激发子诱导植物防卫反应过程中的信号分子
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一般将能够诱导寄主防卫反应的生物来源和非生物来源的物质统称为激发子。第六次国际植物组织培养大会规定来自于植物的激发子称为内源激发子,来自于微生物的激发子的称为真激发子。随着植物防卫机理的研究向分子水平的深入,越来越多的实验证明激发子和防卫反应可作为研究植物信号识别及胞内信息传递的良好实验体系。
    在本研究工作中,金瓜炭疽细胞壁激发子与脱乙酰几丁质是来源于真菌细胞壁的真激发子,人参细胞壁降解物与寡聚半乳糖醛酸是来源于植物细胞壁的内源激发子。我们也通过昆虫取食与模拟微重力生物学效应来研究植物的防卫反应。
    人参是我国传统中草药,具有安神补气,增加免疫的功能,人参皂苷是人参中有效药用成分。我们开始实验的目的是利用激发子提高人参皂苷的含量。经过大量筛选,先后发现金瓜炭疽激发子,脱乙酰几丁质,寡聚半乳糖醛酸都可以明显诱导人参细胞中皂苷含量的提高。为了进一步研究激发子诱导人参皂苷含量提高的机理,我们发现激发子诱导了人参细胞过氧化氢,一氧化氮与茉莉酸的产生,这三种信号分子单独处理人参细胞都可以诱导人参皂苷的合成与防卫反应,抑制激发子诱导的这三种信号分子的产生,可以同时抑制激发子诱导的人参皂苷的积累。这些结果表明过氧化氢,一氧化氮与茉莉酸介导了激发子诱导的人参皂苷的合成。激发子诱导人参细胞皂苷含量升高的过程中,这三种信号分子并不是孤立的,它们之间相互联系,相互影响,共同介导人参皂苷的合成。蛋白激酶与胞内钙离子通过调节信号分子的产生而影响激发子诱导的人参皂苷产生。我们利用激发子在水稻与拟南芥上也进行了相关实验。结果表明一氧化氮介导了真菌激发子诱导的水稻过敏性死亡与抗性相关基因的转录。激发子诱导胞内钙离子的升高以及过氧化氢的产生,对于激发子诱导的抗性相关基因的转录是必须的。
    除了上述各类激发子可以诱导植物的防卫反应外,其它刺激因子,如机械伤害,昆虫取食,盐碱,高温,冷害,失重等,都可能诱导植物的防卫反应。棉铃虫取食可以诱导蕃茄小苗过氧化氢的产生,激活水杨酸与茉莉酸代谢途径,并且过氧化氢可能作用于水杨酸与茉莉酸途径的上游。失重或微重力也可以看作为一类刺激因子诱导植物发生反应,在我们的实验中,采用回转方式培养人参细胞,即模拟微重力生物学效应条件,可以诱导人参细胞皂苷含量的升高。这种培养方式也可以诱导人参细胞钙调蛋白基因的波动性表达。抑制钙调蛋白基因的转录,也可以抑制回转方式细胞培养所诱导的人参皂苷含量的升高。这些结果表明钙调蛋白可能介导了模拟微重力生物学效应条件所诱导的人参皂苷的合成。
Endogenous elicitor activity, termed CDW, was prepared from the cell walls of suspension-cultured ginseng (Panax ginseng C.A. Meyer) cells via cellulase degradation. CDW activated in vitro the NADPH oxidase activity of isolated plasma membranes and stimulated in vivo H2O2 generation by ginseng cell suspensions. CDW also increased the activity of phenylalanine ammonia lyase (PAL), expression of a P. ginseng squalene epoxidase (sqe) gene and saponin synthesis. NADPH oxidase inhibitors inhibited both in vitro NADPH oxidase activity and in vivo H2O2 generation. Induction of PAL activity, saponin synthesis and sqe gene expression were all inhibited by such inhibitor treatments and reduced by incubation with catalase and H2O2 scavengers. These data indicate that activation of NADPH oxidase and generation of H2O2 are essential signalling events mediating defence responses induced by the endogenous elicitor(s) present in CDW.
引文
1. 王钧 植物抗病反应的分子机理 见 余叔文 ,汤章城主编 植物生理与分子生物学 科学出版社 北京 1998
    2. 武维华 主编 植物生理学 科学出版社 北京 2003
    3. 张宏明 陈珈 激发子与植物抗病信号转导 植物生理学通讯 1999, 221-226
    
    
    4. Abeles FB. Ethylene in Plant Biology. New York: Academic Press. UK 1973
    5. Albrechr T, Kehlen A, Stahl K. Quantitation of rapid transient increases in jasmonic acid in wounded plants using a monoclonal antibody. Planta, 1993, 191:86-94
    6. Allan AC, Fluhr R. Two distinct sources of elicited reactive oxygen species in tobacco epidermal cells. Plant Cell, 1997, 9: 1559-1572
    7. Allan AC, Fluhr R. Two distinct sources of elicited reactive oxygen species in tobacco epidermal cells. Plant Cell, 1997, 9: 1559-1572
    8. Allen GJ, Muir SR, Sanders D. Release of Ca2+ from individual plant vacuoles by both InsP3 and cyclic ADP ribose. Science, 1995, 268: 735-737
    9. Aloni R, Wolf A, Feigenbaum P, Avni A, Klee HJ. The never ripe mutant provides evidence that tumor-induced ethylene controls the morphogenesis of Agrobacterium tumefaciens-induced crown galls on tomato stems. Plant Physiol., 117: 841-849
    10. Alvarez ME, Pennell RI, Meijer PI, Ishikawa A, Dixon RA, Lamb C (1998) Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity. Cell, 92:773-784
    11. Amano M, Toyoda K, Ichinose Y, Yamada T, Shiraishi T. Association between ion fluxes and defense responses in pea and cowpea tissues. Plant Cell Physiol., 1997, 38:698-706
    12. Apostol I, Heinstein PF, Low PS. Rapid stimulation of an oxidative burst during elicitation of cultured plant-cells: role in defense and signal transduction. Plant Physiol., 1989, 90: 109-116
    13. Babior BM, Lambeth JD, Nauseef W. The neutrophil NADPH oxidase. Arch Biochem Biophy.2002, 397:342-344
    14. Baker CJ, Orlandi EW. Active oxygen in plant pathogenesis. Annu Rev Phytopathol.,1995, 33:299-321
    15. Bamhaa Y. Symptom expression and ethylene production in leaf blight of cotton caused by Alternaia macrospora and Alternaria alternia alon and its combination. Can. J. Plant Biol., 1994, 72:1574-1579
    16. Barroso JB, Corpas FJ, Carrasras A. Localization of nitric oxide synthase in plant peroxisome.,1999, J Biol. Chem., 274: 36729-36733
    17. Beligni MV, Lamattina L. Nitric Oxide counteracts cytotoxic processes mediated by reactive oxygen species in plant tissue. Planta, 1999, 208:337-344
    18. Beligni MV, Lamattina L. Nitric oxide stimulation seed germination and de-etiolation and inhibit hypocotyl elongation, three light inducible responses in plants. Planta, 2000, 210: 215-221
    19. Beligni MV,Lamattina L. Nitric oxide stimulates seed germination and de-etiolation and inhibits hypocotyl elongation, three light inducible responses in plants. Planta, 2000, 210: 215-221
    
    
    20. Bieza K, Lois R. An Arabidopsis mutant tolerant to lethal ultraviolet-B levels shows constitutively elevated accumulation of flavonoids and other phenolics. Plant Physiol., 2002, 126: 1105-1115
    21. Blechert S, Brodschelm W, Holder S,Ryan CA. The octadecanoic pathway: signal molecule for the regulation of secondary pathway. Proc. Natl. Acad. Sci. USA, 1995, 92:4090-4105
    22. Bokoch GM. Regulation of the phagocyte respiratory burst by small GTP-binding proteins. Trends Cell Biol., 1995, 5:109-113
    23. Boller T. Ethylene and pathoge-plant inteaction. Curr.Opin Plant Biol., 1990, 5: 138-145
    24. Boller T. Chemoperception of microbial signal in plant cell. Annu. Rev. Plant Physiol. Plant Mol. Biol., 1995, 46: 189-214
    25. Bolwell GP, Wojitaszek P. Mechanisms for the generation of reactive oxygen species in plant defense: a broad perspective. Physiol. Mol. Plant Pathol., 1997, 51: 347-366
    26. Bourque S, Binet MN, Ponchet M, Pugin A, Lebrun-Garcia A. Characterization of the cryptogein binding sites on plant plasma membranes. J. Biol. Chem., 1999, 274: 34699-34705
    27. Bradley DJ, Kjellbom P, Lamb CJ. Elicitor- and wound-induced oxidative cross-linking of a proline-rich plant cell wall protein: a novel rapid defense response. Cell, 1992, 70:21-30
    28. Bradley DJ, Kjellbom P, Lamb CJ. Elicitor- and Wound- induced oxidative cross-linking of a protein rich cell wall protein: a novel and rapid defense response. Cell, 1992, 70: 21-30
    29. Brady JD, Fry SC. Formation of di-isodityrosine and loss of isodityrosine in the cell wall of tomato cell-suspension culture treated with fungal elicitors or H2O2. Plant Physiol., 1997, 116: 87-92
    30. Cameron, R.K. Salicylic acid and its role in plant defense responses: What do we really know? Physiol. Mol. Plant Pathol., 2000, 56: 91-93
    31. Camp WV, Van MM. H2O2 and NO: redox signal in disease resistance. Trends Plant Sci., 1998, 3: 330-334
    32. Cao H, Glazebrook J, Clark JD, Volko S, Dong X. The Arabidopsis NPR1 gene that control systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell, 1997, 88: 57-63
    33. Cardinale F, Jonak C, Ligterink W, Niehaus K, Boller T, Hirt H. Differential activation of four specific MAPK pathways by distinct elicitors. J. Biol. Chem., 2000, 274: 36734-36740
    34. Caro A, Puntarulo S. Nitirc oxide decreases superoxide anion generation by microsomoes from soybean embryonic axes. Physiol. Plant, 1998, 104: 357-364
    Caro A, Puntarulo S. Nitric oxide generation by soybean embryonic axes: possible effet on
    
    35. mitochondrial function. Free Radic Res., 1999, 31:S205-212
    36. Carver TLW, Zeyen RJ, Bushnell WR, Robbins MP. Inhibition of phenylalanine ammonia lyase and cinnamyl-alcohol dehydrogenase increases quantitative susceptibility of barley to powdery mildew (Erysiphe graminis DC). Physiol. Mol. Plant Pathol., 1994, 44: 261-272
    37. Chandra S, Heinstein PF, Low PS. Activation of phospholipase A by plant defense elicitors. Plant Physiol., 1996, 110: 979-986
    38. Chen C, Chen Z. Isolation and characterization of two pathogen- and salicylic acid-induced genes encoding WRKY DNA-binding proteins from tobacco. Pant Cell, 2000, 53: 706-718
    39. Chen W, Singh KB. The auxin, hydrogen peroxide and salicylic acid induced expression of the Arabidopsis GST6 promoter is mediated in part by an ocs element. Plant J., 1999, 19: 667-677
    40. Chen Z, Lyer S, Caplan A, Klessig DF. Different accumulation of salicylic acid and salicylic acid sensitive catalase in different rice tissue. Plant physiol., 1997, 114: 193-201
    41. Chen Z, Ricigliano JW, Klessig DF. Purification and characterization of a soluable salicylic acid binding protein from tobacco. Proc. Natl. Acad. Sci. USA, 1993, 20: 9533-9537
    42. Chen Z, Silva H, Klessig DF. Active oxygen species in the induction of plant syntemic acquired resistance by salicylic acid. Science, 1993, 262: 1883-1886
    43. Chen Z, Iyer S, Caplan A, Klessig DF, Fan B. Differential accumulation of salicylic acid and salicylic acid-sensitive catalase in different rice tissues. Plant Physiol., 1997, 114: 193-201
    44. Chen ZX, Klessig DF. Identification of a soluble salicylic acid-binding protein that may function in signal transduction in the plant disease-resistance response. Natl. Acad. Sci. USA, 1991, 88: 8179-8183
    45. Chen ZX, Malamy J, Henning J, Klessig DF. Induction, modification and transduction of the salicylic acid-inhibitable catalase activity are presented in a variety of plant species. Plant Physiol., 1994, 106: 1675-1679
    46. Chen ZX, Ricigliano JW, Klessig DF. Purification and characterization of a soluble salicylic acid-binding protein from tobacco. Proc. Natl. Acad. Sci. U S A., 1993, 190: 9533-9537
    47. Chen ZX, Silva H, Klessig DF. Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science, 1993, 262: 1883-1886
    48. Chen ZX, Malamy, J, Henning J, Conrath U, Sanchezcasas P, Silva H, Ricigliano J, Klessig DF. Induction, modification, and transduction of the salicylic acid signal in plant defense responses. Proc. Natl. Acad. Sci. USA, 1995, 92: 4134-4137
    Choi D, Kim HM, Yuo HK. Molecular cloning of a metallothionreine like gene from
    
    49. tobacco and its induced by wounding and TMV infection. Plant Physiol., 1996, 112: 353-359
    50. Choi HS, Suh S, Doo IS, Oh KY, Choi EJ, Schroeder Taylor AT, Low PS, Lee Y. Oligogalacturonic acid and chitosan reduce stomatal aperture by inducing the evolution of reactive oxygen species from guard cells of tomato and Commelina communis. Plant Physiol., 1999, 121: 147-152
    51. Chong J, Pierrel MA, Atanassova R, Werck-Reichhart D, Fritig B and Saindrenan P. Free and conjugated benzoic acid in tobacco plants and cell cultures induced accumulation upon elicitation of defense responses and role as salicylic acid precursors. Plant Physiol., 2001, 125: 318-328
    52. Chultheiss H, Dechert C, Kogel K-H, Huckelhoven R. A small GTP-binding host protein is required for entry of Blumeria graminis f.sp. Hordei into barley epidermal cells. Plant Physiol., 2002, 128: 1447-1454
    53. Conrath U, Chen Z, Riciglano JR, Klessig DF. Two inducers of plant defense response, 2,6-dichloroisonicotinic acid and salicylic acid, inhibite catalase activity in tobacco. Proc. Natl. Acad. Sci. USA, 1995, 92: 7143-7147
    54. Cooney RV, Harwood PJ, Cuser LJ. Light mediated conversion of nitrogen dioxde to nitric oxide by carotenoids. Environ. Health Persepct., 1994, 102: 460-462
    55. Core F, Hahn MG. Oligosacchrides: Structure, and signal transduction. Plant Mol. Biol., 1994, 26: 1379-1411
    56. Cornelius S, Barry M, Llop-Tous I, Grierson D. The regulation of 1-aminocyclopropane-1-carboxylic acid synthase gene expression during the transition from system-1 to system-2 ethylene synthesis in tomato. Plant Physiol., 2000, 123: 979-986
    57. Corpas FJ, Barroso JB, Rio LA. Peroxisomes as a source of reactive oxygen species and nitric oxide signal molecules in plant cells. Trends Plant Sci., 2001, 6: 145-150
    58. Cote F, Hahn MG. Oligosaccharins: structures and signal of jasmonate in plants. Plant Mol. Biol., 1994, 26: 1411-1421
    59. Cote F, Hahn MG. Oligosacchrin: Structures and signal transduction. Plant Mol. Biol., 1994, 26: 1379-1411
    60. Creelman RA, Tierny ML, Muller JE. Jasmonic acid/methyljasmonate accumulation in wounded soybean hypocotyls and modulate wound gene express. Proc. Natl. Acad. Sci. USA, 1992, 89: 4938-4941
    61. Creelman RA, Muller JE. Biosynthesis and action of jasmonates in plant. Annu Rev. Plant Physiol. Plant Mol. Biol., 1997, 48: 355-381
    62. Dangl JL, Dietrich RA, Richberg MH. Death don't have no mercy: cell death programs in plant-microbe interactions. Plant Cell, 1996, 8: 1793-1807
    Dathe W, Ronsch H, Preiss A. Endogenuous plant hormones fo the broad been Vicia faba L
    
    63. (-)-jasmonc acid, a plant growth inhibitor in pericarp. Planta, 1981, 153: 530-535
    64. Delaney TP, Uknes S, Vernooij B, Klessig DF. A central role of salicylic acid in plant diseas resistance. Science, 1994, 266: 1247-1250
    65. Delaney TP, Uknes S, Vernooij B, Friedrich L, Weymann K, Negrotto D, Gaffney T, Gutrella M, Kessmann H, Ward E, Ryals JA. A central role of salicylic acid in plant disease resistance. Science, 1994, 266: 1247-1250
    66. Delledome M, Xia Y, Dixon RA, Lamb C. Nitric oxide function as a signal in plant disease resistance. Nature, 1998, 394: 585-588
    67. Díaz J,Arjen TH, Jan AL, Van Kan. The role of ethylene and wound signaling in resistance of tomato to Botrytis cinerea. Plant Physiol., 2002, 129: 1341-1351
    68. Desikan R, Neill SJ, Hancock JT. Hydrogen peroxide-induced gene expression in Arabidopsis thaliana. Free Radic Biol. Med., 2000, 28: 773-778
    69. Doares SH, Narvaez-Vasquez J, Conconi A. Salicylic acid inhibits synthesis of proteinase inhibitors in tomato leaves induced by systemin and jasmonic acid. Plant Physiol., 1985, 108: 1741-1746
    70. Doares SH, Narvaez-Vasquez J, Conconi A, Ryan CA. Salicylic acid inhibts synthesis of proteinase inhibitors in tomato leaves induced by systemin and jasmonic acid. Plant Physiol., 1995, 108: 1741-1746
    71. Doares SH, Syrovets T, Weiler EW, Ryan CA. Oligogalacturonides and chitosan activate plant defensive genes through the octadecanoid pathway. Proc. Natl. Acad. Sci. USA, 1995, 92: 4095-4098
    72. Doke N. Involvement of superoxide anion generation in hypersensitive responses of potato-tuber to infection with an incompatible race of Phytophthora-infestans and to the hyphal wall components. Physiol. Plant Pathol., 1983, 23: 345-357
    73. Donnell PJO, Calvent C, Atzorn R, Lamb C. Ethylene as a signal mediating the wound response of tomato plants. Science, 1996, 274: 1914-1917
    74. Du L, Chen Z. Identification of genes encoding receptor-like protein kinases as possible targets of pathogen- and salicylic acid-induced WRKY DNA-binding proteins in Arabidopsis. Plant Mol. Biol., 2000, 24: 387-396
    75. Durner J, Klessig DF. Inhiibition of ascorbate peroxidase by salicylic acid and 2,6-dichloroisonicotinic acid, two inhibitors of plant defense response. Proc. Natl. Acad. Sci., 1995, 92: 11312-11316
    76. Durner J, Klessig DF. Nitrix oxide as a signal in plants. Current opinion Plant Biol., 1999, 2: 369-374
    77. Durner J, Wendehenne D, Klessig DF. Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-ribose. Proc. Natl. Acad. Sic. USA, 1998, 95: 10328-10333
    Durner J, Shah J, Klessig DF. Salicylic acid and disease resistance in plants. Trends Plant
    
    78. Sci., 1997, 2: 266-274
    79. Echer JR. The ethylene signal transduction pathway in plants. Sciences, 1995, 268: 667-675
    80. Farmer EE, Ryan CA. Octadecanoid precursors of jasmonic acid activate the synthesis of wounding inducible proteinase inhibitors. Plant Cell, 1992, 4: 129-134
    81. Felix G, Boller T. Systemin induces rapid ion fluxes and ethylene biosynthesis in Lycopersicon peruaianum cells. Plant J., 1995, 7: 381-389
    82. Felix G, Grosskopf DG, Regenass M, Boller T. Rapid changes of protein phosphorylation are involved in transduction of the elicitor signal in plant cells. Proc. Natl. Acad. Sci. USA, 1991, 88: 8831-8834
    83. Foissner T, Wendehenne D, Langebartels C. Technical advance in vitro imaging of an elicitor induced nitric burst in tobacco leaves. Plant J., 2000, 23: 817-824
    84. Gaffney T, Friedrich L, Vernooij F, Klessig DF. Requirment of salicylic acid for the induction of systemic acquired ressitance. Science, 1993, 261: 754-756
    85. Giraudar J, Parcy F, Bertauche E. Current advances in abscisic acid action and signaling. Plant Mol. Biol., 1994, 26: 1557-1577
    86. Glazenre JA, Orlandi EW, Baker J. The active oxygen response of cell suspenison to incompatible bacteria is not sufficient to cause hypersensitive cell death. Plant Physiol., 1996, 110: 759-763
    87. Graham TL, Graham MY. Signaling in soybean phenylpropanoid responses (dissection of primary, secondary, and conditioning effects of light, wounding, and elicitor treatments. Plant Physiol., 1996, 110:1123-1133
    88. Grand C, Sarni F, Lamb CJ. Rapid induction by fungal elicitor of the synthesis of cinnamyl-alcohol dehydrogenase, a specific enzyme of lignin synthesis. Eur. J Biochem., 1987, 169: 73-77
    89. Grant JJ, Loake GJ. Role of reactive oxygen intermediates and cognate redox signal in disease resistance. Plant Physiol., 2000, 124: 21-30
    90. Groom QJ, Torres MA, Fordham-Skelton AP, Hammond-Kosack KE, Robinson NJ, Jones JDG. RbohA a rice homologue of the mammalian gp91phox respiratory burst oxidase gene. Plant J., 1996, 10: 515-522
    91. Guo ZJ, Lamb C, Dixon RA. Potentiation of the oxidative burst and isoflavonoid phytoalexin accumulation by Serine protease inhibitors. Plant Physiol., 1998, 118:1487-1494
    92. Gupta V, Willits MG, Glazebrook J. Arabidopsis thaliana EDS4 contributes to salicylic acid (SA)- dependent expression of defense responses: Evidence for inhibition of jasmonic acid signaling by SA. Mol. Plant-Microbe Interact., 2000, 13: 503-511
    Hahlbrock K, Scheel D, Logemann E, Nurnberger T, Parniske M, Reinold S, Sacks WR, Schmelzer EI. Oligopeptide elicitor-mediated defense gene activation in cultured
    
    93. parsley cells. Proc. Natl. Acad. Sci. USA, 1995, 92: 4150-4157
    94. Hammond-Kosack KE, Jones JD. Resistance gene dependent plant defence responses. Plant Cell, 1996, 8: 1773-1791
    95. Harding SA, Oh SH, Roberts DM. Transgenic tobacco expression a foreign calmodulin gene shows enhanced production of active oxygen species. EMBO J., 1997, 16: 1137-1144
    96. Heitz T, Bergey DR, Ryan CA. A gene encoding a chloroplast-targeted lipoxygenases in tomato leaves is transient induced by wounding, systemin and methyl jasmoate. Plant Physiol., 1997, 114: 1085-1093
    97. Hentze MW, Kuhu LC. Molecular control of vertebrate iron metabolism: mRNA based regulatory circuits operated by iron, nitric oxide and oxidative stress. Proc. Natl. Acad. Sci. USA, 1996, 93: 8175-8182
    98. Herde O, Atzon R, Fisahn J. Localized wounding by heat initiates the accumulation of proteinase inhibitor II in abscisic acid deficient plants by triggering jasmonic acid biosynthesis. Plant Physiol., 1996, 112: 853-860
    99. Hirt H, Scheel D. Receptor-mediated MAP kinase activation in plant defense. Curr. Opin. Plant Biol., 2000, 5: 325-331
    100. Howe GA, Lightner J, Brows J, Ryan CA. An octadecanoid pathway mutant (JL5) of tomato is compromised in signaling for defense against insect attack. Plant Cell, 1996, 8: 2067-2077
    101. Ito M, Ichinose Y, Kato H, Shiraishi T, Yamada T. Molecular evolution and functional relevance of the chalcone synthase genes of pea. Mol. Gen. Genet., 1997, 255: 28-37
    102. Jabs T, Tschope M, Colling C, Hahlbrock K, Scheel D. Elicitor stimulated ion fluxes and O2- from the oxidative burst are essential component in triggering defense gene activation and phytoalexin synthesis in parsley. Proc. Natl. Acad. Sci. USA, 1997, 94: 4800-4805
    103. Joseph A, Ciardi T, Denise M, Tieman J, Steven T, Lund F, Jeffrey B, Jones R, Stall BE, Klee HJ. Response to Xanthomonas campestris pv. Vesicatoria in tomato involves regulation of ethylene receptor gene expression. Plant Physiol., 2000, 123: 81-92
    104. Junghanns KT, Kneusel RE, Groger D, Matern U. Differential regulation and distribution of acridone synthase in Ruta graveolens. Phytochemistry, 1998, 49: 403-411
    105. Kee HJ. Molecular aspects of plant response to pathogen. Acta Physiologiae Plantarium, 1997, 19: 551-559
    106. Keen NT.Gene-for-gene complementarity in plant-pathogen interactions. Annu. Rev. Genet., 1990, 24:447-463
    107. Keller T, Damude HG, Werner D, Doerner P, Dixon RA, Lamb C. A plant homologue of the neutrophil NADPH oxidase gp91phox subunit gene encodes a plasma membrane protein with Ca2+ binding motifs. Plant Cell, 1998, 10: 255-266
    
    
    108. Keller T, Damude HG, Werner D, Doerner P, Dixon RA, Lamb C. A plant homologue of the neutrophil NADPH oxidase gp91phox subunit gene encodes a plasma membrane protein with Ca2+ binding motifs. Plant Cell, 1998, 10: 255-266
    109. Kiba A, Takeda T, Kanemitsu T, Toyoda K, Ichinose Y, Yamada T, Shiraishi T. Induction of defense responses by synthetic glycopeptides that have a partial structure of the elicitor in the spore germination fluid of Mycosphaerella pinodes. Plant Cell Physiol. 1999, 40: 978-985
    110. Klarzynski O, Descamps V, Plesse B, Yvin JC, Kloareg B, Fritig B. Sulfated fucan oligosaccharides elicit defense responses in tobacco and local and systemic resistance against tobacco mosaic virus. Mol. Plant Microbe Interact., 2003, 16: 115-22
    111. Klarzynski O, Plesse B, Joubert JM, Yvin JC, Kopp M, Kloareg B, Fritig B. Linear beta-1, 3 glucans are elicitors of defense responses in tobacco. Plant Physiol., 2000, 124: 1027-38
    112. Klessig DF, Durner J, Noad R, Navarre DA, Wendehenne D, Kumar D, Zhou JM, Shah J, Zhang S, Kachroo P, Trifa Y, Pontier D, Lam E, Silva H. Nitric oxide and salicylic acid signaling in plant defense. Proc. Natl. Acad. Sci. USA, 2000, 97: 8849-8855
    113. Klessig DF, Malamy J. The salicylic acid signal in plants. Plant Mol. Biol., 1994, 26: 1439-1458
    114. Klessig DF, Malamy J, Hennig J, Sanchez-Casas P, Indulski J, Grynkiewicz G, Chen Z. Induction, modification, and perception of the salicylic acid signal in plant defence. Plant J., 1994, 24: 837-847
    115. Klessig DF. Nitric oxide and salicylic acid signaling in plant defense. Proc. Natl. Acad. Sci. USA, 2000, 97, 8849-8855
    116. Kogel K-H, Beckhove U, Dreschers J, Münch S, Rommé Y. Acquired resistance in barley: the resistance mechanism induced by 2,6-dichloroisonicotinic acid is a phenocopy of a genetically based mechanism governing race-specific powdery mildew resistance. Plant Physiol., 1994, 106: 1269-1277
    117. Koiwa H, Bressan RA, Hasegawa PM. Regulation of protease inhibitors and plant defense. Trend Plant Sci., 1997, 9:379-384
    118. Kroj T, Rudd JJ, Nurnberger T, Gabler Y, Lee J, Scheel D. Mitogen-activated protein kinases play an essential role in oxidative burst-independent expression of pathogenesis-related genes in parsley. J. Biol. Chem., 2003, 278:2256-2264
    119. Kumar D, Klessig DF. Differential induction of tobacco MAP kinase by the defense signals nitric oxide, salicylic acid, ethylene and jasmonic acid. Mol. Plant Microbe Interact, 2000, 13: 347-351
    120. Kunkel BN, Brooks DM. Cross talk between signaling pathways in pathogen defense. Plant Cell, 2002, 14: 2627-2641
    Lamb C, Dixon RA. The oxidative burst in plant disease resistance. Annu. Rev. Plant
    
    121. Physiol. Plant Mol. Biol., 1997, 48: 251-275
    122. Laxalt AM, Beligni MV, Lamattina L. Nitric oxide preserves the level of chlorophyll in potato leaves infected by phytophythorn infestans. Eur. J. Plant Pathol. 1997, 103: 643-651
    123. Lecourieux D, Mazars C, Pauly N, Ranjeva R, Pugin A. Analysis and effects of cytosolic free calcium increases in response to elicitors in Nicotiana plumbaginifolia cells. Proc. Natl. Acad. Sci. USA, 2002, 88: 8179-8183.
    124. Lee H, Leen J, Rashin I. Biosynthesis and metablism of salicylic acid. Proc. Natl. Acad. Sci. USA, 1995, 92: 4076-4079
    125. Leen J, Shulaev V, Yalpani N. Benzoic acid-2-hygroxylase, a soluble oxygenase from tobacco, catalyze salicylic acid biosynthsis. Proc. Natl. Acad. Sci. USA, 1995, 92: 10413-10417
    126. Legendre L, Reuter S, Heistein PF, Low PS. Characterization of the oligogalacturonid induced oxidative burst in cultured soybean cells. Plant Phsyiol., 1993, 102: 233-244
    127. Leon J, Lawton MA, Raskin I. Hydrogen peroxide stimulates salicylic acid biosynthesis in tobacco. Plant Physiol., 1995, 108: 1673-1677
    128. Leon J, Rojo E, and Sanchez-Serrano JJ. Wound signalling in plants. J. Exp. Bot., 2001, 52: 1-9
    129. Leshem YY. Nitric oxide in biological systems. Plant Growth Regulation, 1996, 18: 155-159
    130. Leshem YY, Willis RBH, Ku VV-V. Evidence for the function of the free radical gas nitric oxide as an endogenous maturation and senescence regulation factor in higher plants. Plant Physiol. Biochem., 1998, 36: 825-833
    131. Levine A, Tenhaken R, Dixon R, Lamb C. H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell, 1994, 79: 583-593
    132. Lund S, Stell R, Klee HJ. Ethylene regulates the susceptible response to pathogen infection in tomato. Plant Cell, 1998, 10: 371-382
    133. Marcel AK, Jansen RIA E, Van Den Noort, M.Y. Adillah Tan, Els Prinsen, L. Mark Lagrimini, and Roger N.F. Thorneley. Phenol-oxidizing peroxidases contribute to the protection of plants from ultraviolet radiation stress. Plant Physiol., 2001, 126: 1012-1023
    134. Mcconn M, Creelman RA, Bell E, Muller JE. Jamonate is essential for insect defense in Arabidopsis. Proc. Natl. Acad. Sci. USA, 1997, 94: 5473-5477
    135. McDonald LJ, Murad F. Nitric oxide and cGMP signaling. Adv. Pharmacol., 1995, 34: 263-276
    McLusky SR, Bennett MH, Beale MH, Lewis MJ, Gaskin P, Mansfield JW. Cell wall alterations and localized accumulation of feruloyl-3'-methoxytyramine in onion epidermis at sites of attempted penetration by Botrytis allii are associated with actin
    
    136. polarization, peroxidase activity and suppression of flavonoid biosynthesis. Plant J., 1999, 17: 523-534
    137. Melan MA, Dong X, Endara ME. An Arabidopsis thaliana lipoxygenase gene can be induced by pathogens, abscisic acid, and methyle jasmoate. Plant Physiol., 1993, 7: 441-451
    138. Meyer M, Schreck R, Bauerle PA. H2O2 and antioxidants have opposite effects on activation of NF-kB and AP-1 in intact cells: AP-1 as secondary antioxidant responsive factor. EMBO J., 1993, 12: 2005-2015
    139. Milar AH, Day DA. Nitric oxide inhibits the cytochrome oxidase but not the alternative oxidase of plant mitochondria. FEBS letter, 1996, 398: 155-158
    140. Mittler R, Shulaev V, Lamb C. Coordinarted activation of programmed cell death and defense mechanism in transgenic tobacco plants expressing a bacterial proton pump. Plant Cell, 1995, 7: 29-42
    141. Modolo LV, Cunha FQ, Braga MR, Salgado I. Nitric oxide synthase-mediated phytoalexin accumulation in soybean cotyledons in response to the Diaporthe phaseolorum f. sp. meridionalis elicitor. Plant Physiol., 2002, 130: 1288-1297
    142. Moseyko N, Zhu T, Chang HS, Wang X, Feldman LJ. Transcription profiling of the early gravitropic response in Arabidopsis using high-density oligonucleotide probe microarrays. Plant Physiol., 2002, 130: 720-728
    143. Munch-Garthoff S, Neuhaus JM, Boller T, Kemmerling B, Kogel KH. Expression of beta-1,3-glucanase and chitinase in healthy, stem-rust-affected and elicitor-treated near-isogenic wheat lines showing Sr5-or Sr24-specified race-specific rust resistance. Planta, 1997, 201: 235-244
    144. Murgia I, Delledonne M, Soave C. Nitric oxide mediates iorn-induced ferrin accumulation in Arabidopsis. Plant J., 2002, 30: 521-528
    145. Nakano R, Ogura E, Kubo Y, Inaba A. Ethylene biosynthesis in detached young persimmon fruit is initiated in calyx and modulated by water loss from the fruit. Plant Physiol., 2003, 131: 276-286
    146. Nakatsubo N, Kojima H, Kikuchi K. Direct evidence of nitric oxide presence from bovine aortic endothelial using new fluorescence indicators: diaminefluoresceins. FEBS Lett., 1998, 427: 263-266
    147. Nakatsuka A, Murachi S, Okunishi H, Shiomi S, Nakano R, Kubo Y, Inaba A. Differential expression and internal feedback regulation of 1-aminocyclopropane -1-carboxylate synthase, 1-aminocyclopropane -1- carboxylate oxidase, and ethylene receptor genes in tomato fruit during development and ripening. Plant Physiol., 1998, 118: 1295-1305
    148. Navarre DA, Wendehenne D, Durner J, Noad R, Klessig DF. Nitric oxide modulates the activity of tobacco aconitase. Plant Physiol., 2000, 122: 573-582
    
    
    149. Neill SJ, Desikan R, Hancock J. Hydrogen peroxide signaling. Current Opin. Plant Biol., 2002, 5: 388-395
    150. Neill SJ, Desikan R, Clarke A, Hurst RD, Hancock JT. Hydrogen peroxide and nitrix oxide as signaling molecules in plants. J Exp. Botany, 2001, 373: 1237-1247
    151. Nelson MJ. The nitrix oxide complex of ferrous soybean lipoxygenase-substrate, pH, and ethanol effects on the active stie ion. J. Biol. Chem. 1987, 262: 12137-12142
    152. Neuenschwander V, Vermoij B, Friechrich L. Is hydrogen peroxide a scondary messenger of salicylic acid in systemic acquired resistance? Plant J., 1985, 8: 227-233
    153. Noritake T, Kawakita K, Doke N. Nitric oxide induces phytoalexin accumulation in potato tuber tissues. Plant Cell Physiol. 1996, 37: 113-116
    154. O'Donnell PJ, Calvert C, Atzorn R. Ethylene as a signal mediating the wound response to tomato plants. Science, 1996, 274: 1914-1917
    155. O'Donnell VB, Taylor KB, Parthasarathy S. 15-lipoxygenase catalytically consumers nitric oxide and impairs activation of guanylate cyclase. J. Biol. Chem., 1999, 274: 20083-20091
    156. Olson PD, Varner JE. Hydrogen peroxide and lignification. Plant J., 1993, 4: 887-892
    157. Ono E, Wong HL, Kawasaki T, Hasegawa M, Kodama O, Shimamoto K. Essential role of the small GTPase Rac in disease resistance of rice. Proc. Natl. Acad. Sci. USA, 2001, 98: 759-764
    158. Oroazco-cardenas ML, Ryan CA. Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoid pathway. Proc. Natl. Acad. Sci USA, 1999, 96: 6553-6557
    159. Orozco-Cardenas ML, Ryan CA. Nitric oxide negatively modulates wound signaling in tomato plants. Plant Physiol., 2002, 130: 487-493
    160. Orozco-Cardenas ML, Narvaez-Vasquez J, Ryan CA. Hydrogen peroxide acts as a second messenger for the induction of defense genes in tomato plants in response to wounding, systemin, and methyl jasmonate. Plant Cell., 2001, 13: 179-191
    161. Park J, Choi HJ, Lee S, Lee T, Yang Z, Lee Y. Rac-related GTP-binding protein in elicitor-induced reactive oxygen generation by suspension-cultured soybean cells. Plant Physiol., 2000, 124: 725-732
    162. Pearce G, Strydom D, Johnson S, Ryan CA. A polypeptide from tomato leave induces wounding-inducible proteinase inhibitor protein. Science, 1991, 263: 895-898
    163. Pena-Corres H, Prat S, Atzorn R, Ryan CA. ABA-deficient plants do not accumulate proteinase inhibitor II following systemin treatment. Planta, 1996, 198: 447-451
    164. Pena-corres H, Fisahn J, Willmitzer L. Signal involved in wound-induced proteinase inhibitors II gene expression in tomato and potato plants. Proc. Natl. Acad. Sci. USA , 1995, 92: 4106-4113
    Pena-Corres H, Prat S, Atzorn R, Ryan CA. ABA deficient plants do not accumulation
    
    165. protinase inhibor II following systemin treatment. Planta, 1996, 198: 447-451
    166. Piedras P, Hammond-Kosack KE, Harrison K, Jones JDG. Rapid, Cf-9- and Avr9-dependent production of active oxygen species in tobacco suspension cultures. Mol. Plant-Microbe Interact, 1998, 11: 1155-1166
    167. Ponath Y, Vollberg H, Hahlbrock K, Kombrink E. Two differentially regulated class II chitinases from parsley. Biol. Chem., 2000, 381: 667-678
    168. Rashin I, Skubatz H, Tang W. Salicylic acid level in thermogenic and nonthermogernic plants. Ann. Bot., 1990, 66: 369-373
    169. Raskin I. Role of salicylic acid in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol., 1992, 43: 439-463
    170. Reymond P, Farmer EE. Jasmonate and salicylic acid as global signal for defense gene expression. Curr. Opin. Plant. Biol., 1998, 1: 401-411
    171. Romeis T, Piedras P, Jones JD. Resistance gene-dependent activation of a calcium-dependent protein kinase in the plant defense response. Plant Cell, 2000, 12: 803-816
    172. Romeis T, Tang S, Hammond-Kosack K, Piedras P, Blatt M, Jones JDG. Early signalling events in the Avr9/Cf-9-dependent plant defence response. Mol. Plant Pathol. 2000, 1: 38-41
    173. Ryals J, Weymann K, Lawton K, Friedrich L, Ellis D, Steiner HY, Johnson J, Delaney TR, Jesse T, Vos P, Ukness S. The Arabidosis NIM protein shows honology to the mamalian transcription factor inhibitor FkB. Plant Cell, 1997, 9: 425-439
    174. Ryan CA, Moura DS. Systemic wound signaling in plants: a new perception. Proc. Natl. Acad. Sci. USA, 2002, 98: 12843-12847
    175. Ryan CA. The systemin-signaling pathway: differential activation of plant defensive genes. Biochim. Biophys. Acta, 2000, 1477: 112-121
    176. Sanchez-Casas P, Klessig DF. Salicylic acid binding activity and a salicylic acid -inhibitable catalase activity are presented in a variety of plant species. Plant Physiol., 1994, 106: 1675-1679
    177. Schaller A. Oligopeptide signalling and the action of systemin. Plant Mol. Biol., 1999, 405: 763-769
    178. Segal AW, Abo A. The biochemical basis of the NADPH oxidase of phagocytes. Trends Biochem. Sci., 1993, 18: 43-47
    179. Sembdnet G, Parthier B. The biochemistry and the physiological and molecular actions of jasmonates. Plant Mol. Biol., 1993, 44: 569-589
    180. Sembedner G, Parthier B. The biochemistry and the physiological and molecular actions of jasmonate. Annu. Rev. Plant Physiol. Plant Mol. Biol., 1993, 44: 569-589
    181. Seo S, Okamoto M, Seto H. Tobacco MAP kinase: A possible mediator in wound signal transduction pathway. Science, 1995, 270: 1988-1992
    
    
    182. Seo S, Sano H, Ohashi Y. Jasmonic acid in wound signal transduction pathways. Physiol. Planta, 1997, 101: 740-745
    183. Sheng J, Dovidio R, Mehdy MC. Negative and postive regulation of a novel proline-rich protein mRNA by fungal elicitor and wounding. Plant J., 1991, 3: 345-354
    184. Shirasu K, Nakajima H, Rajasekhar VK, Dixon RA, Lamb C. Salicylic acid potentiates a gain-control amplifying pathogen signals for activation of plant disease resistance mechanisms. Plant Cell, 1997, 9: 261-270
    185. Shulaev V, Leon J, and Raskin I. Is salicylic acid a translocated signal of systemic acquired resistance in tobacco? Plant Cell, 1995, 7: 1691-1701
    186. Sivasankar S, Sheldrick B, Rothstein SJ. Expression of allene oxide synthase determines defense gene activation in tomato. Plant Physiol., 2000, 122: 1335-1342
    187. Song WY, Wang GL, Chen LL, Kim HS, Pi LY, Holsten T, Ronald P. A receptor kinase like protein encode by the rice disease resistance gene. Science, 1995, 270: 1804-1806
    188. Spoel SH, Koornneef A, Claessens SM, Korzelius JP, Van Pelt JA, Mueller MJ, Buchala AJ, Metraux JP, Brown R, Kazan K, Van Loon LC, Dong X, Pieterse CM. NPR1 modulates cross talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol. Plant Cell, 2003, 15: 760-770
    189. Stennis MJ, Chandra S, Ryan CA, Low PS. Systemin potentiates the oxidative burst in cultured tomato cells. Plant Physiol., 1998, 117: 1031103-1031106
    190. Stotz HU, Koch T, Biedermann A, Weniger K, Boland W, Mitchell-Olds T. Evidence for regulation of resistance in Arabidopsis to Egyptian cotton worm by salicylic and jasmonic acid signaling pathways. Planta, 2002, 214: 648-652
    191. Suzuki K. MAP kinase cascades in elicitor signal transduction. J. Plant Res., 2002, 115: 237-244
    192. Takayama S, Sakagami Y. Peptide signalling in plants. Curr. Opin. Plant Biol., 2002, 5: 382-387
    193. Tavernier E, Wendehenne D, Blein JP, Pugin A. Involvment of free calcium in action of cryptogein a proteinaceous elicitor of hypersensitive reaction in tobacco cells. Plant Physiol., 1995, 109: 1025-1031
    194. Tenhaken FR, Rubel C. Salicylic acid is needed in hypersensitive cell death in soybean but does not act as a catalase inhibitor. Plant Physiol., 1997, 116: 291-298
    195. Thordal-Christensen H, Zhang Z, Wei Y, Collinge DB. Subcellular localization of H2O2 in plants: H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. Plant J., 1997, 11: 1187-1194
    196. Ton J, Van Pelt JA, Van Loon LC, Pieterse CM. Differential effectiveness of salicylate-dependent and jasmonate/ethylene-dependent induced resistance in Arabidopsis. Mol. Plant Microbe Interact., 2002, 15: 27-34
    Torres MA, Dangl JL, Jones JD. Arabidopsis gp91phox homologues AtrbohD and AtrbohF
    
    197. are required for accumulation of reactive oxygen intermediates in the plant defense response. Proc. Natl. Acad. Sci. USA, 2002, 99: 517-522
    198. Tripathy S, Venables BJ, Chapman KD. N-Acylethanolamines in signal transduction of elicitor perception. Attenuation of alkalinization response and activation of defense gene expression. Plant Physiol., 1999, 121: 1299-1308
    199. Tyler BM. Molecular basis of recognition between phytophthora pathogens and their hosts. Annu. Rev. Phytopathol., 2002, 40: 137-167
    200. Uknes S, Mauch-Mani B, Moyer M, Potter S, Williams S, Dincher S, Chandler D, Slusarenko A, Ward E, and Ryals J. Acquired resistance in Arabidopsis. Plant Cell, 1992, 4: 645-665
    201. Ulmasov T, Ohmiya A, Hagen G, Guifoyle T. The soybean GH2/4 gene that encode a glutathione S-transferase has a promoter that is activated by a wide range of chemical agents. Plant Physiol., 1995, 108: 919-927
    202. Van Camp W, Van Montagu M, Inze D. H2O2 and NO: redox signals in disease resistance. Trends Plant Sci., 1998, 3: 330-334
    203. Veit S, Worle JM, Nurnberger T, Koch W, Seitz HU. A novel protein elicitor (PaNie) from Pythium aphanidermatum induces multiple defense responses in carrot, Arabidopsis, and tobacco. Plant Physiol., 2001, 127: 832-841
    204. Vick BA, Zimmerman DC. Biosynthesis of jamonic acid by several plant species. Plant Physiol., 1984, 75: 458-461
    205. Whitham S, Dinesh-kumar SP, Choi D, Hehl R, Corr C, Baker B. The production of the tobacco mosaic virus resistance gene N: Similarity to toll and the interleukin-1 receptor. Cell, 1994, 78: 1101-1115
    206. Wink DA, Hanbauer I, Krishna MC, Klessig DF. Nitric oxide protects against cellular damage and cytotoxicity from reactive oxygen species. Proc. Natl. Acad. Sci. USA, 1993, 90: 9813-9817
    207. Wu G, Shortt BJ, Lawrence EB, Levine EB, Fitzsimons KC, Shah DM. Disease resistane conferred by experssion of a gene encoding H2O2 generation glucose oxidase in transgenic potato plants. Plant Cell, 1995, 7: 1357-1368
    208. Xing T, Higgins VJ, Blumwald E. Race-specific elicitor of Cladosporium fubuvm promte translation of cytosolic components of NADPH oxidase to the plasma membrane of tomato cells. Plant Cell, 1997, 9: 249-259
    209. Xu Y, Chang PFL, Liu D, Lamb C. Plant defense genes are synergistically induced by ethylene and methy jasmonate. Plant Cell, 1994, 6: 1077-1083
    210. Yamane H, Takagi H, Abe H. Idenfication of jasmonic acid in three species of higher plants and its biological activities. Plant Cell Physiol., 1981, 22: 689-697
    Yamasaki H, Sakihama Y. Simultaneous production of nitric oxide and peroxynitrite by plant nitrate redutase: in vitro evidence for the NR-dependent formation of active
    
    211. nitrogen species. FEBS Letter, 2001, 468: 89-92
    212. Yamaski H, Sakihama Y, Takahashi S. An alternative pathway for nitric oxide production in plants new feature of an old enzyme. Trends Plant Sci., 1999, 4: 128-129
    213. Yang Y, Klessig DF. Ioslation and characterization of a tobacco mosaic virus inducible myb oncogen homolog from tobacco. Proc. Natl. Acad. Sci. USA, 1996, 93: 14972-14977
    214. Yang Z. Small GTPases: versatile signaling switches in plants. Plant Cell [Suppl] 2002: 375-388
    215. Yoshioka H, Numata N, Nakajima K, Katou S, Kawakita K, Rowland O, Jones JDG, Doke N. Nicotiana benthamiana gp91phox homologs NbrbohA and NbrbohB participate in H2O2 Aacumulation and resistance to Phytophthora infestans. Proc. Natl. Acad. Sci. USA, 2003, 299: 6519-6520
    216. Yu D, Chen C, Chen Z. Evidence for an important role of WRKY DNA binding proteins in the regulation of NPR1 gene expression. Plant Cell, 2001,13: 1527-1540
    217. Yu D, Xie Z, Chen C, Fan B, Chen Z. Expression of tobacco class II catalase gene activates the endogenous homologous gene and is associated with disease resistance in transgenic potato plants. Plant Mol. Biol., 1999, 39: 477-488
    218. Zhang Y, Fan W, Kinkema M, Li X, Dong X. Interaction of NPR1 with basic leucine zipper protein trasncripiton factors that bind sequence required for salicylic acid induction of the PR-1 gene. Proc. Natl. Acad. USA, 1999, 96: 6523-6528
    219. Zhang Z, Collinge DB, Thordal-Christensen H. Germin-like oxalate oxidase a H2O2-producing enzyme accumulates in barley attacked by the powdery mildew fungus. Plant J., 1995, 8: 139-145
    220. Zhao J, Last R. Coordinate regulation of the tryptophan biosynthetic pathway and indolic phytoalexin accumulation in Arabidopsis. Plant Cell, 1996, 8: 2235-2244
    221. Zhou N, Tootle TL, Tsui F, Klessig DF, Glazebrook J. PAD4 functions upstream from salicylic acid to control defense responses in Arabidopsis. Plant Cell, 1998, 10: 1021-1030
    222. Zimmermann S, Nurnberger T, Frachisse JM, Wirtz W, Guern J, Hedrich R, Scheel D. Receptor-mediated activation of a plant Ca2+-permeable ion channel involved in pathogen defense. Proc. Natl. Acad. Sci. USA, 1997, 94: 2751-2755

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700