酸盐-金属凝胶为骨架的自固定化载体。
     微生物学研究方面,确立了好氧颗粒污泥中定量测定芽孢含量的方法,发现颗粒污泥干重的33.7%为芽孢。通过定性测定好氧颗粒污泥对不良环境的耐受力以及环境条件改善后活性的恢复与芽孢萌发的关系,证明了大量存在的芽孢增强了好氧颗粒污泥耐受低温、高温高压、紫外线的能力,是一种潜在的生命力。
     利用微生物学技术从好氧颗粒污泥中筛选出优势菌种,培育出纯培养好氧颗粒污泥。通过种属鉴定,证明蜡样芽孢杆菌具有分泌细菌藻酸盐,并形成好氧颗粒污泥的能力。纯培养好氧颗粒污泥具有与SBR反应器中形成的好氧颗粒污泥相似的特性:规则的形状、密实的结构和良好的沉降性能。表现为SVI 34ml·g~(-1),沉降速率18-39m·h~(-1),比重1.037,平均粒径0.1-1mm,比耗氧速率28.3mgO2·g~(-1)h~(-1)。对纯培养颗粒污泥中细菌藻酸盐的提取和分析不仅首次发现蜡样芽孢杆菌可以产生细菌藻酸盐,而且从微生物学方面证实了好氧颗粒污泥以细菌藻酸盐为骨架的机制。并将芽孢含量和细菌藻酸盐作为两个新的参数用以描述好氧颗粒污泥的特性。
     最后,将好氧颗粒污泥中藻酸盐的提取、鉴定和分析方法扩展到生物膜、活性污泥和厌氧颗粒污泥,发现这些微生物聚集体与好氧颗粒污泥一样,都含有一定量O-乙酰化的藻酸盐寡糖的混合物。证实微生物聚集体中有很大一部分胞外糖类物质是分子量很小的寡糖,澄清了目前环境工程领域中认为胞外糖类聚合物都是高分子多糖的观念。
Bacterial alginates were extracted from aerobic granules, identified by FAO methods and characterized by UV/visible Spectroscopy, Infrared Spectroscopy, solid state Nuclear Magnetic Resonance Spectroscopy, Mass Spectrometry, Powder X-ray diffractometry, Atomic Force Microscopy, Scanning Electron Microscopy, Transmission Electron Microscopy and elemental composition. Alginate content in aerobic granules is determined as 351mg sodium alginate/g SS. The extracted bacterial alginates are mixtures of partially O-acetylated oligosaccharides with M/G ratio 0.85. Under the inducement of CaCl2, they demonstrate different conformations under Atomic Force Microscopy analysis, transfer from randomly distributed globules, to rod-like and flower-shaped aggregations, finally to ordered weblike networks as their concentrations increased. They are capable of forming gel beads when dropped in multiple cation metal solutions.
     Ruthenium red staining was adapted in the study on extracellular polysaccharides distribution in aerobic granules. Both SEM and TEM observations manifested the existence of weblike alginate gel. The selfassembly property of bacterial alginate molecules has positive effect on increasing granules’specific gravity, particle size and settling velocity. The bacterial alginate gel matrix in the aerobic granule not only contributes to its improved setteability and enhanced solid/liquid separation capacity, but also offers bacteria the same inhabitancy and protection as the manmade alginate immobilizations do. During the period of filaments propagation, this alginate matrix aids in keeping high settling velocity and prevents sludge bulking.
     A procedure for spore quantification in aerobic granules was developed. Sporecontent was determined by analyzing dipicolinic acid (dpa) extracted from aerobicgranules. Results show that dpa constitutes 33.7 mg per g SS, meaning that about337mg per g SS were spores, not the normal vegetative cells. Aerobic granules couldrecover their metabolism activity in a very short time after sterilized at 121℃15psifor 15mins; frozen at -21℃for two weeks and exposed to UV light (30w) within thedistance of 30 cm for 1 hour, for the large amount of spores exist in the aerobicgranule, which are more capable to sustain the sever conditions than the normalvegetative cells.
     Pure culture aerobic granules, with outstanding low SVI, high settling rate andspecific gravity, were successfully developed by cultivating the strain selected fromthe mixed culture aerobic granules, in shaking Erlenmeyer flask by sequencing batchway. The strain was phenotypicly, biochemically and genotypicly identifiedbelonging to Bacillus cereus A. With the aerobic granule formation capability andpopularity in the environment, the genus Bacillus cereus A is required more attentionin biological wastewater treatment domain. Investigations on bacterial alginateextracted from pure culture aerobic granules prove that alginate gel is the maincomponent of aerobic granular sludge.
     Bacterial alginates were also extracted from activated sludge and biofilmcultivated in SBR, and anaerobic granules. Results show that activated sludge,biofilm, and anaerobic granules all contain certain amount of bacterial alginates.Similar with aerobic granules, bacterial alginates extracted from them are alsoO-acetylated oligosaccharides blends, which demonstrates that bacterial alginatesplayed an important role in bio-aggregations.
     Results of bacterial alginates characterization, spore content introduction and Bacillus cereus alginate secreting property will throw light on aerobic granules formation mechanism investigations.
引文
[1]Lettinga G, Hulshoff Pol LW, Koster IW. High-rate anaerobic wastewater treatment using the UASB reactor under a vide range of temperature conditions. Biotechnol. Genet. Energ. Rev, 1984, 2: 253-284.
    [2]Alves M, Cavaleiro AJ, Ferreira EC, Amaral AL, Mota M, da Motta M, Vivier H, Pons MN. Characterization by image analysis of anaerobic sludge under shock conditions. Water Sci Technol, 2000, 41:207–214.
    [3]Lettinga G, van Velsen AFM, Hobma SW, de Zeeuw W, Klapwijk A. Use of the upflow sludge blanket (USB) reactor concept for biological waste water treatment especially for anaerobic treatment. Biotechnol Bioeng,1980, 22: 699– 734.
    [4]Fang HHP, Chui HK. Maximum COD loading capacity in UASB reactors at 37 oC. J Environ Eng, 1993, 119: 103–119.
    [5]Schmidt JE, Ahring BK. Granular sludge formation in upflow anaerobic sludge blanket (UASB) reactors. Biotechnol Bioeng, 1996, 49: 229–246.
    [6] Beun JJ, Hendriks A, van Loosdrecht, MCM, Morgenroth E, Wilderer PA, Heijnen JJ. Aerobic granulation in a sequencing batch reactor. Water Res,1999, 33: 2283–2290.
    [7]Peng D, Bernet N, Delgenes JP, Moletta R. Aerobic granular sludge—a case report. Water Res, 1999, 33: 890–893.
    [8]Tay JH, Liu QS, Liu Y. Microscopic observation of aerobic granulation in sequential aerobic sludge blanket reactor. J Appl Microbiol, 2001, 91: 168–175.
    [9]Mishima K, Nakamura M. Self-immobilization of aerobic activated sludge—a pilot study of the aerobic upflow sludge blanket process in municipal sewage treatment. Water Sci Technol, 1991, 23: 981– 990.
    [10]Morgenroth E, Sherden T, van Loosdrecht M.C.M., Heijnen JJ, Wilderer PA. Aerobic granular sludge in a sequencing batch reactor. Water Res, 1997, 31(12):3193– 3194.
    [11]Etterer T, Wilderer PA. Generation and properties of aerobic granular sludge. Water Sci Technol, 2001, 43:19– 26.
    [12]Liu Y, Tay JH. The essential role of hydrodynamic shear force in the formation of biofilm andgranular sludge. Water Res, 2002, 36(24):1653–1665.
    [13]贺延龄,废水的厌氧生物处理,北京:中国轻工业出版社,1998.
    [14]De beer D, Van der Heuvel JC, Ottenfraf SPP. Microelectrode measurements in nitrifying aggregates. J. Appl.Microbiol., 2001,91:168-175.
    [15]Tijhuis L, Van Loosdrecht MCM, Heinen JJ. Formation and growth of heterotrophic aerobic biofilms on small suspended particles in airlift reactors. Biotechnol. Bioeng., 1994,44: 595-608.
    [16]Van Benthum WAJ, Garrido Fernandez JM, Tijhuis L. Formation and detachment of biofilms and granules in a nitrifying biofilm airlift suspension reactor. Biotechnol. Porg., 1996, 12(6): 764-772.
    [17]Yang SF, Liu QS, Tay JH, Liu Y. Growth kinetics of aerobic granules developed in sequencing batch reactors. Lett Appl Microbiol, 2004, 38:106– 112.
    [18]Moy BYP, Tay JH, Toh SK, Liu Y, Tay STL. High organic loading influences the physical characteristics of aerobic sludge granules. Lett Appl Microbiol, 2002, 34:407– 412.
    [19]Hu LL, Wang JL, Wen XH. The formation and characterixtics of aerobic granules in sequencing batch reactors (SBR) by seeding anaerobic granules. Process Biochemistry, 2005, 40: 5-11.
    [20]Zhu J, Wilderer PA. Effect of extended idle conditions on structure and activity of granular activated sludge. Water Res, 2003, 37:2013–2018.
    [21]Liu Y, Tay JH. State of the art of biogranulation technology for wastewater treatment, Biotechnol.Adv., 2004,22: 553-563.
    [22]Liu Y, Lin YM, Yang SF, Tay JH. A balanced model for biofilms developed at different growth and detachment forces. Process Biochem, 2003, 38:1761 – 1765.
    [23]Chisti Y. Shear sensitivity. In: Flickinger MC, Drew SW, editors. Encyclopedia of bioprocess technology: fermentation, biocatalysis, and bioseparation, vol. 5. New York: Wiley; 2379–2406, 1999.
    [24]李旭东,杨芸等,废水处理技术及工程应用,北京:机械工业出版社,2003.
    [25]Tay JH, Liu QS, Liu Y. Characteristics of aerobic granules grown on glucose and acetate in sequential aerobic sludge blanket reactors. Environ Technol, 2002, 23:931– 936.
    [26]Beun JJ, van Loosdrecht MCM, Heijnen JJ. Aerobic granulation. Water Sci Technol, 2000, 41:41 – 48.
    [27]Pringle JH, Fletcher M. Influence of substratum wettability on attachment of fresh bacteria to solid surface. Appl Environ Microbiol, 1983, 45:811 –817.
    [28]Kos B, Suskovic J, Vukovic S, Simpraga M, Frece J, Matosic S, Adhesion and aggregation ability of probiotic strain Lactobacillus acidophilus M92. J Appl Microbiol, 2003, 94:981– 987.
    [29]Liu Y, Yang SF, Liu QS, Tay JH, The role of cell hydrophobicity in the formation of aerobic granules. Curr.Microbiol, 2003, 46:270–274.
    [30]Yang SF, Liu Y, Tay JH, A novel granular sludge sequencing batch reactor for removal of organic and nitrogen from wastewater. J Biotechnol, 2003, 106:77–86.
    [31]Qin L, Tay JH, Liu Y, Selection pressure is a driving force of aerobic granulation in sequencing batch reactors. Process Biochem, 2004, 39:579–584.
    [32]Tay JH, Ivanov V, Pan S, Tay STL, Specific layers in aerobically grown microbial granules. Lett ApplMicrobiol, 2002, 34:254–257.
    [33]Tay JH, Tay STL, Ivanov V, Pan S, Liu QS, Biomass and porosity profile in microbial granules sued for aerobic wastewater treatment. Lett Appl Microbiol, 2003, 36:297–301.
    [34] Jiang HL, Tay JH, Liu Y, Tay STL, Ca2+ augmentation for enhancement of aerobically grown microbial granules in sludge blanket reactors. Biotechnol Lett, 2003, 25:95 –99.
    [35]Toh SK, Tay JH, Moy BYP, Ivanov V, Tay STL, Size-effect on the physical characteristics of the aerobic granule in a SBR. Appl Microbiol Biotechnol, 2003, 60:687– 695.
    [36]Liu Y, Yang SF, Tay JH, Improved stability of aerobic granules through selecting slow-growing nitrifying bacteria. J Biotechnol, 2004, 108:161–169.
    [37]Tsuneda S, Nagano T, Hoshino T, Ejiri Y, Noda N, Hirata A. Characterization of nitrifying granules produced in an aerobic upflow fluidized bed reactor. Water Res, 2003, 37:4965– 4973.
    [38]Yi S, Tay JH, Maszenan AM, Tay STL, A culture-independent approach for studying microbial diversity in aerobic granules. Water Sci Technol, 2003, 147:283–290.
    [39]Meyer RL, Saunders AM, Zeng RJ, Keller J, Blackall LL. Microscale structure and function of anaerobic– aerobic granules containing glycogen accumulating organisms. FEMS Microbiol Ecol, 2003, 45:253– 261.
    [40]Bossier P, Verstraete W. Triggers for microbial aggregation in activated sludge? Appl Microbiol Biotechnol, 1996, 45:1–6.
    [41]McSwain, BS, Irvine, RL, Wilderal, PA. The effect of intermittent feeding on aerobic granulestructure. 5th International Conference on Biofilm Systems by International Water Association. South Africa: Cape Town; 2003.
    [42] Shin HS, Lim KH, Park HS. Effect of shear stress on granulation in oxygen aerobic upflow sludge reactors. Water Sci Technol 1992, 26:601–605.
    [43]Chang HT, Rittmann BE, Amar DR. Biofilm detachment mechanism in a liquid fluidized bed, Biotechnol. Tech., 1991, 38: 499-506.
    [44]Chen MJ, Zhang Z, Bott TR. Direct measurement of the adhesive strength of biofilm in pipes by micromanipulation, Biotechnol.Tech., 1998,12: 875-880.
    [45]Tay JH, Liu QS, Liu Y. The effects of shear force on the formation, structure and metabolism of aerobic granules. Appl Microbiol Biotechnol, 2001, 57:227– 233.
    [46]Tay JH, Yang SF, Liu Y. Hydraulic selection pressure-induced nitrifying granulation in sequencing batch reactors. Appl Microbiol Biotechnol, 2002, 59:332– 337.
    [47] Jiang HL, Tay JH, Tay STL. Changes in structure, activity and metabolism of aerobic granules as a microbial response to high phenol loading. Appl Microbiol Biotechnol, 2004, 63:602– 608.
    [48]Yang SF, Tay JH, Liu Y. Effect of substrate N/COD ratio on the formation of aerobic granules. J Environ Eng 2005, 131(1): 86-92.
    [49]Schwarzenbeck N, Erley R, Wilderer PA. Growth of aerobic granular sludge in a SBR-system treating wastewater rich in particulate matter. 5th International conference on biofilm systems, 14– 19 September, Cape Town, South Africa, 2003
    [50]Belen A, Anuska MC, Juan MG, Aerobic granulation with industrial wastewater in sequencing batch reactors, Water Res, 2004, 38: 389-3399.
    [51]Liu QS, Tay JH, Liu Y, Substrate concentration-independent aerobic granulation in sequential aerobic sludge blanket reactor, Environ. Technol., 2003, 24: 1235-1243.
    [52]Wang ZW, Liu Y, Tay JH, Biodegradability of extracellular polymeric substances produced by aerobic granules. Appl Microbiol Biotechnol, 2007, 74: 462-446.
    [53]Chen MY, Lee DJ, Tay JH, Distribution of extracellular polymeric substances in aerobic granules. Appl. Microbiol. Biotechnol. 2007, 73: 1463-1469.
    [54]Bos R, van de Mei HC, Busscher HJ. Physico-chemistry of initial microbial adhesive interactions—its mechanisms and methods for study. FEMS Microbiol Rev 1999, 23:179–230.
    [55]Liu Y, Yang SF, Qin L. A thermodynamic interpretation of cell hydrophobicity in aerobic granulation. Appl. Microbiol. Biotechnol., 2003, 64: 410-415.
    [56] Beun JJ, Heijnen JJ, van Loosdrecht MCM, N-removal in a granular sludge sequencing batch airlift reactor. Biotechnol.Bioeng, 2001,75: 82-91.
    [57]谢珊,李小明,曾光明等.SBR系统中好氧颗粒污泥脱氮特性研究.中国环境科学,2004,24(3),355-359.
    [58]Allsop PJ, Chisti Y, Moo-Young M, Sullivan GR. Dynamics of phenol degradation by Pseudomonas putida.Biotechnol Bioeng, 1993, 41:572–580.
    [59]Lodi A, Solisoio C, Converti A, Del Borghi M. Cadmium, zinc, copper, silver and chromium(III) removal from wastewaters by Sphaerotilus natans. Bioprocess Eng, 1998, 19:197–203.
    [60] Taniguchi J, Hemmi H, Tanahashi K, Amano N, Nakayama T, Nishim T. Zinc biosorption by a zinc-resistant bacterium, Brevibacterium sp. Strain, HZM-1. Appl Microbiol Biotechnol, 2000, 54:581– 588.
    [61]Valdman E, Leite SGF. Biosorption of Cd, Zn and Cu by Saragssum sp. waste biomass. Bioprocess Eng, 2000, 22:171– 173.
    [62]Liu Y, Yang SF, Tan SF, Lin YM, Tay JH. Aerobic granules: a novel zinc biosorbent. Lett Appl Microbiol, 2002, 35:548–551.
    [63]Liu Y, Yang SF, Xu H, Woon KH, Lin YM, Tay JH. Biosorption kinetics of cadmium (II) on aerobic granular sludge. Process Biochem, 2003, 38:995– 999.
    [64]Bruus JH, Nielsen PH, Keiding K. On the stability of activated sludge flocs with implications to dewatering. Water Res, 1992, 26:1597–1604.
    [65]Tay JH, Liu QS, Liu Y. The role of cellular polysaccharides in the formation and stability of aerobic granules. Lett Appl Microbiol 2001, 33:222–226.
    [66]Tay JH, Yang SF, Liu Y. Hydraulic selection pressure-induced nitrifying granulation in sequencing batch reactors. Appl Microbiol Biotechnol 2002, 59:332– 337
    [67]蔡春光,刘军深,蔡伟民. 胞外多聚物在好氧颗粒化中的作用机理。中国环境科学 2004,24(5):623-626
    [68]Wang ZP, Liu LL, Yao J, Cai WM, Effects of extracellular polymeric substances on aerobic granulation in sequencing batch reactors. Chemosphere, 2006, 63:1728-1735.
    [69]Li ZH, Kuba T, Kusuda T. The influence of starvation phase on the properties and the development of aerobic granules. Enzyme and Microbial Technology, 2005, 31: 326-329.
    [70]Windhues T, Borchard W. Effect of acetylation on physico-chemical properties of bacterial and algal alginates in physiological sodium chloride solutions investigated with light scattering techniques. Carbohydrate Polymers, 2003, 52:47-52.
    [71]张惟杰,糖复合物生化研究技术,第二版,浙江大学出版社,杭州,1999.
    [72] Klein C, Manual of mineral science.2nd Edition, 2001Wiley, New York.
    [73] FAO ed., ”Compendium of food additive specifications. Addendum 5”. (FAO Food and Nutrition Paper-52 add.5) Joint FAO/WHO Expert Committee on Food Additives 49th session, Rome, 1997.
    [74] 李庚,吴进.藻酸盐及其作为生物大分子载体的理化特性。江苏药学与临床研究,2002,10卷2期,61-63.
    [75] 蒋锡群,曹毅. 生物大分子海藻酸钠的自组装和空心微囊的形成。2005年全国高分子学术论文报告会,2005.
    [76] Bernd HAR, 细菌藻酸盐,多糖 I –原核生物多糖,E.J. 旺达姆,S. De贝特斯,A. 斯泰因比歇尔,第一版,北京:化学工业出版社,2004,181-210.
    [77] 殷敬华, 莫志深. 现代高分子物理学,第一版,北京:科学出版社,2001.
    [78] 邓慧敏,任三香等,MALDI-TOF-MS测定糖类物质的研究,2002,21(3,4):67-68.
    [79]Wade LG, Organic Chemistry, fifth edition. Pearson education North Asia Limited. 2003.
    [80] Rehm BHA. The alginate lyse from Pseudomonas aeruginosa CFI/MI prefers the hexameric oligomannuronate as substrate. FEMS Microbiol.Lett. 1998, 165: 175-180.
    [81] Albersheim P, Darvill AG. Oligosaccharins, Sci.Am. 1985, 253: 58-64.
    [82] Yonemoto Y, Tanaka H, Yamashita T, Kitabatake N, Ishida Y. Promotion of germination and shoot elongation of some plants by alginate oligomers prepared with bacterial alginate lyase. J. Ferment. Bioeng. 1993, 75: 68-70.
    [83]Tomoda Y, Umemura K, Adachi T. Promotion of barley root elongation under hypoxic conditions by alginate lyase-lysate.Biosci. Biotechnol. Biochem, 1994, 58: 202-203.
    [84]Fujihara M, Nagumo T. The effect of the content of D-mannuronic acid and L-guluronic acid blocks in alginates in antitumor activity. Carbohydr.Res, 1992, 224: 343-347.
    [85] Kawada A, Hiura N, Shiraiwa M. Stimulation of human keratinocyte growth by alginateoligosaccharides, a possible co-factor for epidermal growth factor in cell culture. FEBS Lett 1997, 408: 43-46.
    [86] Skj?k-Br?k G, Grasdalen H, Larsen B. Monomer sequence and acetylation pattern in some bacterial alginates. Carbohydr. Res, 1986,154: 139-250.
    [87] 林正欢,李绵贵,赵慧香. 基质辅助激光解吸电离质谱在化学应用中的一些进展,国外分析仪器, 2002.
    [88] Wolfaardt GM, Lawrence JR., Korber DR. Function of EPS, In: Wingender J, Neu TR, Flemming HC, editors, Microbial Extracellular polymeric substances: Characterization,structure and function, Berlin, Springer, 1999.
    [89] Grant GT, Morris ER, Rees DA, Smith PJC, Thom D. Biological interactions between polysacharides and divalent cations: the Egg-box Model. Febs. Letters, 1973,32:195–198.
    [90] 周世海,蔡继业,陈勇. 钙离子对海藻酸钠自组装行为影响的AFM研究,药物生物技术,2004,11(2):81-85.
    [91] Ikai A,STM and AFM of bio/organic molecules and structures.Surface Science Reports,1996,26:261—332.
    [92] 鲍幸峰,方积年. 原子力显微镜在生物大分子结构中的应用进展. 分析化学,2000,28(10):1300- 1307.
    [93] 何昆,张德添,张学敏等.原子力显微镜在生物医学中的应用,军事医学科学院院刊. 2002,26(2):139—143.
    [94] 屈小中,史焱,金熹高. 原子力显微镜在高分子领域的应用. 功能高分子学报,1999,12(2):2l8—224.
    [95] 罗艳红,姜勇,雷玉国等. 原子力显微镜研究高聚物结晶的最新进展. 科学通报,2002,47(15):1121—1125.
    [96] 白春礼,林璋. 扫描探针显微学在材料表面纳米级结构研究中的新进展. 物理,1999,28(1):27—30.
    [97] 谢敬伟,暴宁钟,陆小华. 扫描探针显微技术在TiO2表面研究中的应用.化学通报,2002,(7):445—451.
    [98] 张益,陈圣福,欧阳振乾等. 单个DNA分子的拉直操纵和成像. 科学通报,2000,45(5):490-493.
    [99] 张宇军,李鹏,胡元中等. 碳纳米管的操纵和剪切. 科学通报,2002,47(14):1066- 1070.
    [100] 葛小鹏,潘建华,刘瑞霞,汤鸿霄.重金属生物吸附研究中蜡状芽孢杆菌菌体微观形貌的原子力显微镜观察与表征.环境科学学报,2004,24(5):753-760.
    [101] Liu A G,Wu R C,Eschenazi E. AFM on humic acid adsorption on mica.Colloids and Surfaces A,2000,174(1-2):245-252.
    [102] 冯利,汤鸿霄. Al13形态的研究进展. 环境科学进展,1997,5(6):44-5l.
    [103] 卞晓锴,陆晓锋,施柳青. 原子力显微镜及在膜科学技术研究中的应用. 膜科学与技术,2002,22(5):36-40.
    [104] Halperin A, Tirrell M, Lodge TP, Tethered chains in polymer microstrutures. Adv. Polym. Sco., 1992, 100:31
    [105] 江明,A.艾森伯格,刘国军,张希. 大分子自组装, 第一版,北京: 科学出版社, 2006
    [106] Shen H,Zhang L, Eisenberg A, Thermodynamics of crew-cut micelle formation of polystyrene-b-poly (acrylic acid)diblock copolymers in DMF/H2O mixtures. J.Phys.Chem.B., 1997,101(24):4697-4685.
    [107] Cowman MK, Spagnoli C, Kudasheva D, Li M, Dyal A,Kanai S, Balazs EA. Extended, relaxed, and condensed conformations of hyaluronan observed by atomic force microscopy. Biophysical Journal, 2005,88: 590-602.
    [108] Wang ZW, Liu Y, Tay JH. Distribution of EPS and cell surface hydrophobicity in aerobic granules. Appl Microbiol Biotechnol, 2005, 69:469–473.
    [109] Wang L, Lin YM, Spore detection in aerobic granules by different dipicolinic acid releasing methods, Bioresour. Technol. 2007, 98: 3164-3167.
    [110] Wang L, Lin YM, Liu XU.The microstructure of aerobic granules, Qingdao: International Conference of Water Conservation and Management in Coastal Area, 2005, 《沿海城市水资源管理与保护》,青岛:中国海洋大学出版社,2007
    [111] Pereira L, Sousa A, Coelho H, Amado AM, Ribeiro-Claro PJA. Use of FTIR, FT-Raman and 13C-NMR spectroscopy for identification of some seaweed phycocolloids. Biomolecular Engineering 2003, 20:223-228.
    [112] Wong TY, Preston LA, Schiller NL. Alginate lyase: review of major sources and enzyme characteristics, structure-function analysis, biological roles, and applications. Annu. Rev.Microbiol. 2000, 54:289-340.
    [113] Haug A, Larsen B, Smidsr?d O. Studies on the sequence of uronic acid residues in alginic acid. Acta Chen.Scand, 1967, 21:691-704.
    [114] Leone S, Molinaro A, Alfieri F, Cafaro V, Lanzetta R, Donato AD, Parrilli M. The biofilm matrix of Pseudomonas sp. OX1 grown on phenol is mainly constituted by alginate oligosaccharides. Carbohydrate Research, 2006, 341: 2456-2461.
    [115]Jiang HL, Tay JH, Tay STL, Aggregation of immobilized activated sludge cells into aerobically grown microbial granules for the aerobic biodegradation of phenol. Lett Appl Microbiol, 2002, 35:439–445.
    [116] Surtherland IW, Polysaccharide lyases, FEMS Microbiol.Rev. 1995, 16: 323-347.
    [117] Luft, JH, Ruthenium red and violet. I. Chemistry, purification, methods of use for electron microscopy and mechanism of action. Anat. Rec. 1971, 171:347–368.
    [118] Stingele F, Neeser JR, Mollet B. Identification and characterization of the EPS (exopolysaccharide) gene cluster from Streptococcus thermophilus Sfi6. Journal of Bacteriology, 1996, 178:1680–1690.
    [119] Legrand A, Berthou M, Fillaudeau L. Characterization of solid-liquid suspensions (real, large non-spherical particles in non-Newtonian carrier fluid) flowing in horizontal and vertical pipes. Journal of Food Engineering 2007, 78: 345-355.
    [120]Vogtle F. 著。张希、林志宏、高倩译。超分子化学。长春:吉林大学出版社, 1995.
    [121] APHA, 1998. Standard methods for the examination of water and wastewater. 20th ed. Washington D C: American Public Health Association.
    [122] Lee DJ,Chen GW, Liao YC. On the free–settling test for estimating activated sludge flocs,1996,30(3): 541-550.
    [123] Blumenkrantz N, Asboe-Hansen G. New method for quantitative determination of uronic acids. Anal. Biochem. 1973, 54: 484-489.
    [124]Lattner D, Flemming HC, Mayer C. 13C-NMR study of the interaction of bacterial alginate with bivalent cations. International Journal of Biological Macromolecules 2003, 33: 81-88.
    [125]Sutherland IW. Microbial polysaccharides from Gram-negative bacteria. International Dairy Journal 2001, 11: 663-674.
    [126] Albertson OE. The control of bulking sludges: From the early innovators to the current place. J. Water Pollut. Contr. Fed. 1987, 59: 173-182.
    [127] Wanner J, Grau P. Identification of filamentous microorganisms from activated sludge: a compromise between wishes, needs and possibilities. Water Res. 1989, 23: 883-891.
    [128]Wang Q, Du GC, Chen J. Aerobic granular sludge cultivated under the selective pressure as a driving force. Process Biochemistry, 2004, 39: 557–563.
    [129] Pike EB, Curds CR. The microbialecol ogy of activated sludge systems. In: Sykes G, Skinner FA, editors. Microbial aspects of pollution. London: Academic Press, 1971.
    [130] Davies DG, Geesey GG. Regulation of the alginate biosynthesis gene algC in Pseudomonas aeruginosa during biofilm development in continuous culture. Appl Environ Microbiol, 1995, 61:860– 867
    [131] Nunez C, Leon R, Guzman J, Espin G, Soberon-Chavez G. Role of Azotobacter vinelandii mucA and mucC gene products in alginate production. J Bacteriol 2000, 182:6550–6556.
    [132] Gacesa P, Goldberg JB. Heterologous expression of an alginate lyase gene in mucoid and non-mucoid strains of Pseudomonas aeruginosa, J.Gen.Microbio. 1992, 138:1665-1670.
    [133] Cote, GL, Krull, LH Characterization of the exocellular polysaccharides from Azotobacter chroococcum, Carbohydr. Res. 1988, 181:143-152.
    [134] Devault JD, Hendrickson W, Kato J, Chakrabarty, AM. Environmentally regulated algD promoter is responsive to the cAMP receptor protein in Escherichia coli, Mol. Microbiol. 1991, 5: 2503-2509.
    [135] Wang HL, Yu GL, Liu GS, Pan F. A new way to cultivate aerobic granules in the process of papermaking wastewater treatment. Biochemical Engineering Journal, 2006, 28: 99-103.
    [136] Nancharaiah YV, Schwarzenbeck N, Mohan TVK, Narasimhan SV, Wilderer PA, Venugopalan VP. Biodegradation of nitrilotriacetic acid (NTA) and ferric-NTA complex by aerobic microbial granules. Water Research, 2006, 40:1539-1546.
    [137] Xu H. Liu Y. Tay JH Effect of pH on nickel biosorption by aerobic granular sludge. Bioresource Technology, 2006, 97(3): 359-363.
    [138] Chen J, S Yiacoumi. Biosorption of metal ions from aqueous solutions. Sep. Sci. Technol. 1997, 32: 51–69.
    [139] Aksu Z, Egretti G, Kutsel T. A comparative study of copper (II) biosorption Ca-alginate, agarose and immobilised C. vulgaris in a packed bed column. Process Biochem. 1998, 33: 393–400.
    [140] Liu Y, Wang ZW, Qin L, Liu YQ, Tay JH. Selection pressure-driven aerobic granulation in a sequencing batch reactor. Appl. Microbiol. Biotechnol. 2005, 67, 26-32.
    [141] Rehm BH, Valla A. Bacterial alginates: biosynthesis and applications, Appl. Microbiol. Biotechnol. 1997, 48: 281-288.
    [142] Brock TD, Madigan MT. Biology of Microorganisms, six editions, USA New Jersey: Prentice Hall, Englewood Cliffs, 2002.
    [143] Pellegrino PM, Fell NF, Gillespie JB, Enhanced spore detection using dipicolinate extraction techniques. Analytica. Chimica. Acta. 2002, 455:167-177.
    [144]Fell NF, Pellegrino PM, Gillespie JB. Mitigating phosphate interference in bacterial endospore detection by Tb dipicolinate photoluminescence. Analytica. Chimica. Acta. 2001, 426: 43-50.
    [145] Denniston KJ, Topping JJ, Caret RL. General, organic and biochemistry. McGraw-Hill, 2001.
    [146] Varki A, Cummings R, Esko J, Freeze H, Hart G, Marth J. Essential of glycobiology. Cold Spring Harbor Laboratory Press,1999.
    [147] Madigan MT, Martinko JM, Parker J. Brock biology of microorganisms. Prentice-Hall, Inc. USA 2003.
    [148] Sussman AS, Halvorson HO, Spores- their dormancy and germination. N.Y.: Harper& Row, publishers, Inc., USA. 1966.
    [149] Babitha S, Soccol CR, Pandey A. Solid-state fermentation for the production of Monascus pigments from jackfruit seed. Bioresource Technology 2007 (on line).
    [150] Chang WT, Chen YC, Jao CL. Antifungal activity and enhancement of plant growth by Bacillus cereus grown on shellfish chitin wastes. Bioresource Technology (on line) 2007.
    [151] Ganguly, R, Dwivedi, P, Singh, RP. Production of lactic acid with loofa sponge immobilized Rhizopus oryzae RBU2-10. Bioresource Technology (on line), 2007
    [152] Paidhungat M, Setlow P, Spore germination and outgrowth. In Bacillus subtilis and its Relatives: From Genes to Cells. Edited by Hoch JA, Losick R, Sonenshein AL. Washington, DC: American Society for Microbiology; 2002,537-548.
    [153] Setlow B, Melly E, Setlow P. Properties of spores of Bacillus subtilis blocked at an intermediate stage of spore germination. J Bacteriol 2001, 183:4894-4899.
    [154] Cowan AE, Koppel DE, Setlow B, Setlow P. A cytoplasmic protein is immobile in the cytoplasm of dormant spores of Bacillus subtilis: implications for spore dormancy. Proc Natl Acad Sci USA, 2003,100:4209-4214.
    [155] Gould GW, Germination. In The Bacterial Spore. Edited by Gould GW, Hurst A. New York: Academic Press, 397-444, 1969.
    [156] Tabatabai MA. Soil enzymes. In: Page AL, Keeney DR (eds) Methods of soil analysis. Part 2: Chemical and microbiological properties. Soil Science Society of America, Madison, Wis., 1982, 903–948.
    [157] Skujins J. Extracellular enzymes in soil. Crit Rev Microbiol, 1976, 4:383–421.
    [158] Ross DJ. Some factors influencing the estimation of dehydrogenase activities of some soils under pasture. Soil Biol Biochem, 1971, 3: 97–110.
    [159] Glenner GG, Tetrazolium S. In: Little RD (ed): H.J. Conn's Biological Stains. Baltimore: Williams & Wilkins, 1969, 154-162.
    [160] Kumar P, Tarafdar JC. 2,3,5-Triphenyltetrazolium chloride (TTC) as electron acceptor of culturable soil bacteria, fungi and actinomycetes. Biol Fertil Soils, 2003,38:186-189.
    [161] Rahman M, Kuhn I, Olsson-Liljequist B, Mollby R. 2004. Evaluation of a scanner-assisted colorimetric MIC method for susceptibility testing of gram-negative fermentative bacteria. Applied and Environmental Microbiology, 70: 2398-2403.
    [162] Cano RG, Borucki MK. Revival and identification of bacterial spores in 25-million-year-old to 40-million-year-old Dominican amber. Science, 1995, 268: 1060–1064.
    [163] 迪芬巴赫CW,德维克斯勒GS,黄培堂等译.PCR技术实验指南〔M〕.北京:科学技术出版社,2000.
    [164] Yamada S, Ohashi E, Agata N, Venkateswaran K. Cloning and nucleotide sequence analysis of gyrB of Bacillus cereus, B.thuringiensis, B.mycoides, and B.anthracis and their application to the detection of B.cereus in Rice. Applied and Environmental Microbiology. 1999, 65(4): 1483-1490.
    [165] Wang L,Lin YM. Bacterial alginate role in aerobic granular bio-particles formation and settleability improvement , (Oral presentation), Toulouse: Porceedings of International Water Association Conference on Particle Separation, France, 2007.
    [166] Ombui JN, Schmieger H, Kagiko MM, Arimi SM. Bacillus cereus may produce two ormore diarrheal enterotoxins. FEMS Microbiol. Lett. 1997, 149: 245–248.
    [167] Lund T, Granum PE. Characterisation of a non-haemolytic enterotoxin complex from Bacillus cereus isolated after a foodborne outbreak. FEMS Microbiol. Lett. 1996, 141:151–156.
    [168] Lund T, Granum PE. Comparison of biological effect of the two different enterotoxin complexes isolated from three different strains of Bacillus cereus. Microbiology 1997,143: 3329–3336.
    [169] Ash C, Farrow JAE, Dorsch M, Stackebrandt E, Collins MD. Comparative analysis of Bacillus anthracis, Bacillus cereus, and related species on the basis of reverse transcriptase sequencing of 16S rRNA. Int. J. Syst. Bacteriol. 1991,41:343–346.
    [170] M?ntynen V, Lindstrom K. A rapid PCR-based DNA test for enterotoxic Bacillus cereus. Appl. Environ. Microbiol. 1998, 64:1634–1639.
    [171] Yamamoto S, Harayama S. PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains. Appl. Environ. Microbiol. 1995, 61: 1104–1109.
    [172] La duc MT, Satomi M, Agata N, Venkateswaran K. gyrB as a phylogenetic discriminator for members of the Bacillus anthracis-cereus-thuringiensis group. Journal of Microbiological Methods, 2004,56: 383-394.
    [173] Franklin MJ, Ohman DE. Identification of algF in the alginate biosynthetic gene cluster of Pseudomonas aeruginosa which is required for alginate acetylation. J.Bacteriol. 1993, 175: 5057-5065.
    [174]Franklin MJ, Chitnis CE, Gacesa P, Sonesson A, White DC, Ohman DE. Pseudomonas aeruginosa ALgG is a polymer level alginate C5-mannuronan epimerase. J.Bacteriol. 1994,176: 1821-1830.
    [175] Sutherland JW. Biosynthesis of microbial exopolysaccharides.Adv.Microb.Physiol, 1982, 23:79-150.
    [176]Sanin FD, Vesilind PA. Synthetic Sludge: a physical/chemical model in understanding bioflocculation. Water Environ Res 1996, 68:927–933.
    [177] Ormeci B, Vesilind PA. Development of an improved synthetic sludge: a possible surrogate for studying activated sludge dewatering characteristics. Water Res 2000, 34:1069–1078.
    [178]Whiteley M, Bangera MG, Bumgarner RE, Parsek MR, Teitzel GM, Lory S, Greenberg EP.Gene expression in Pseudomonas aeruginosa biofilms. Nature 2001, 413: 860-864.
    [179] 孟令芝,龚淑玲,何永炳.有机波谱分析,第二版,武昌:武汉大学出版社,2005.
    [180]Schurks N, Wingender J, Flemming HC, Mayer C. Monomer composition and sequence of alginates from Pseudonomas aeruginosa. 2002, 30: 105-111.
    [181] Low EW, Chase HA. Reducing production of excess biomass during wastewater treatment.Water Research,1999,33(5):1119-1132.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700