基于无焰氧化的干法煤粉气化特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤气化技术是解决未来能源、环境和能源安全战略的核心技术之一,而我国煤炭的特点是高灰熔点煤的储量多,现有的气流床气化技术大都无法满足其高效气化的要求,因此亟待研发适合高灰熔点煤的先进煤气化技术。由于气化炉是煤气化技术中的最关键设备,因此,本文以高灰熔点煤的高效气化为背景,归纳分析了各种先进干煤粉气流床气化炉的炉型结构,将无焰氧化技术应用于粉煤气化,提出了一种基于无焰氧化的新型干法进料煤粉气化炉,进行了炉内冷态、煤粉气化的热态试验和数值计算,分析了高灰熔点煤在该气化炉中的气化特性,并以此为基础,对气化炉的结构进行了优化,提出了无焰氧化分级气化炉,对高灰熔点煤在该气化炉中气化特性进行了数值计算与分析。
     首先,对各种先进干煤粉气流床气化炉的炉型结构进行了总结与分类,逐一分析了每种类型的炉型结构特点、流场特性、温度分布及优缺点;根据不同形态燃料实现无焰氧化的技术特征和形成机理,归纳得出了实现无焰氧化技术的两条途径。由此设计了一种新型干煤粉气流床气化炉,论证了高灰熔点煤在该气化炉上实现高效气化和液态排渣的可行性进。
     其次,使用热线风速仪测量了冷态条件下煤粉气化试验炉炉内速度分布,分析了单喷嘴切向进风、双喷嘴错位切向进风和四喷嘴分级错位切向进风三种不同空气入炉方式和不同空气流量情况下的炉内气流流动特性,验证了该煤粉气化炉实现煤粉无焰氧化的可行性。
     再次,搭建了一套小型煤粉气化试验装置,完成了系统调试,进行了高灰熔点煤干法进料气化试验,观察了炉内气化反应的火焰图像特征;研究了不同工况下的煤气化特性,寻求高灰熔点煤在基于无焰氧化煤粉气化炉中气化的合适工况参数,为后续研究积累了经验。
     进而,建立煤粉气化炉的物理和数学模型,运用概率密度函数(PDF)方法对高灰熔点煤在基于无焰氧化的煤粉气化炉内的气化过程进行了模拟计算,参照小试的试验工况,验证了气化炉模型;分析了不同氧碳原子比、蒸汽煤比和气化压力对高灰熔点煤气化特性的影响,并可视化地研究在典型工况下高灰熔点煤在该气化炉中气化过程,为进一步炉型结构和气化工艺的优化设计提供依据。
     最后,将分级气化思想应用于无焰氧化的煤粉气化炉,对基于无焰氧化的煤粉气化炉进行了进一步改进,提出了一种基于无焰氧化的分级气化炉,对高灰熔点干煤粉在该无焰氧化分级气化炉中的气化特性进行了数值计算,分析氧碳原子比、蒸汽煤比和分级进料情况对气化结果的影响,这为后续的中试研究提供参考。
Coal gasification technology is one of the key means to account for energy sources, environment and energy safety in the future. However, there is plenty of high ash melting point coal in China which could not be gasified in almost all entrained flow bed gasifier currently, so it's imperative that a new coal gasification technology should be built out urgently. In coal gasification techniques, the gasifier is the key equipment which directly affects gasification characteristics, therefore flameless oxidant technology was applied to the design of new gasifier for high ash melting coal, and gasification characteristics in the gasifier were carried out by not only experiments under cold state and therma1 state, but also numerical simulations in this paper.
     Firstly, the all advanced types of dry feeding entrained flow bed gasifiers nowadays at home and abroad were summed up and classified, the structural and flow field characteristics, gasification reaction mechanism, temperature distributing inside the gasifier and the advantages and disadvantages of the the gasifier were detailedly analyzed; at the same time realization conditions, formation mechanism and implementation approaches of flameless oxidation technology also be explored in detail. So, a novel dry pulverized coal gasifier based on flameless oxidant which was applicable to high ash melting point coal was put forward, and the feasibility of high efficiency gasification and slag tapping for the coal on the gasifier were discussed.
     Secondly, cold state characteristics and aerodynamic field inside the experimental gasifier was tested using hot wire anemometer under three kind conditions, namely single nozzle tangential flow jet, double nozzles tangential flow jet symmetrically and staged-feeding four nozzles tangential flow jet symmetrically, according to the implementation approaches of flameless oxidation technology, so as to demonstrate the feasibility of flameless oxidation in the gasifier.
     Thirdly, a test system for coal gasifier was designed and built up, subsequently debug experiments were conducted. Then, gasification experiments of high ash melting point coal with dry pulverized coal feeding were carried out on the gasification test system, the flame images were observed to validate the feasibility of flameless gasification inside the gasifier, temperature distributing inner the gasifier and syngas components were measured under different [O]/[C] atom ratio and steam/coal ratio conditions. From these experimental results, the value range of key gasification parameters, including [O]/[C] atom ratio and steam/coal ratio mainly, could be obtained that will accumulate experiences for the subsequent research deeply.
     Fourthly, physical models and mathematical model of the gasifier were built, then three-dimensional numerical simulation of the gasifier for high ash melting point pulverized coal was conducted by using probability density function (PDF) model. From the simulation results, the veracity and feasibility of numeral gasification model could be verified by compared with the experimental results, the influence rules of [O]/[C] atom ratio and steam/coal ratio on gasification characteristics of high ash melting point coal could be drew, and the flow and components concentration field inner the gasifier could be study visually, that will provide evidences for optimal design further of the gasifier structure and gasification techniques.
     Finally, staged gasification was applied to the structure design of the gasifier, so a structure improved gasifier, namely staged gasifier based on flameless oxidation was put forward. Then the gasification numerical simulations of high ash melting point coal in the staged gasifier were conducted under different conditions, so as to analyze the effects of [O]/[C] atom ratio, steam/coal ratio and second stage reactants supply ratio on the gasification characteristics in the staged gasifier, all that will somewhat offer references for pilot test subsequently.
引文
[1]北京世经未来投资咨询有限公司.2008年煤炭行业风险分析报告[M].国家发展改革委,中国经济导报社.
    [2]国家统计局工业交通统计司与国家发改委能源局.中国能源统计年鉴2007[M].北京:中国统计出版社出版,2008-3.
    [3]《中国能源发展报告》编辑委员会.中国能源发展报告[M].北京:中国计量出版社,2003.
    [4]芦根玲.降低工业锅炉初始排尘浓度的对策[J].科技情报开发与经济,2004,14(4):212-214.
    [5] Zhong Tang, Yang Wang. Efficient and environment friendly use of coal[J]. Fuel Processing Technology, 2000, 62:137-141.
    [6] J. M. Beer. Combustion technology developments in power generation in response to environmental challenges[J]. Progress in Energy and Combustion Science, 2000, 26:301-327.
    [7] Minchener A J. Coal gasification for advanced power generation[J]. Fuel, 2005, 84(10): 2222-2235.
    [8]黄戒介,房倚天,王洋.现代煤气化技术的开发与进展[J].燃料化学学报,2002,30(5):385-391.
    [9]许世森,张东亮,任永强.大规模煤气化技术[M].北京:化学工业出版社,2006,243-304,338-342.
    [10] Christopher Higman, Marrten van der Burgt. Gasification[M]. USA:Gulf Professional Publishing, 2003, 109-128.
    [11] Tang Zhiguo, Ma Peiyong, Tang Chaojun, et al. Discussion on Gasification of High Ash Melting Point Pulverized Coal Using Excess Enthalpy Combustion[C]. International Conference on Power Engineering-2007, October 23-27, 2007, Hangzhou, China. 2007, Vol.1, 180-184.
    [12]于广锁,牛苗任,梁钦锋,等.气流床水煤浆气化技术的应用现状及开发进展[J].煤化工,2004.
    [13]唐志国,李永玲,唐超君,等.基于煤气化的CO2近零排放煤基能源系统的研究进展[J].煤炭转化,2009,32(1):85-90.
    [14]陈鹏.中国煤炭性质、分类和利用[M].北京:化学工业出版社,2001.
    [15]李寒旭,陈方林.配煤降低高灰熔融性淮南煤灰熔点的研究[J].煤炭学报,2002,27(5):529-533.
    [16] Anne Gaelle C. Matching gasification technologies to coal properties[J]. International Journal of Coal Geology, 2006, 65(3-4):191-212.
    [17]刘向军,朴泰俊.德士古气化炉内煤气化过程的数值研究[J].动力工程,2002,22(5):1932-1935.
    [18]王辅臣,龚欣,代正华,等.Shell粉煤气化炉的分析与模拟[J].华东理工大学学报,2003,29(2):202-205.
    [19]唐宏青.加压气流床煤气化制甲醇的过程模拟[J].化肥工业,2005,32(5):24-27.
    [20]株式会社日立制作所,巴巴库克日立株式会社.煤气化装置、煤气化方法及煤气化复合发电系统[P].CN1221446,1999-06-30.
    [21]于遵宏,龚欣,吴韬等.多喷嘴对置式水煤浆或煤粉气化炉及其应用[P].中国发明专利:CN98110616.1,1998-01-19.
    [22]于遵宏,于广锁.多喷嘴对置式水煤浆气化技术的研究开发与产业化应用[J].中国科技产业,2006,28-31.
    [23]许世森,任永强,危师让,等.两段式干煤粉气化炉[P].中国实用新型专利:CN01131780.9,2001-11-08.
    [24]任永强,许世森,夏军仓,等.两段式干煤粉加压气流床气化试验研究[J].热力发电,2007,8:27-30.
    [25]徐越,吴一宁,危师让.二段式干煤粉加压气流床气化技术的模拟研究与分析[J].中国电机工程学报,2003,23(10):186-190.
    [27]王辅臣,于广锁,龚欣,等.大型煤气化技术的研究与发展[J].化工进展,2009,28(2):173-179
    [28]韩启元,许世森.大规模煤气化技术的开发与进展[J].热力发电,2008,36(1):4-8.
    [29]王辅臣.大规模高效气流床煤气化技术基础研究进展[J].中国基础科学,2008,3:4-13
    [30]门长贵.干法粉煤加压气化技术的开发现状和应用前景[J].煤化工,2000,2,1:16-19.
    [31]参天水利资源工程研考会.淮南化工集团:突破气化难题发展淮南煤化工.工作通报. No.2004-4 .北京:中国社会科学院经济文化研究中心[2004-1-14].(http://www.ecrcass.com/ecrcass/CTTB/2004/2004-4.htm).
    [32]王洋,吴晋沪.中国高灰、高硫、高灰熔融性温度煤的灰熔聚流化床气化[J].煤化工,2005,117(2):3-5.
    [33]陈寒石,房倚天,黄戒介.加压灰熔聚流化床粉煤气化技术的研究与开发[J].煤炭转化,2000,23(1):56-60.
    [34]于遵宏,龚欣,吴韬,等.多喷嘴对置式水煤浆或煤粉气化炉及其应用[P].中国发明专利:CN98110616.1,1998-01-19.
    [35]于遵宏,于广锁.多喷嘴对置式水煤浆气化技术的研究开发与产业化应用[J].中国科技产业,2006,28-31.
    [36]许世森,任永强,危师让等.两段式干煤粉气化炉[P].中国实用新型专利:CN01131780.9,2001-11-08.
    [37]徐越,吴一宁,危师让.二段式干煤粉加压气流床气化技术的模拟研究与分析[J].中国电机工程学报,2003,23(10):186-190.
    [38]张荣光,那永洁,吕清刚.循环流化床煤气化平衡模型研究[J].中国电机工程学报,2005,25(18):80-85.
    [39]吴学成,王勤辉,骆仲泱.不同常压流化床煤气化方案的模型预测I.模型建立及验证[J].燃料化学学报,2004,32(3):287-291.
    [40]周宏仓,金保升,仲兆平.流化床部分煤气化实验研究热能动力工程[J].2004,19(3):252-255.
    [41]段钰锋,赵长遂,陈晓平,等.喷动流化床煤气化试验研究[J].燃烧科学与技术,2001,7(3):278-281.
    [42] Hugglns F E, Kosmack D A, Huffman G P. Correlation Between Ash fusion Temperatures and Ternary Eguitibrium Phase Diagrams[J], Fuel, 1981, 60(7): 577--584.
    [43]赵勇平,郑宝祥.德士古煤气化装置对原料煤的要求[J].大氮肥,1999,22(3):154-156.
    [44]焦发存,李慧,邓蜀平,等.配煤对煤灰熔融特性影响的实验研究[J].煤炭转化,2006,29(1):11-14.
    [45]薛永强,孙群,李寒旭.两种煤配煤降低淮南煤高灰熔融性温度的研究[J].安徽建筑工业学院学报(自然科学版),2006,14(1):93-96.
    [46]李寒旭,陈方林.配煤降低高灰熔融性淮南煤灰熔点的研究[J].煤炭学报,2002,27(5):529-533.
    [47]段日雄,糜裕宏,吴小青.高灰熔点淮南煤用于TEXACO水煤浆加压气化初探[J].山西煤炭,2002,23(2):21-23.
    [48]陈政.淮南煤用于德士古水煤浆加压气化技术研究[J].安徽化工,2006,141:31-33.
    [49]《大氮肥》编辑部.德国先进GSP技术破解“双高”煤利用难题[J].2005,28(5):317.
    [50]乌晓江,张忠孝,朴桂林,等.高灰熔点煤高温下煤焦CO2/水蒸气气化反应特性的实验研究[J].中国电机工程学报,2007,27(32):24-28.
    [51]乌晓江,张忠孝,朴桂林,等.煤粉加压气流床气化特性实验研究[J].工程热物理学报,2008,29(8):1431-1434.
    [52]乌晓江,张忠孝,朴桂林,等.高灰熔点煤加压气流床气化特性[J].燃烧科学与技术,2009,15(2):182-186.
    [53]贺根良,门长贵.双高煤的新型气流床气化技术开发的探讨[J].安徽化工,2008,34(5):45-47.
    [54] J. A. Wünning, J. G. Wünning, Flameless oxidation to reduce thermal no-formation[J]. Progress in Energy and Combustion Science, 1997, 23, 81-94.
    [55] I. O. Awosope, Flameless oxidation modelling: on application to gas turbine combustors[J]. Journal of the Energy Institute, 2006,79: 75-83.
    [56] W. Blasiak, W. H. Yang, K. Narayanan, et al. Flameless oxyfuel combustion for fuel consumption and nitrogen oxides emissions reductions and productivity increase[J]. Journal of the Energy Institute, 2007, 80(1):3-11.
    [57] J.G. Wünning. Flameless Combustion in the Thermal Process Technology[J]. Second International Seminar on High temperature Combustion in Stockholm– Sweden, January 17 th-18th, 2000.
    [58] F. J. Weinberg, Combustion temperatures: the future?[J]. Nature, 1971,233(24):239-241.
    [59] Yutaka Suzukawa, Shunichi Sugiyama, Yoshimichi Hino, et al. Heat transfer improvement and NOx reduction by highly preheated air combustion[J]. Energy Conversion and Management. 1997, 38(10):1061-1071.
    [60] Ashwani K. Gupta. Flame characteristics and challenges with high temperature air combustion[J]. Proceedings of 2000 International Joint Power Generation Conference. Miami Beach, Florida, July 23-26, 2000:1-18.
    [61] Flamme, Michael. Low NOx combustion technologies for high temperature applications[J]. Energy conversion and management 2001, 42:1919-1935.
    [62] Arvind Atreya, David Everest. Highly Preheated Combustion Air Furnace with Oxygen Enrichment for Metal Processing to Significantly Improve Energy Efficiency and Reduce Emissions[J]. www.iac.rutgers.edu, IACs.
    [63] J.S. Tsai, K.Yoshikawa, T Iwahashi. Thermal performance of a high temperature air combustion boiler[C]. Proc.of 27th Symposium (International) on Combustion, The Combustion Institute, 1998: 3135-3146.
    [64] Antonio Cavalierea, Mara de Joannon. Mild Combustion[J]. Progress in Energy and Combustion Science 2004,30:329–366.
    [65] Roman Weber, John P. Smart, Willem vd Kamp. On the (MILD) combustion of gaseous, liquid, and solid fuels in high temperature[J]. Proceedings of the Combustion Institute 2005, 30:2623–2629.
    [66] Michael F. Riley. Dilute oxygen combustion[M]. DOE/ID/13331-3, May 2000.
    [67] Xing xianjun, Lin Qizhao. Structure of Reaction Zone of Normal Temperature Air Flameless Combustion[J]. Proceedings of the Institution of Mechanical Engineers, Part A:Journal of Power and Energy, 2007, 221(4):473-480.
    [68]邢献军,林其钊.常温空气无焰燃烧中CO生成的研究[J].热能动力工程,2006,21(6):612-617
    [69] N. Shimo, Fundamental research of oil combustion with highly preheated air[J]. 2nd International Seminar on High Temperature air Combustion, Stockolm, Sweden, 2000-01.
    [70] R. C. Chang, W. C. Chang. Research of high temperature air combustion fired heavy oil[J]. 2nd International Seminar on High Temperature air Combustion, Stockholm, Sweden, 2001-01.
    [71] T. Suda, M. Takafuji, T. Hirata, et al, A study of combustion behavior of pulverized coal in high-temperature air[J]. Proceedings of the Combustion Institute, 2002, 29(1):503-509.
    [72] R. He, T. Suda, M. Takafuji, T.Hirata, et al. Analysis of low NO emission in high temperature air combustion for pulverized coal[J]. Fuel, 2004,83:1133-1141.
    [73] T. Kiga, K. Yoshikawa, M. Sakai et al. Characteristics of pulverized coal combustion in high-temperature preheated air[J]. Journal of Propulsion and Power, 2000,16(4):601-605.
    [74] Linde AG. Oxyfuel flameless combustion in a catenary furnace. http:// www.linde-gas.com/rebox.
    [75] J. G. Wünning, W. GmbH. Flox-Flameless combustion. Thermprocess-Symposium,2003.
    [1]唐志国,唐超君,马培勇,等.干煤粉加压气流床气化炉炉型分析[J].煤炭科学技术,2009,37(8):124-128.
    [2]于海龙,刘建忠,张桂芳,等.水煤浆气化炉的形式和新型气化炉的开发[J].煤炭转化,2007,30(1):21-25.
    [3] Christopher H, Marrten B. Gasification [M]. USA:Gulf Professional Publishing, 2003. 109-128.
    [4]任永强,韩启元.干法进料气流床煤气化技术的现状与发展[J].煤化工,2008,1:1-5.
    [5]许世森,张东亮,任永强.大规模煤气化技术[M].北京:化学工业出版社,2006,243-304,338-342.
    [6]任永强,许世森,夏军仓,等.两段式干煤粉加压气流床气化试验研究[J].热力发电,2007,8:27-30.
    [7]王辅臣,龚欣,代正华,等.Shell粉煤气化炉的分析与模拟[J].华东理工大学学报,2003,29(2):202-205.
    [8] Shozo K. 250MW air blown IGCC demonstration plant project[C]. Proceeding of the ICOPE 2003, Japan: Springer Press, 2003, 16-167.
    [9]株式会社日立制作所,巴巴库克日立株式会社.煤气化装置、煤气化方法及煤气化复合发电系统[P].CN1221446,1999-06-30.
    [10] William V, Salvador O, Javier A. An Eulerian model for the simulation of an entrained flow Coal gasier[J]. Applied Thermal Engineering, 2003, 23:1993-2008.
    [11] Watanabe H, Otaka M. Numerical simulation of coal gasification in entrained flow coal gasifier[J]. Fuel, 2006, 85:1935-1943.
    [12] J. A. Wünning, J. G. Wünning. Flameless oxidation to reduce thermal NO-Formation[J], Prog. Energy Combust. Sci. 1997, 23:81-94.
    [13] Franck Delacroix. The flameless oxidation mode: an efficient combustion device leading also to very low NOx emission levels. http://www.umweltbundesamt.at.
    [14] Yutaka Suzukawa, Shunichi Sugiyama, Yoshimichi Hino, et al. Heat transfer improvement and NOx reduction by highly preheated air combustion[J]. Energy Conversion and Management. 1997,38(10):1061-1071.
    [15] Ashwani K. Gupta. Flame characteristics and challenges with high temperature air combustion[C]. Proceedings of 2000 International Joint Power Generation Conference. Miami Beach, Florida, July 23-26, 2000:1-18.
    [16] Flamme, Michael. Low NOx combustion technologies for high temperature applications[J]. Energy conversion and management 2001, 42:1919-1935.
    [17] Arvind Atreya, David Everest. Highly Preheated Combustion Air Furnace with Oxygen Enrichment for Metal Processing to Significantly Improve Energy Efficiency and Reduce Emissions. http://www.iac.rutgers.edu, IACs.
    [18] J.S. Tsai, K.Yoshikawa, T Iwahashi. Thermal performance of a high temperature air combustion boiler[C]. Proc.of 27th Symposium (International) on Combustion, The Combustion Institute, 1998: 3135-3146.
    [19] I.O.Awosope. Flameless oxidation modeling: on application to gas turbine combustors[J]. Journal of the Energy Institute 2006, 79(2):75-83.
    [20] W. Blasiak, W. H. Yang, K. Narayanan, et al, Flameless oxyfuel combustion for fuel consumption and nitrogen oxides emissions reductions and productivity increase[J], Journal of the Energy Institute, 2007,80(1):3-11.
    [21] Antonio Cavalierea, Mara de Joannon. Mild Combustion[J]. Progress in Energy and Combustion Science. 2004, 30:329–366.
    [22] Roman Weber, John P. Smart, Willem vd Kamp. On the (MILD) combustion of gaseous, liquid, and solid fuels in high temperature[J]. Proceedings of the Combustion Institute, 2005, 30:2623–2629.
    [23] Michael F. Riley. Dilute oxygen combustion. DOE/ID/13331-3, May 2000.
    [24] Xing xianjun, Lin Qizhao. Structure of Reaction Zone of Normal Temperature Air Flameless Combustion[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2007, 221(4):473-480.
    [25]邢献军,林其钊.常温空气无焰燃烧中CO生成的研究[J].热能动力工程,2006,21(6):612-617
    [26]唐志国,程建萍,唐超君,等.无焰燃烧技术的实现途径及其节能环保特性分析[C].安徽节能减排博士科技论坛,2007:274-280.
    [27]吴学成,王勤辉,骆仲泱,等.气化参数影响气流床气化的模型研究(Ⅱ)—模型预测及分析[J].浙江大学学报(工学版),2004,38(11):1483-1489.
    [28] Tang ZG, Ma PY, Tang CJ, et al. Discussion on gasification of high ash melting point pulverized coal using excess enthalpy combustion[C]. In:Proceedings of the ICOPE 2007, China: Springer Press, 2007, 1:180-184.
    [29] Christopher Higman,Marrten van der Burgt. Gasification[M]. USA:Gulf Professional Publishing, 2003.
    [30]汤中文.干法粉煤气化技术进展及工艺影响因素[J].大氮肥,2003,26(3):149-152.
    [31]曹芳贤,郑宝祥.灰渣粘温特性对液态排渣气化炉运行的影响[J].大氮肥,2002,25(6):369-372.
    [32]于戈文,王延铭,徐元源.弱还原性气氛条件下CaO对高灰熔点煤灰熔融性影响的研究[J].内蒙古科技大学学报,2007,26(1):59-61.
    [33] K. Y. oshikavva. Innovative coal gasification system with high temperature air[J], Fuel and Energy Abstracts, 1998,39(1):68-68.
    [34]贺永德.现代煤化工技术手册[M].北京:化学工业出版社,2006.
    [35]徐振刚,宫月华,蒋晓林.GSP加压气流床气化技术及其在中国的应用前景[J].洁净煤技术,1998,4(3):9-11.
    [36]唐宏青.GSP工艺技术[J].中氮肥,2005,(2):14-18.
    [1]蔡武昌,应启戛.新型流量检测仪表[M].北京:化学工业出版社,2006.
    [2]于建文,刘晓东,黄金瑞.几种先进测量技术浅析[J].锅炉制造,2002,3:78-80.
    [3]陆肖马,徐旭常,糕玉群.W型火焰煤粉锅炉燃烧室中冷态二维流场测试及火焰三维传热数值计算[J].工程热物理学报,1995,16(2):193-198.
    [4]皇甫凯,林徐璋,张雪梅,等.热线风速仪在测量电站风量中的实验研究[J].电站系统工程,2009,25(3):17-19.
    [5]王仑,周远,候宇葵.热线风速仪低温测速的初步研究[J].真空与低温,2001,7(2):89-91.
    [6]吴志军,尹程秋.运用热线风速仪研究内燃机的流动特性[J].吉林工业大学自然科学学报,1999,29(2):91-95.
    [7]吴小江.热线风速仪在内燃机中应用的研究[J].拖拉机与农用运输车,2002,5:19-21.
    [8]李格升.单丝热线测量两段燃烧炉内流场的方法[J].武汉交通科技大学学报,1996,20(4):387-391.
    [9]李格升.两段燃烧炉炉膛冷态模化试验研究J].武汉水运工程学院学报,1990,14(2):166-172.
    [1]吴勇强,唐黎华,朱学栋,等.超高温气流床煤气化模试装置的研制和应用[J].实验技术与管理,2006,23(3):52-54.
    [2]张志文,郭庆华,于广锁等.多喷嘴气化炉气体浓度及撞击火焰高度分析.煤炭转化,2008,31(1):26-29.
    [3]赵辉.生物质高温气流床气化制取合成气的机理试验研究[D].浙江大学博士论文,2007.7.
    [4]李永恒.煤气炉高径比等相关的技术问题解答[J].专家论坛,2005,75:1-4.
    [5]付国民,王佐民,刘伟军.微量给粉装置的设计与实验[J].哈尔滨理工大学学报,2004,9(3):8-10.
    [6]刘洁,王德俊,王丽霞.螺旋压力机传动类型选择[J].机械传动,2004,28(2):64-62.
    [7] Sexton C L, Steen W M, Watkins K G, et al. Triple hopper powder feeder system for variable composition laser cladding[J]. SPIE, 1994, 2306: 824-834.
    [8]沈湘林,熊源泉.煤粉加压密相输送实验研究[J].中国电机工程学报,2005,25(24):103-107.
    [9]张杰,高铁瑜,渠亚东.微细微量螺旋加料器的试验研究[J].热能动力工程,2004,19(3):278-280.
    [10] HE W, CHEN Q. Three-dimensional simulation of a molten carbonate fuel cell stack under transient conditions[J].Journal of Power Sources, 1998, 73(2): 182-192. [11刘世锋,王述洋,姜年勇,等.生物质立式螺旋进料器的设计应用[J].机电产品开发与创新,2006,19(4):52-53.
    [12]洪致育,林良明.连续运输机[M].北京:机械工业出版社,1982:219-241.
    [13]范祖尧,胡宗武,徐履冰.非标准机械设备设计手册[M].北京:机械工业出版社,2003:293-298.
    [14]唐志国,林其钊.加压微量螺旋给粉[P].实用新型授权号ZL200720033965.6,2008-01-23.
    [15]唐志国,林其钊.加压微量螺旋给粉[P].发明申请号CN200710019896.8,发明公开号CN101012031,2007-08-08.
    [16]刘影,宋子勤,包克福.煤粉锅炉点火技术及其发展[J].发电设备,2001,(4):13-16.
    [17]冯武军,李栋,赵立合,等.高温空气煤粉点火的试验研究[J].煤炭学报,2004,29(5):611-613.
    [18]刘圣勇,刘志刚,李遂亮,等.煤粉锅炉液化气点火装置的理论与实践[J].热能动力工程,1999,14(6):447-449.
    [19]陈燕,王恒,赵立合,等.电站煤粉锅炉无油点火技术分析[J].工业加热,2005,34(1):25-27.
    [20]涂建华,姚强,岑可法.电热管法煤粉多级点火稳燃技术的研究[J].发电设备,1997,(7):8-10.
    [21]边立秀,李燕,李亚南,等.几种无油直接点火煤粉燃烧器的应用研究[J].节能,2008,(11):28-30.
    [22]刘迎晖,冯波,周英彪,等.激光点火煤粒周围的温度场[J].工程热物理学报,1998,19(5):642-645.
    [23]贺永德.现代煤化工技术手册[M].北京:化学工业出版社,2006.
    [24]许世森,张东亮,任永强.大规模煤气化技术[M].北京:化学工业出版社,2006,243-304,338-342.
    [25]肖睿.煤加压部分气化试验研究与数值模拟[D].博士论文,东南大学,2005.
    [26]谢克昌.煤的结构与反应性[M].北京:科学出版社,2002.
    [27]乌晓江,张忠孝,朴桂林,等.高灰熔点煤高温下煤焦CO2/水蒸气气化反应特性的实验研究[J].中国电机工程学报,2007,27(32):24-28.
    [28]乌晓江,张忠孝,朴桂林,等.煤粉加压气流床气化特性实验研究[J].工程热物理学报,2008,29(8):1431-1434.
    [29]贺根良,门长贵.双高煤的新型气流床气化技术开发的探讨[J].安徽化工,2008,34(5):45-47.
    [30]吴学成,王勤辉,骆仲泱,等.气化参数影响气流床气化的模型研究(Ⅱ)—模型预测及分析[J].浙江大学学报(工学版),2004,38(11):1483-1489.
    [31] Tang Zhiguo, Ma Peiyong, Tang Chaojun, et al. Discussion on gasification of high ash melting point pulverized coal using excess enthalpy combustion[C]. Proceedings of International Conference on Power Engineering-2007,. Hangzhou, 2007, 1:180-184.
    [32]汤中文.干法粉煤气化技术进展及工艺影响因素[J].大氮肥,2003,26(3):149-152.
    [33] Oshikavva K Y. Innovative coal gasification system with high temperature air[J]. Fuel and Energy Abstracts, 1998, 39(1):68-68.
    [34]周俊虎,匡建平,周志军,等.粉煤气化炉冷态和热态流场分布特性的数值模[J].中国电机工程学报,2007,27(20):30-35.
    [35]吴玉新,张建胜,王明敏,等.用简化PDF模型对气化炉运行特性的分析[J].中国电机工程学报,2007,27(32):57-62.
    [1] Govind R, Shah J. Modelling and simulation of an entrained flow coal gasifier[J]. Am. Inst. of Chem. Engineers, 1984, 30: 79-92
    [2] Kovacik GJ, Knill KJ. Numberical simulation of coal gasification reactors. In: Combustion modeling scaling and air toxics(R), USA: International joint power generation conference, 1994.
    [3] Rezaei HR, Liu GS, et al. CFD application to combustion and gasification process[R]. Australia: Research symposium on entrained flow gasification, 1999.
    [4] Y.C. Choi, X.Y. Li, T.J. Park, et al. Numerical study on the coal gasification characteristics in an entrained flow coal gasifier[J]. Fuel, 2001,80:2193-2201.
    [5] H. Watanabe, M. Otaka. Numerical simulation of coal gasification in entrained flow coal gasifier[J]. Fuel, 2006, 85: 1935–1943.
    [6] W. Vicente, S. Ochoa, J. Aguillon, et al. An Eulerian model for the simulation of an entrained flow coal gasifier[J]. Applied Thermal Engineering,2003: 1993-2008.
    [7] Gerun L, Tazerout M. Numerical investigation of the partial oxidation in a two-stage downdraft gasifier[J]. Fuel,2008, 87: 1383-1393.
    [8] Caixia Chen, Masayuki Horio, Toshinori Kojima. Numerical simulation of entrained flow coal gasifiers. Part I: modeling of coal gasification in an entrained flow gasifier[J]. Chemical Engineering Science, 2000, 55:3861-3874.
    [9] Caixia Chen, Masayuki Horio, Toshinori Kojima. Numerical simulation of entrained flow coal gasifiers. Part II: effects of operating conditions on gasifier performance[J]. Chemical Engineering Science, 2000, 55:3875-3883.
    [10] Caixia Chen, Masayuki Horio, Toshinori Kojima. Use of numerical modeling in the design and scale-up of entrained flow coal gasifiers[J]. Fuel, 2001, 80(10):1513-1523.
    [11] Liu H, Kojima1 T. Theoretical Study of Coal Gasification in a 50 ton/day HYCOL Entrained Flow Gasifier. I. Effects of Coal Properties and Implications[J]. Energy & Fuels, 2004, 18: 908-912.
    [12] Liu H, Kojima1 T. Theoretical Study of Coal Gasification in a 50 ton/day HYCOL Entrained Flow Gasifier. II. Effects of Operating Conditions and Comparison with Pilot-Scale Experiments[J]. Energy & Fuels, 2004, 18: 913-917.
    [13] Bockelie M.J., Denison M.K., Chen Z.S., et al. CFD modeling for entrained flow gasifiers for Vision 21 energyplex systems[C]. Proceedings of the 19th annual international Pittsburgh Coal Conference, Pittsburgh, PA, USA, 2002, Sept.24-26.
    [14]贺阿特,冯宵,董绍平,等.德士古渣油气化炉的数值模拟[J].高校化工学报,2001,15(6):526-531.
    [15]于海龙,赵翔,周志军,等.氧碳原子比和水煤浆质量分数对水煤浆气化影响的数值模拟[J].燃料化学学报,2004,32(4):390-394.
    [16]于海龙,赵翔,周志军,等.氧煤比对水煤浆气化影响的数值模拟[J].煤炭学报,2004,29(5):606-610.
    [17]于海龙,刘建忠,张超,等.多喷嘴对置与新型水煤浆气化炉气化的对比[J].煤炭学报,2007,32(5):526-530.
    [18]于海龙,赵翔,周志军,等.煤浆浓度对水煤浆气化影响的数值模拟[J].动力工程, 2005, 25(2):217-220,238.
    [19]于海龙.新型水煤浆气化喷嘴和气化炉开发以及气化过程的模拟[D].博士论文,浙江大学,2004.
    [20]王增莹,梁钦锋,张志文,等.撞击气流床气化炉内浓度场和温度场的数值模拟[J].计算机与应用化学,2007,24(10):1319-1323.
    [21]周俊虎,匡建平,周志军,等.利用液态CO2提高水煤浆煤水配比对气化效果影响的数值模拟[J].中国电机工程学报,2006,26(24):100-105
    [22]周俊虎,匡建平,周志军,等.粉煤气化炉冷态和热态流场分布特性的数值模[J].中国电机工程学报,2007,27(20):30-35.
    [23]吴玉新,张建胜,王明敏,等.简化PDF模型对Texaco气化炉的三维数值模拟[J].化工学报,2007,58(9):2369-2374.
    [24]吴玉新,张建胜,王明敏,等.用简化PDF模型对气化炉运行特性的分析[J].中国电机工程学报,2007,27(32):57-62.
    [25]吴玉新,张建胜,岳光溪,等.采用简化PDF模型分析分级气流床气化炉的气化特性[J].中国电机工程学报,2008,28(26);29-34.
    [26] Zhang Jiansheng, Hu Wenbin, et al. Experimental measurement on the spray particles of triple channel nozzle[C]. The 4th International Symposium on Measurement Techniques for Multiphase Flows. Hangzhou: International Academic Publishers world Publishing Corporation, 2004: 82-8.
    [27] Wu Yuxin, Zhang Jiansheng, Yue Guangxi, et al. Numerical simulation of the gas flow field from a triple channel coal-water slurry gasifier nozzle[J]. Tsinghua Univ: Sci. & Tech., 2006, 46:691-695.
    [28] Zhang Huiqiang, Chen xinglong, Zho Lixing, et al. Review on numerieal modeling of turbulent combustion[J]. Advances in Mechanics, 1999, 29(4):567- 575.
    [29]王志强.煤粉燃烧的算例分析(一)[J].数值计算与工程仿真,2004,1(1):34-68.
    [30] Jones W P, Whitelaw J H. Calculation methods for reacting turbulent flows: a Review of Combustion and Flame, 1982, 48:1-26.
    [31]张巍.气固两相流PDF模型及直接点火燃烧器数值模拟[D].硕士学位论文,浙江大学,2004.
    [32] Shih T H, Liou W, Shabbir A, et al. A newk-εeddy viscosity model for high Reynolds number trubulent flows[J]. Computers Fluids, 1995,(24):227-238.
    [33]吴玉新,张建胜,岳光溪,等.用于Texaco气化炉同轴射流计算的不同湍流模型的比较[J].化工学报,2007,58(3):537-543.
    [34] Fluent Inc. Fluent 6.1 User' Guide. USA: Fluent Inc, 2003.
    [35] Zhou M, Yan Lifeng. Non-premixed combustion model of fluidized bed biomass gasifier for hydrogen-rich gas[J]. Chinese Journal of Chemical Physics, 2006(2):131-136.
    [36] Pope SB. PDF Methods for Turbulent Reactive Flows. Prog. Energy Combust. Sci., 1985, l(11):119-192.
    [37] Chen Chingsgun, Chang Kehchin, Chen Jyhyuan. Application of a robustβ-PDF treatment to analyse the therma1 NO formation in nonpremixed hydrogen-air flame[J]. Combustion and Flame, 1994, 98:375-390.
    [38]贺阿特.德士古渣油气化炉的数值模拟[D].硕士学位论文,西安交通大学,2002.
    [39] Sivathanu Y R, Faeth G M. Generalized state relationships for scalar Properties in non-Premixed hydrocarbon/air flame combustion[J]. Flame, 1990, 82(2):227-238.
    [40] Smoot L D, Smith P J. Coal Combustion and Gasification. New York:Plenum Press, 1985: 267-298.
    [41] Liu Guisu, Niksa S. Coal conversion submodels for design applications at elevated pressures.Part I: devolatilization and char oxidation[J]. Progress in Energy and Combustion Science, 2003, 29(5):425-477.
    [42]邓中乙,肖睿,金保升,等.压力对喷动流化床煤气化影响数值模拟[J].热能动力工程,2009,24(4):523-528.
    [43]于海龙,刘建忠,张超,等.多喷嘴对置与新型水煤浆气化炉气化的对比[J].煤炭学报,2007,32(5):525-530.
    [44] Tang Zhiguo, Ma Peiyong, Tang Chaojun, et al. Discussion on gasification of high ash melting point pulverized coal using excess enthalpy combustion[A]. Challenges of power engineering and environment[C]. Hangzhou: Zhejiang University Press & Springer Berlin Heidelberg New York, 2007:Vol.1, 180~184.
    [1]邱广明.煤粉炉的分级燃烧技术研究[J].热能动力工程,2000,15(89):556-559.
    [2]唐志国,朱全利,唐必光,等.空气分级燃烧NOx排放的实验研究[J].电站系统工程, 2003,19(3):7-9.
    [3]凌荣华,文军,齐春松.燃料分级燃烧技术的研究现况和应用前景[J].热力发电,2003,8:6-8
    [4]步学朋,忻仕河,王鹏,等.煤炭气化发展及应用中的热点问题探讨[J].洁净煤技术,2007,13(2):37-41.
    [5]周宏仓,金保升,仲兆平,等.流化床部分煤气化实验研究[J].热能动力工程,2004,19(3):252-255.
    [6]向银花,房倚天,张守玉,等.煤焦部分气化、燃烧集成热重分析研究[J].燃料化学学报,2000,28(5):435-438
    [7]许世森,张东亮,任永强.大规模煤气化技术[M].北京:化学工业出版社,2006.
    [8]贺永德.现代煤化工技术手册[M].北京:化学工业出版社,2006.
    [9] Saburo H, Jun I, Masami A, et al. A study on gasification reactivity of pressurized two-stage entrained flow coal gasifier[J]. JSME International Journal, Series B, 2002, 45(3):518-522.
    [10] Caixia Chen, Masayuki Horio, Toshinori Kojima. Numerical simulation of entrained flow coal gasifiers. Part I: modeling of coal gasification in an entrained flow gasifier[J]. Chemical Engineering Science, 2000, 55:3861-3874.
    [11] Caixia Chen, Masayuki Horio, Toshinori Kojima. Numerical simulation of entrained flow coal gasifiers. Part II: effects of operating conditions on gasifier performance[J]. Chemical Engineering Science, 2000, 55:3875-3883.
    [12] Caixia Chen, Masayuki Horio, Toshinori Kojima. Use of numerical modeling in the design and scale-up of entrained flow coal gasifiers[J]. Fuel, 2001, 80(10):1513-1523
    [13] Shozo K. 250mw air blown IGCC demonstration plant project[C]. In: Proceeding of the ICOPE 2003, Japan: Springer Press, 2003:163-167.
    [14] Watanabe H, Otaka M. Numerical simulation of coal gasification in entrained flow coal gasifier[J]. Fuel, 2006, 85:1935-1943.
    [15]张建胜,吴玉新,刘青,等.二次气流对分级气化炉内三维速度分布的影响[J].燃烧科学与技术,2007,13(2):131-135.
    [16]张建胜,胡文斌,吴玉新,等.分级气流床气化炉模型研究[J].化学工程,2007,35(3):14-18.
    [17]吴玉新,张建胜,岳光溪,等.采用简化PDF模型分析分级气流床气化炉的气化特性[J].中国电机工程学报,2008,28(26):29-34.
    [18]许世森,任永强,危师让,等.两段式干煤粉气化炉[P].中国实用新型专利:CN01131780.9,2001-11-08.
    [19]徐越,吴一宁,危师让.二段式干煤粉气流床气化技术的模拟研究与分析[J].中国电机工程学报,2003,23(10):186-190.
    [20]许世森,徐越,任永强,等.一种新型两段式干煤粉加压气化技术[c].2005中国煤炭加工与综合利用技术、市场、产业化信息交流会暨发展战略研讨会论文集.西安,2005:22-24.
    [21]许世森,任永强,夏军仓,等.两段式干煤粉加压气化技术的研究开发[J].氮肥与甲醇,2006,1(3):1_5
    [22]任永强,许世森,夏军仓,等.两段式干煤粉加压气流床气化试验研究[J].热力发电,2007,8:27-30.
    [23]梁万才,赵建涛,吴晋沪,等.两段式气流床煤气化炉内气固流动数值模拟研究[J].燃料化学学报,2007,35(3):359-365
    [24]于海龙,刘建忠,张超,等.多喷嘴对置与新型水煤浆气化炉气化的对比[J].煤炭学报,2007,32(5):526-530.
    [25]于海龙,刘建忠,张桂芳,等.水煤浆气化炉的形式和新型气化炉的开发[J].煤炭转化,2007,30(1):21-25.
    [26]于海龙,张传名,刘建忠,等.新型水煤浆气化喷嘴雾化性能试验研究[J].中国电机工程学报,2005,25(22):99-103.
    [27]于海龙,赵翔,周志军,等.煤浆浓度对水煤浆气化影响的数值模拟[J].动力工程,2005,25(2):217-220,238.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700