基于单位分解的非线性不确定系统模糊自适应镇定与跟踪控制分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在控制理论中,控制系统的设计都要以被控对象的数学模型为依据,然而对于任一被控对象的建模都不可能做到完全精确,必然存在不确定性。这些不确定性主要由以下两方面造成:一是系统外部的不确定性,如系统运行环境干扰等;二是系统内部的不确定性,如测量误差、未知参数以及被控对象的未建模动态等。这些不确定性往往会增加控制设计的难度,降低控制系统品质,以至于导致系统不稳定而无法正常运行。因此,如何基于不确定信息设计系统控制器不仅具有重要的理论意义,而且也具有重要的工程实践意义。
     本论文主要依据单位分解方法,针对具有不确定性的非线性控制系统,通过结合利用自适应控制、模糊控制、Backstepping等数学设计工具,为几类不确定非线性系统设计了自适应镇定和跟踪控制器,与已有的其它设计结果相比较,本文提出的基于单位分解的控制设计方法不仅能够有效地逼近系统的不确定性,而且能够有效地减少自适应律的数目。本文的主要研究内容如下:
     (1)针对一类严格反馈非线性系统,应用单位分解逼近系统的控制器,设计了自适应跟踪控制器。所提出的控制方案保证闭环系统的所有状态一致有界,并且使输出跟踪误差渐近收敛到零点的一个小领域内。以Duffing Forced Oscil1ationSystem为仿真对象,与已有的自适应模糊控制算法进行比较说明了本文所提出控制设计方案的有效性。
     (2)针对一类非线性系统,提出了具有PI结构的自适应鲁棒跟踪控制器。首先利用单位分解逼近系统中的不确定项,然后设计具有PI结构的鲁棒跟踪控制器,使得系统在幅值较大和变化较快的干扰下仍然保持良好的跟踪效果。同时保证闭环系统的所有状态和跟踪误差收敛到零点的一个小领域内。最后通过带有干扰项的倒立摆模型验证了本文提出的PI结构自适应鲁棒跟踪控制器的有效性。
     (3)研究了一类具有较少约束条件的严格反馈非线性系统的镇定问题。首先利用单位分解逼近系统的非线性不确定项,单位分解所造成的逼近误差则用鲁棒补偿器来抵消,其次将经滤波后的信号输入到控制器中,规避了在推导过程中产生的代数环问题。所提出的基于单位分解自适应方案不仅保证闭环系统所有状态终极一致有界,而且简化了稳定分析过程。仿真实例说明了所提出方案的有效性。
     (4)研究了一类具有严格反馈形式的非线性系统的跟踪控制问题。首先利用单位分解逼近期望的虚拟控制,然后结合Backstepping技术提出了基于单位分解的直接自适应控制方案。所提出的控制方案不仅保证了闭环系统的有界性和跟踪性,而且所提出的控制器结构简单,利用在线估计调节参数向量范数的思想设计自适应律,使自适应参数的数目减少到1。分别以Brusselator化学动态模型、单连杆机器人为仿真对象说明了本文所提出的控制设计方案的有效性。
     (5)研究了一类带有伸缩器和饱和器的单位分解自适应控制问题。首先在单位分解的输入和输出端串联伸缩器和饱和器生成扩展的单位分解,利用扩展的单位分解逼近非线性系统的不确定项,然后运用变结构的方法将整个控制过程分成开闭环两个过程:1)当系统的状态在给定的饱和度之外,此时系统处于开环状态。在这情况下,给出一个伸缩律,确保系统的状态在有限时间进入给定的饱和度范围内,迫使控制生效。2)当系统的状态进入饱和度范围内,设计控制器确保闭环系统的所有状态趋于零点附近很小的区域里,伸缩率也趋于零,此时我们认为扩展的单位分解具有较好的逼近精度。所提出方案的特点是:自适应律的个数与扩展的单位分解的基函数数目无关。最后通过带有干扰项的倒立摆模型验证了本文控制方案的有效性。
     (6)研究了一类基于无规则模糊逻辑系统的自适应控制方案。首先在无规则的模糊逻辑系统的输入端串联伸缩器和饱和器生成扩展的无规则模糊逻辑系统,利用扩展的无规则模糊逻辑系统来逼近非线性系统的未知函数,其中未知函数满足连续条件即可。同时采用变结构的方法将整个控制过程分成开闭环。本方案所设计的自适应律用来调节扩展的无规则模糊逻辑系统的逼近精度、利普希兹常数和伸缩因子,自适应律数目不会跟随系统状态变量及模糊集的个数增加而指数增长。而且该方案适用于各类的万能逼近器,不像传统的模糊自适应控制方法强调万能逼近器的输出形式满足基函数线性组合的固有模式,在一定程度上拓宽了万能逼近器的选取和模糊自适应方法的应用。最后通过带有干扰项的倒立摆模型验证本文控制方案的有效性。
     本论文受到广东省自然科学基金项目(No.8151009001000061)(No.10151009001000039)和广东省自然科学基金团队项目(No.8351009001000002)
The control design for most nonlinear systems is based on the accurate mathematical models. However, it is difficult to obtain the accurate information of controlled object. In general, the controlled systems possess uncertainly nonlinear property and operate under disturbances, such as structural uncertainty, parameter uncertainty and exogenous disturbances. These uncertainties and disturbances bring in variance between the practical systems and their mathematical models, and ultimately worsen the systems performance. Therefore it is extremely important to design controllers for nonlinear systems with uncertainties in real applications.
     Combining adaptive control, fuzzy control and Backstepping technique, this thesis focuses attention on the adaptive stabilization and tracking control problem of nonlinear uncertain systems based on the method of partition of unity. Compared to some existent results, the control methods in this thesis not only show the approximate capacity of the partition of unity but also reduce the number of adaptive laws. The main work and research results of this thesis lie in the following aspects:
     (1) An adaptive tracking control is developed for a class of nonlinear system. In the control design, partition of unity is used to approximate the controllers. The results show that the tracking errors converge to a small neighborhood of zero and states in the closed-loop system are bounded via the controllers. The developed design scheme is applied to design tracking controller for Duffing Forced Oscillation System. Simulation result demonstrates the effectiveness of the proposed scheme.
     (2) By utilizing the property that partition of unity can approximate any continuous functions on the compact set at arbitrary precision, the robust tracking controllers with PI structure and adaptive laws are designed for a class of uncertain nonlinear system with large and fast disturbances. The results show that the tracking errors converge to zero and all states in the closed-loop systems are bounded via the controllers. Numerical simulations are given to illustrate the validity of the proposed method.
     (3) A robust adaptive controller by using the Backstepping technique and the partition of unity method is proposed. At first, we use the partition of unity method to approximate the nonlinear uncertainties. Second, the smooth extension robust compensators are applied to suppress the partition of unity approximation errors. Meanwhile, the filter signals are employed to circumvent algebraic loop problems. By using suitable partition of unity, the proposed adaptive controllers in this paper guarantee that all the states of the closed-loop systems are uniformly ultimately bounded (UUB) as well as require fewer restrictive assumptions. A numerical example demonstrates the effectiveness of the proposed approach.
     (4) A novel adaptive controller based on partition of unity is presented for a class of strict-feedback nonlinear system. The partition of unity is used to approximate the uncertainties and a systematic design procedure is developed for synthesis of adaptive control which includes the Backstepping technique. The method preserves the main advantage is that the adaptive mechanism with only one learning parameter is obtained. The developed design scheme is applied to design tracking controller for Brusselator model and one-link robot manipulator. Simulation results demonstrate the effectiveness of the proposed scheme.
     (5) A novel adaptive EPU method stabilization control design scheme has been proposed for n order nonlinear system. The proposed method not only efficiently reduces the number of adaptive laws but also relaxes the restriction on universal approximators, whose output usually needs to be linear combination of basis functions in control design. The EPU has been proved with good approximation accuracy by tuning the scalar factor. Compared with the existing results, the main advantage of our result is different kinds of universal approxiamtors such as PU, neural network, fuzzy logic system, fuzzy logic system without rule bases, can use to approximate the nonlinear terms. Meanwhile, the adaptive laws have nothing to do with basis functions. Via variable structure method the controllers are designed in two cases:(i) If the states of controlled systems (SSs) increase in large ratio with time, the size of parameters of the scalars (SPS) increases by updated laws and the controllers are placed out of service, so that the systems is an open-loop. Increasing the SPS ensures that the SSs can go into the effective range of the saturator; (ii) If SSs go into the effective range of the saturator, the SPS decreases by the updated laws and the adaptive controller with EPU guarantees the states of the system controlled converge to a small region near the origin, so that the system is a closed-loop. At last, a comparison of the numerical example is given to illustrate the effectiveness of the approach.
     (6) A novel adaptive FWR stabilization control design scheme has been proposed for n order nonlinear system with scalars and saturators. The main advantages of this method are that the adaptive laws have nothing to do with fuzzy basis functions, because the proposed adaptive laws just use to tuning approximation accuracies of FWR, Lipschitz constants and scalar factor, and the FWR is benefit to control multiple variables systems. Compared with chapter 6, in this section, the unknown nonlinear functions just only satisfy continuous property on the compact set, which extends the applicability of the approach to different kinds of practice systems. Finally, a comparison of the numerical example is given to illustrate the effectiveness of the approach.
     This work was supported by the National Natural Science Foundation of Guangdong Province (No.8151009001000061), (No.10151009001000039), Team Project of the Guangdong Natural Science Foundation (No.8351009001000002).
引文
[1]F. Fagnani and S. Zampieri. Stability analysis and synthesis for scalar linear systems with a quantized feedback [J]. IEEE Transaction Automatic control.2003, 48(9):1569-1584.
    [2]Z. Sun and S. S. Ge. Switched linear systems:control and design [J]. IEEE Transaction Automatic control,2006,51 (9):1585-1586.
    [3]M. Cimino, P.R. Pagilla. A design technique for multirate linear systems [J]. IEEE Transaction Control systems technology,2009,17(6):1342-1349.
    [4]高为炳.非线性控制系统导论[M].北京:科学出版社,1988.
    [5]A. Isdori. Nonlinear Control Systems [M].2nd edition, Berlin:Springer-Verlag, 1989.
    [6]李春文,冯元馄.多变量非线性系统的逆系统方法[M].北京:清华大学出版社.1991.
    [7]冯纯伯,费树崛.非线性控制系统分析与设计[M].北京:电子工业出版社,1998.
    [8]S. S. Ge, Z. D. Sun, T. H. Lee. Nonregular feedback linearization for a class of second-order nonlinear systems [J]. Automatica,2001,37(11):1819-1824.
    [9]T. Proll and N. M. Karim. Nonlinear control of a bioreator model using exact and I/O linearization [J]. International Journal of Control,1994,60(4):499-519.
    [10]E. A. Bricaire, C. H. Moog, J. B. Pomet. A linear algebraic framework for dynamic feedback linearization [J]. IEEE Transactions Automatic Control,1995, 40(1):127-131.
    [11]A. J. L. Mancilla, R. A. Garcia, C. E. DAttellis. Exact linearization of nonlinear systems:trajectory tracking with bounded controls and state constraint [J]. International Journal of Control,1996,65(3):455-467.
    [12]Z. D. Sun and X. H. Xia. On nonregular feedback linearization [J]. Automatica, 1997,33(7):1339-1343.
    [13]M. J. Kurtz and M. A. Henson. Feedback linearzing control of discrete-time nonlinear systems with input constraints [J]. International Journal of Control,1998, 70(4):603-616.
    [14]M. Fliess, J. Levine, P. Martin, P. Rouchon. Flatness and defect of nonlinear systems: introductory theory and examples [J]. International Journal of Control,1995,61(6): 1327-1361.
    [15]K. Nam. An approximate nonlinear observer with polynomial coordinate transformation maps [J]. IEEE Transactions Automatic Control,1997,42(4):522-527.
    [16]R. M. Hirschorn and E. Aranda-Bricaire. Global approximate output tracking for nonlinear systems [J]. IEEE Transactions Automatic Control,1998,43(10):1389-1398.
    [17]D. Liberzon, A. S. Mo r s e, E. D. Sontag. Output-Input stability Minimum-phase nonlinear systems [J]. IEEE Transactions Automatic Control,2002,47(3):422-436.
    [18]R. Ortega, Z. P. Jiang, D. J. Hill. Passivity-based control of nonlinear systems:A tutorial [C]. Proceeding of the American Control Conference, Albuquerque,1997, 2633-2637.
    [19]J. Zhao, I. Kanellakopoulos. Active identification for discrete-time nonlinear systems-Part II:Strict-feedback systems [J]. IEEE Transactions Automatic Control, 2002,47(2):225-240.
    [20]A. N. Atassi and H. K. Khalil. Input-output models for a class of nonlinear systems [C]. Proceedings of the 36th Conference on Decision and Control, San Diego,1997, 2583-2587.
    [21]E. F. Costa and V. A. Oliveira. Gain scheduled controllers for dynamic systems using sector nonlinearities [J]. Automatica,2002,38(7):1247-1250.
    [22]A. M. Dabroom and H. K. Khalil. Output feedback sampled-data control of nonlinear systems using high-gain observers [J].2001,46(11):1712-1725.
    [23]冯纯伯,田玉平,忻欣.鲁棒控制系统设计[M].南京:东南大学出版社,1995.
    [24]申铁龙.Hx控制理论及应用[M].北京:清华大学出版社,1996.
    [25]K. M. Zhou, J. C. Doyle, K.Glover. Robust and Optimal Control [M]. New Jersey: Prentice Hall,1996.
    [26]吴敏,桂卫华.现代鲁棒控制[M].长沙:中南工业大学出版社,1998.
    [27]舒迪前,饶立昌,柴天佑.自适应控制[M].沈阳:东北大学,1993.
    [28]K. Nam and A. Arapostathis. A model reference adaptive control scheme for pure-feedback nonlinear systems [J]. IEEE Transactions Automatic Control,1988, 33(9):803-811.
    [29]R. Marino and R. Tomei. Global adaptive output-feedback control for a class of nonlinear systems, Part II:nonlinear parameterization [J]. IEEE Transactions Automatic Control,1993,38(1):33-48.
    [30]R. Marino, P. Tomei, I. Kanellakopoulos, P. V. Kokotovic. Adaptive tracking for a class of feedback linearizable systems [J]. IEEE Transactions Automatic Control, 1994,39(6):1314-1319.
    [31]R. Marino. Adaptive control of nonlinear systems:basic results and applications [J]. Annual Review of Control,1997,21:55-66.
    [32]D. D. Vecchio, R. Marino, P. Tomei. Adaptive learning control for feedback linearizable systems [C]. Proceedings of the American Control Conference, Arlington, 2001,2817-2821.
    [33]Z. Ding. Model reference adaptive control of dynamical output feedback linearizable systems with unknown high frequency gain [J]. IEE Proceedings:Control Theory and Application,1997,144(5):427-434.
    [34]I. K anellapolous, P. V. Kokotovic, A. S. Morse. Systematic design of adaptive controllers for feedback linearizable system [J]. IEEE Transactions Automatic Control,1991,36(11):1241-1253.
    [35]I. K anellapolous, P. V. Kokotovic, A. S. Morse. Adaptive output-feedback control of systems with output nonlinearities [J]. IEEE Transactions Automatic Control,1992, 37(11):1666-1682.
    [36]B. Aloliwi, H. K. Khalil. Adaptive output regulation of a class of nonlinear systems: convergence and robustness [J]. IEEE Transactions Automatic Control,1997, 42(12):1714-1716.
    [37]A. NAtassi, H. K. Khalil. A separation principle for the control of a class of nonlinear systems [J]. IEEE Transactions Automatic Control,2001,46(5):742-746.
    [38]S. Seshigiri, H. K. Khalil. Output feedback control of nonlinear systems using RBF neural network [J]. IEEE Transactions Neural network,2000,11(1):69-79.
    [39]H. K. Khalil. Adaptive output feedback control of nonlinear systems represented by input-output models [J]. IEEE Transactions Automatic Control,1996,41 (2):803-811.
    [40]M. Krstic and I. Kanellakopoulos. Adaptive nonlinear control without overparameterization [J]. System & Control Letters,1992,19(1):177-185.
    [41]Z. Ding. Adaptive control of triangular systems with nonlinear parameterization [J]. IEEE Transactions Automatic Control,2001,46(12):1963-1968.
    [42]A. R. Benaskeur, A. Desbiens. Backstepping-based adaptive PID control [J]. IEE Proceedings:Control Theory and Application,2002,149(1):54-59.
    [43]W. Chen and C. Xu. Adaptive nonlinear control with partial overparameterization [J]. Systems & Control Letters,2001,44(1):13-24.
    [44]V. O. Nikiforov and K. V. Voronov. Adaptive backstepping with a high-order tuner [J]. Automatica,2001,37(12):1953-1960.
    [45]R. Orteaga. On Morse's new adaptive controller:parameter convergence an transient performance [J]. IEEE Transactions Automatic Control,1993,38(8):1191-1202.
    [46]Y. Zhang, P. A. Ioannou, C. C. Chien. Parameter convergence of a new class of adaptive controllers [J]. IEEE Transactions Automatic Control,1996, 41(10):1489-1493.
    [47]J. S. Lin and I. Kanellakopoulos. Nonlinearities enhance parameter convergence in output-feedback systems [J]. IEEE Transactions Automatic Control,1998, 43(2):204-222.
    [48]J. S. Lin and I. Kanellakopoulos. Nonlinearities enhance parameter convergence in strict systems [J]. IEEE Transactions Automatic Control,1999,44(1):89-94.
    [49]W. Lin, C. Qian. Adaptive control of nonlinearly parameterized systems:nonsmooth feedback framework [J]. IEEE Transactions Automatic Control,2002,47(5):757-774.
    [50]A. M. Annaswamy, F. P. Skantze, A. P. Loh. Adaptive control of continuous time systems with convex/concave parameterization [J]. Automatica,1998,34(1):33-49.
    [51]G. Feng. An approach to adaptive control of fuzzy dynamics systems [J]. IEEE Transactions Fuzzy Systems,2002,10(2):268-275.
    [52]M. Hojati and S. Gazor. Hybrid adaptive fuzzy identification and control of nonlinear systems [J]. IEEE Transactions Fuzzy Systems,2002,10(2):198-210.
    [53]T. J. Koo. Stable model reference adaptive fuzzy control of a class of nonlinear systems [J]. IEEE Transactions Fuzzy Systems,2001,9(4):624-636.
    [54]L. Chen and K. S. Narendra. Nonlinear adaptive control using neural networks and multiple models [C]. American Control Conference,2000,6:4199-4203.
    [55]T. Zhang, S. S. Ge, C. C. Hang. Design and performance analysis of a direct adaptive controller for nonlinear systems [J]. Automatica,1999,35(11):1809-1817.
    [56]T. Zhang, S. S. Ge, C. C. Hang. Adaptive neural network control for strict-feedback nonlinear systems using backstepping design [J]. Automatic,2000,36(12): 1835-1846.
    [57]S. S. Ge and C. Wang. Direct adaptive NN control of a class of nonlinear systems [J]. IEEE Transactions Neural Network,2002,13(1):214-221.
    [58]H. D. Platino and D. Liu. Neural network-based model reference adaptive control system [J]. IEEE Transactions System, Man, and Cybernetic-Part B:Cybernetic, 2000,30(1):198-204.
    [59]M. E. Elbuluk, L. Tong, I. Husain. Neural-network-based model reference adaptive systems for high-performance motor drives and motion controls [J]. IEEE Transactions Industry Application,2002,38(3):879-886.
    [60]G. O. Guardbassi and S. M. Savaresi. Approximate linearization via feedback [J]. Automatica,2001,37(1):1-15.
    [61]G. Bartolini and P. Pydynowski. Asymptotic linearization of uncertain nonlinear systems by means of continuous control [J]. International Journal of Robust Nonlinear Control,1993,3(2):87-103.
    [62]X. P. Liu. On linearization of nonlinear singular control systems [C]. Proceedings of the 1993 American Control Conference. Jun 2-4 1993,2284-2287.
    [63]T. Oguchi, A. Watanabe T. Nakamizo. InPut-outPut linearization of retarded nonlinear systems by using an extension of Lie derivative [J]. International Journal of Control,2002,75(8):582-590.
    [64]程代展编著.非线性系统的几何理论[M],科学出版社,第一版,1988.
    [65]卢强,孙元章著.电力系统非线性控制[M].科学出版社,1993.
    [66]程代展陈翰馥秦华淑.非线性控制系统的层次化与机械化—关于新方向[J].1997,14(5):617-621.
    [67]R. W. Beard, G. N. Saridis, J. T. Wen. Galerkin Approximation of the generalized Hamilton-Jacobi-Bellman equation [J]. Automatica,1997,33(12):2159-2177.
    [68]R. W. Beard and T. W. McLain. Successive Galerkin approximation algorithms for nonlinear optimal and robust control [J]. International Journal of Control,1998, 71(5):717-743.
    [69]G. Y. Tang. Suboptimal control for nonlinear systems:A successive approximation approach [J]. Systems and Control Letters,2005,54(5):429-434.
    [70]唐功友,马慧.具有正弦扰动的时滞系统前馈-反馈次优控制:灵敏度法[J].自动化学报,2006,32(5):722-729.
    [71]U. I. Utkin. Variable structure systems with sliding modes [J]. IEEE Transaction Automatic Control,1977,22(2):212-222.
    [72]U. I. Utkin. Sliding Modes in Control and Optimization [M]. Springer-Verlag,1992.
    [73]C. M. Dorling and A. S. I. Zinober. Robust hyperplane design multivariable variable structure control system using a geometric approach [J]. International Journal of Control,1988,48(5):2043-2054.
    [74]K. K. D. Young and U. Ozguner. Frequency shaping compensator design for sliding mode [J]. International Journal of Control,1993,57(5):1005-1019.
    [75]F. Castanos and L. Fridman. Analysis and design of integral sliding manifolds for systems with unmatched perturbations [J]. IEEE Transactions Automatic Control, 2006,51:853-858.
    [76]R. Shahnazi and M. R. Akbarzadeh-T. Robust PI adaptive fuzzy control for a class of uncertain nonlinear systems [C]. IEEE International Conference Systems, Man, Cybernetics,2005,3:2566-2571.
    [77]R. Shahnazi and M. R. Akbarzadeh-T. Robust PI adaptive fuzzy control with large and fast disturbance rejection for a class of uncertain nonlinear systems [J]. IEEE Transactions Fuzzy Systems,2008,16(1):187-197.
    [78]王强德,陈卫田,魏春玲.一类不确定非线性系统的鲁棒自适应控制[J].理论与应用,2000,17(2):244-248.
    [79]L. Kanellapolous, P. V. Kokotovic, A. S. Morse. Systematic design of adaptive controllers for feedback linearizable system [J]. IEEE Transactions Automatic Control,1991,36(11):1241-1253.
    [80]M. Krstic and L. Kanellakopoulos. Adaptive nonlinear control without overparameterization [J]. System & Control Letters 1992,19(1):177-185.
    [81]B. Chen, X. P. Liu, K. F. Liu, C. Lin. Direct adaptive fuzzy control of nonlinear strict feedback systems [J]. Automatica,2009,45(6):1530-1535.
    [82]M. Wang, B. Chen, S. L. Dai. Direct Adaptive Fuzzy Tracking Control for a Class of Perturbed Strict-Feedback Nonlinear Systems [J]. Fuzzy Sets and Systems,2007, 158(24):2655-2670.
    [83]M. Wang, B. Chen, X.P. Liu, P. Shi. Adaptive Fuzzy Tracking Control for a Class of Perturbed Strict-Feedback Nonlinear Time-Delay Systems [J]. Fuzzy Sets and Systems,2008,159(8):949-967.
    [84]L. X. Wang. Stable adaptive fuzzy control of nonlinear systems [J]. IEEE Transactions Fuzzy Systems,1993,1(3):146-155.
    [85]B. S. Chen, C. H. Lee, Y. C. Chang. H∞ tracking design of uncertain nonlinear SISO systems:Adaptive fuzzy approach[J]. IEEE Transactions Fuzzy Systems,1996,4(1): 32-43.
    [86]S. C. Tong, H. X. Li, W. Wang. Observer-based adaptive fuzzy control for SISO nonlinear systems [J]. Fuzzy Sets and Systems,2004,148(3):355-376.
    [87]S. C. Tong, J. T. Tang, T. Wang. Fuzzy adaptive output tracking control of nonlinear systems [J]. Fuzzy Sets and Systems,2000,111(2):169-182.
    [88]S. C. Tong and H. X. Li. Direct adaptive fuzzy output tracking control of nonlinear system [J]. Fuzzy Sets and Systems,2002,128(1):107-115.
    [89]S. C. Tong, J. T. Tang, T. Wang. Fuzzy adaptive control of multivariable nonlinear systems [J]. Fuzzy Sets and Systems,2000,111(2):153-167.
    [90]H. X. Li and S. C. Tong. A hybrid adaptive fuzzy control for a class of nonlinear MIMO systems [J]. IEEE Trans Transactions Fuzzy Systems,2003,11(1):24-34.
    [91]A. Hamzaoui, N. Essounbouli, K. Benmahammed, J. Zaytoon. State observer based robust adaptive fuzzy controller for nonlinear uncertain and perturbed systems [J]. IEEE Transactions Systems, Man, and Cybernetics, Part B:Cybernetics,2004, 34(2):942-950.
    [92]S. Labiod, M. S. Baoucherit, T. M. Guerra. Adaptive fuzzy control of a class of MIMO nonlinear systems [J]. Fuzzy Sets and Systems,2005,151(1):59-77.
    [93]M. Hojati and S. Gazor. Hybrid adaptive fuzzy identification and control of nonlinear systems [J]. IEEE Transactions Fuzzy Systems,2002,10(2):198-210.
    [94]Y. C. Chang. Adaptive fuzzy-based tracking control for nonlinear SISO systems via vss and Hx approaches [J]. IEEE Transactions. Fuzzy Systems,2001,9(2): 278-292.
    [95]Y. C. Chang. Robust tracking control for nonlinear MIMO systems via fuzzy approaches [J]. Automatica,2000,36(10):1535-1545.
    [96]Y. S. Yang and J.S. Ren. Adaptive fuzzy robust tracking controller design via small gain approach and its application [J]. IEEE Transactions Fuzzy Systems,2003, 11(6):783-795.
    [97]Y. T. Kim and Z. Z. Bien. Robust adaptive fuzzy control in the presence of external disturbance and approximation error [J]. Fuzzy Sets and Systems,2004, 148(3):377-393.
    [98]H. G. Han and C. Y. Su. Robust fuzzy control of nonlinear systems using shape-adaptive radial basis functions [J]. Fuzzy Sets and Systems,2002, 125(1):23-38.
    [99]H. G. Han, C. Y. Su, Y. Stepanenko. Adaptive control of a class of nonlinear systems with nonlinearly parameterized fuzzy approximations [J]. IEEE Transactions Fuzzy Systems,2001,9(2):315-323.
    [100]J. H. Park, S. J. Seo, G. T. Park. Robust adaptive fuzzy controller for nonlinear system using estimation of bounds for approximation errors [J]. Fuzzy Sets and Systems, 2003.133(1):19-36.
    [101]X. P. Guan and C. L. Chen. Adaptive fuzzy control for chaotic systems with Hx tracking performance [J]. Fuzzy Sets and Systems,2003,139(1):81-93.
    [102]T. C. Lin, C. H. Wang, H. L. Liu. Observer-based indirect adaptive fuzzy-neural tracking control for SISO systems using VSS and Hx approaches [J]. Fuzzy Sets and Systems,2004,143(2):211-232.
    [103]B. M. AI-Hadithi, F. Matia, A. Jimenez. Robustness of fuzzy variable structure controler [J]. International Journal of System Signal Control and Engineering Application,2008, 1(1):38-48.
    [104]R. Alcala, J. Casillas, O. Cordon. F. Herrera. Building fuzzy graphs:features and taxonomy of learning non-grid-oriented fuzzy rule-based systems [J]. International Journal Intelligent Fuzzy Systems,2001,11(3-4):99-119.
    [105]M. R. Berthold and K. P. Huber. Constructing fuzzy graphs from examples [J]. Intelligent Data Analysis,1999,3(1):37-53.
    [106]M. K. Guven and K. M. Passino. Avoiding Exponential Parameter Growth in Fuzzy Systems [J]. IEEE Transactions Fuzzy systems,2001,9(1):194-199.
    [107]A. Laha and N. R. Pal. Some novel classifiers designed using prototypes extracted by a new scheme based on self-organizing feature map [J]. IEEE Transactions Systems, Man, and Cybernetics, Part B:Cybernetics,2001,31(6):881-890.
    [108]J. Kasac, B. Novakovic, D. Majetic, D. Brezak. Parameters Optimization of Analytic Fuzzy Controllers for Robot Manipulators[C]. In Proceedings of 9th International Conference on Computer Aided Optimum Design in Engineering, Skiathos,2005, Greece,23-25.
    [109]B. M. Novakovic. Fuzzy Logic Control Synthesis without Any Rule Base [J]. IEEE Transactions Systems, Man, and Cybernetics, Part B:Cybernetics,1999, 29(3):459-466.
    [110]B. Novakovic, D. Scap, D. Novakovic. An analytic approach to fuzzy robot control synthesis [J], Engineering Applications of Artificial Intelligence,2000,13(1):71-83.
    [111]R.W. Brockett. Nonlinear systems and differential geometry. Proceedings of IEEE, 1976,64(1):61-72.
    [112]李录贤,刘书静,张慧华,陈方方,王铁军.广义有限元方法研究进展[J].应用力学学报,2009,26(1):96-108.
    [113]A. Isidori. Nonlinear control system:an introduction [M]. New York:Spring-Verlag (2nd ed.),1989 and London Ltd:Spring-Verlag (3rd ed.),1995.
    [114]W. M. Boothby. An introduction to differential manifolds and Riemannian geometry [M]. New York:Academic Press INC,1986 (2nd Edition).
    [115]Y. H. Wang, Z. Y. Li, S. Y. Zhang. Approximation property of partition of unity and its applications [J]. Journal of control theory and applications,2004,2(3):267-275.
    [116]I. Babuska and J.M.Melenk. The partition of unity finite element method [J]. International Journal for Numerical Methods in Engineering,1998,40(4):727-758.
    [117]J. M. Melenk. The partition of unity finite element method:Basic theory and applications [J]. Computer methods in applied mechanics and engineering,1996, 39(1-4):289-314.
    [118]I. Babuska and J.M.Melenk. The partition of unity method[C]. TICAM, June 1996.The University of Texas at Austin, Austin, TX 78712.
    [119]T. Belytschko, Y. Krongauz, D. Organ, et al. Meshless methods:An over view and recent development [J]. Computer methods in applied mechanics and engineering, 1996,139(1-4):3-47.
    [120]W. K. Liu and Y. J. Chen. Wavelet and multiple scale reproducing kernel Methods [J]. International journal numerical methods in fluids,1995,21(10):901-931.
    [121]C. A. Duarte and J. T. Oden. An h-p adaptive method using clouds [J]. Computer methods in applied mechanics and engineering,1996,139(1-4):237-262.
    [122]J. M. Melenk and I. Babuska. The partition of unity finite element method:Basic theory and applications [J]. Computer methods in applied mechanics and engineering, 1996,139(1-4):289-314.
    [123]T. Belytschko, Y. Krongauz, D. Organ, et al. Meshless methods:an overview and recent developments [J]. Computer methods in applied mechanics and engineering, 1996,139(1-4):3-47.
    [124]Y. H. Wang. Z. Y. Li S. Y. Zhang. Universal approximator and control design based on partition of unity [J]. WSEAS Transaction Circuits and systems,2004, 3:1676-1681.
    [125]D. F. Han, Y. H. Wang, S. Y. Zhang. Control synthesis for a class of nonlinear systems based on partition of unity [J]. Journal of control theory and applications, 2007,5(2):145-151.
    [126]王银河,韩东方.基于单位分解的一类非线性系统变结构控制设计[J].控制与决策,2006,21(8):853-856.
    [127]王银河,张嗣赢.基于单位分解的一类非线性不确定系统跟踪控制设计[J].控制理论与应用,2006,23(5):699-702.
    [128]D. F. Han and Y. H. Wang. Guaranteed cost control for a class of nonlinear time-delay systems based on partition of unity [J]. International journal of innovative computing information and control,2008,4(7):1685-1693.
    [129]D. F. Han and Y. H. Wang. State feedback H2 control for a class of nonlinear systems using partition of unity method [J]. International journal of control, automation, and systems,2009,7(1):133-138.
    [130]S. M. Zhou and J. Q. Gan. Low level interpretability and high level interpretability: aunified view of data driven interpretable fuzzy system modeling [J]. Fuzzy Sets and Systems,2008,159(23):3091-3131.
    [131]V. D. Del and R. T. P. Marino. An adaptive learning control for feedback lineariable systems[C]. Proceedings of the American Control Conference. Arlington,2001, VA, 4:2817-2821.
    [132]M. Jankovic, R. Sepulchre, P. V. Kokotovic. Global adaptive stabilization of cascade nonlinear systems [J]. Automatica,1997,33(2):263-268.
    [133]P. Laurent. Asymptotic stabilization via output feedback for lower triangular systems with output dependent incremental rate [J] IEEE Transactions Automatic Control, 2003,48(6):1103-1108.
    [134]B. Carolyn and D. R. Minimality. Controllability and observability for uncertain systems[C]. Proceedings of the 1997 American Control Conference. Albuquerque, 1997, USA,5:3130-3135.
    [135]A. J. Krener and M. Q. Xiao. Observers for linearly unobservable nonlinear systems [J]. Systems Control Letter,2002,46(4):281-288.
    [136]C. J. Qian, W. Lin. Output feedback stabilization of planar systems with uncontrollable/unobservable linearization[C]. Proc 41st IEEE Conference Decisive Control. Las Vegas,2002, USA,4:4324-4329.
    [137]Z. Q. Wang, S. Skogestad, Y. Zhao. Exact linearization control of continuous bioreactors:A comparison of various control structures[C]. The Second IEEE Conference on Control Applications. Vancouver,1993, Canada,1.1:107-112.
    [138]A. M. Ferreira and S. K. Agrawal. Planning and optimization of dynamic systems via decomposition and partial feedback linearization[C]. In Proc. the 38th IEEE Conference on Decision and Control. Phoenix,1999, USA,1:740-745.
    [139]C. H. Moog, A. M. Perdon, G. Conte. Canonical decomposition of nonlinear systems [J]. Automatica,1997,33(8):1561-1565.
    [140]D. Z. Cheng, C. F. Martin. Normal form representation of control systems [J]. International Journal of Robust and Nonlinear Control,2002,12(5):409-433.
    [141]D. Z. Cheng, L.J. Zhang. Generalized normal form and stabilization of non-linear systems [J]. International Journal of Control,2003,76(2):116-128.
    [142]Y. Z. Tang, N. Y. Zhang, Y. D. Li. Stable fuzzy adaptive control for a class of nonlinear systems[J]. Fuzzy Sets and Systems,1999,104(2):279-288.
    [143]L. X. Wang. Stable adaptive fuzzy controllers with application to inverted pendulum tracking, IEEE Trans. Man, and cybernetics-part b:cybernetics [J].1996, 26(5):677-691.
    [144]Z. F. Gao, B. Jiang, R. Y. Qi, Y. F. Xu, Y.H. Cheng. Fuzzy Observer Design for Near Space Vehicle with Application to Sensor Fault Estimation [J]. ICIC Express Letters: An International Journal of Research and Surveys,2009,4(1):177-182.
    [145]P. L. Qin, X. Han, Y. Lin. Convergence Alaysis about Improved Model-free Adaptive Controller Based on Multi-innovation Theory [J]. ICIC Express Letters,2009, 3(3A):301-306.
    [146]A. M. Zou, Z. G. Hou, M. Tian. Adaptive control of a class of nonlinear pure-feedback systems using fuzzy backstepping approach [J]. IEEE Transactions Fuzzy Systems,2008,16(4):886-897.
    [147]I. Kanellakopoulos, P. V. Kokotovic, A. S. Morse, Systematic design of adaptive controllers for feedback linearizable systems [J]. IEEE Transactions Automatic Control,1991,36(11):1241-1253.
    [148]E. Kim and L. Sungryul. Output feedback tracking control of MIMO systems using a fuzzy disturbance observer and its applications to the speed control of a PM synchronous motor [J]. IEEE Transactions Fuzzy Systems,2005,13(6):725-741.
    [149]H. Lee and M. Tomizuka. Robust adaptive control using a universal approximator for SISO nonlinear systems [J]. IEEE Transactions Fuzzy System,2000,8(1):95-106.
    [150]Y. S. Yang and C. J. Zhou. Robust Adaptive Fuzzy Tracking Control for a class of Perturbed Strict-Feedback Nonlinear Systems via Small-Gain Approach [J]. Information Sciences,2005,170(2):211-234.
    [151]S. S. Ge, T. H. Lee, C. J. Harris. Adaptive Neural Network Control of Robotic Manipulators [M]. World Scientific, Landon,1998, Dec.
    [152]H. Haitham and B. Stephen. Analysis of linear systems with saturation using convex optimization [C]. In Proc. the 37th IEEE Conference on Decision and Control. Florida,1998, USA,1:903-908.
    [153]S. H. Zak. Stabilizing fuzzy system models using linear controllers [J]. IEEE Transactions Fuzzy System,1999,7(2):236-240.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700