梨品种亲缘关系、S基因型鉴定及其克隆研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以梨属植物材料为试材,应用现代分子生物学等研究方法,研究了梨品种间的亲缘关系、梨品种自交不亲和性基因型(S基因型)及克隆了部分新S-RNase基因,主要的结果如下:
     1.利用SSR标记技术对56个梨栽培品种的遗传多样性和亲缘关系进行了分析。6对SSR引物共产生38个等位位点,平均每对引物产生6.3个等位位点。聚类分析结果显示,梨属内56份材料在相似系数0.71处可分为4个组。第三组又可以分为5个亚组;2.首次开展了SRAP标记技术在梨属植物上应用的探讨,以3个不同梨品种为试验材料,对影响SRAP-PCR反应体系的Mg~(2+)、dNTP、引物浓度、Taq酶等因子设置梯度试验,筛选和建立可扩增多态性高、重复性好、带型清晰的最佳反应条件,并且利用72对引物进行高效引物的筛选。结果表明:在20μL反应体系中,模板DNA 30 ng,MgCl_2 2.0mmol·L~(-1),dNTP 200μmol·L~(-1),正、反向引物各0.2μmol·L~(-1),DNA聚类酶1U;
     3.利用SRAP标记技术对56个梨栽培品种的遗传多样性和亲缘关系分析,11对引物组合共扩增到188个谱带,其中样品间共同扩增的条带有4条,呈现多态性的条带有184条,多态百分率达到97.9%。NTSYS软件进行相似系数计算,UPGMA法聚类分析发现在相似系数0.662处,将56个梨品种分为4组,第二组又可分3亚组。结果表明SRAP技术可以反映各梨品种的亲缘关系,我国梨品种间具有高度的遗传多样性,梨品种演化中起主导作用的是有性杂交重组,为明确这些梨品种间的遗传背景提供理论依据:
     4.利用PCR技术,根据梨S基因高度保守区C1和C3区,设计引物P1和P2,且结合根据梨S_2-RNase序列设计特异引物PS2,对梨品种的基因组DNA进行S基因特异扩增、克隆、测序,并在GenBank中BLAST比较,确定S基因特异性片段,确定了京白梨等90个供试自交不亲和性品种的S基因型,并且通过田间杂交试验及应用荧光显微镜观察异花授粉后花柱内的花粉管生长情况来验证鉴定出的梨品种S基因型的可靠性。首次鉴定了我国主栽的一些梨品种的S基因,所获得的梨品种S基因型列表对于生产上合理配置授粉树提供了理论依据;
     5.利用分子生物学技术,根据日本梨S-RNase基因的C1和C3区的保守序列,对7个中国梨品种的基因组DNA进行序列测定和生物信息学分析,鉴定了8个新的梨自交不亲和S-RNase基因,分别命名为S_(28)-RNase,S_(30)-RNase,S_(31)-RNase,S_(32)-RNase,S_(33)-RNase,S_(35)-RNase,S_(36)-RNase,S_(37)-RNase,其登录号依次为AY562394,AY876945,DQ124366,DQ124367,DQ138081,DQ323732,DQ417607,DQ448239,这些新S-RNase基因的发现和梨品种S基因型的确定为中国梨品种的优化配置、丰产栽培和遗传改良提供了科学依据。
Pear(Pyrus) is a commercially important fruit crop worldwide and most come from China, which resoure is abundant. It's necessary to classify and analyze the relationship between the different cultivars in heredity. The phylogenetic relationships of 56 Pyrus were analyzed by using SSR and SRAP markers.
     Self-incompatibility(SI) is a genetic mechanism employed by flowering plants to prevent inbreeding and promoting out-crossing, which involved a complex set of cell-cell interactions between the pistil and the pollen, thence, a model system for studying of intercellular information transmission, cell-cell recognition and gene spatial-temporal expression. Pear exhibits S-RNase-based gametophytic self-incompatiility, as other Rosaceae species do. Therefore, they will not set fruit unless pollinated with cultivars with different S-genotypes. Determination of correct pollen incompatibility groups and assignment of cultivars to the groups are essential for good crop production. Pollen incompatibility groups in pear have been identified by controlled pollination tests and pollen tube growth tests, but these tests is time-consuming and prone to be affected by environmental factors. The allele-specific PCR system was established to identify the S-genotype of 90 pear cultivars in this study.
     All results were summarized as follows:
     1. Simple sequence repeat(SSR) markers were used to assess relationship of 56 Pyrus cultivars. Atotal of 38 putative alleles were generated from six primer-pairs. All the SSR markers showed a high level of genetic polymorphism with a mean of 6.3 putative alleles per locus. Four groups were generated from all the accessions by UPGMA clusters analysis at Dice's similarity coefficient of 0.71. The third group was classified into three subgroup;
     2. Factors influencing SRAP-PCR analysis were studied using three pear cultivars. A reliable, effective and reproductive PCR reaction system for detecting SRAP was developed and 72 primer-pairs were filtered. Each 20μL PCR reaction mixture consisted of template DNA 30 ng, 2.0 mmol·L~(-1) of MgCl_2, 200μmol·L~(-1) of dNTPs, 0.2μmol·L~(-1) of primer and 1 unit of Taq polymerase;
     3. Further study on relationship of Pyrus cultivars native mainly to Eastern Asia had been carried out with sequence-related amplified polymorphism markers. The eleven primer could successfully differentiate all the materials and generated 188 fragments of which 184 fragments were polymorphic to 97.9%. Dendrogram analysis clusted 56 Pyrus cultivars into four group at Dice's similarity coefficient of 0.662. The research supported the close relationship between Japanese pears and Chinese sand pears. All these results showed that SRAP markers were economic, effective, and reliable. Pear has widely genetic diversity;
     4. Classifying pear S-genotypes are useful for breeding programs and may help selection. Using primers(P1 and P2) based on the conserved regions C1 and C3 of pear S-RNase structure and specific primers(PS2) based on sequence of the pear S_3-RNase, DNA of ninety Chinese-bred pear cultivars were carried on PCR and PAGE. S-genotypes of these cultivars were identified by analysis of DNA sequencing. The results were confirmed by fruit set of some cultivars and microscopic observation of pollen tube. The S-genotypes of ninety cultivars were determined;
     5. Partial S-RNase genes of pear were amplified and cloned in seven cultivars of unknown S-geontypes. The PCR products were sequenced and blasted in GenBank. S_(28)-RNase, S_(30)-RNase, S_(31)-RNase, S_(32)-RNase, S_(33)-RNase, S_(35)-RNase, S_(36)-RNase and S_(37)-RNase were deposited in NCBI under the accession numbers of AY562394, AY876945, DQ124366, DQ124367, DQ138081, DQ323732, DQ417607, DQ448239.
引文
鲍露.基于SSR,AFLP及ITS标记在梨和胡柚系统演化上的研究[1)].浙江大学,2006
    曹丽,曲柏宏.应用POD同工酶技术研究梨品种的分类地位[J].湖北农业科学,2006,45(1):89-91
    辜青青.利用PCR-RFLP技术鉴定部分砂梨(PYRUS PYRlFOLIA NAKAI)品种S基因型[D].华中农业大学,2006
    胡昌炽.东亚梨属植物分类之研究[J].中华农学会报,1933,105
    胡昌炽.梨之不结实性第一、二报告[J].农林新报,1933
    胡适宜,杨弘远主编.被子植物受精生物学[M].北京:科学出版社,2002,1:128-148
    J.萨姆布鲁克,D.W拉塞尔.分子克隆实验指南(第三版)[M].北京:科学出版社,2002,8:1217-1265
    #12
    #12
    #12
    李严,张春庆.西瓜杂交种遗传多态性的SRAP标记分析[J].园艺学报,2005,2(4):643-647
    廖明安,李湘麒,李道高,任雅君,汪志辉,吕秀兰.梨RAPD分析技术体系的建立及遗传多样性研究[J].中国农学通报,18(5):39-42
    林忠旭,张献龙,聂以春,贺道华,吴茂清.棉花SRAP遗传连锁图构建[J].中国科学通报,2003,48(19):2063-2067
    马兵钢,牛建新,冯建荣,鲁晓燕.RAPD-PCR对梨属植物品种鉴定的研究[J].西北农业学报,2004,13(1):84-88
    马兵钢,牛建新,潘立忠,冯建荣,鲁晓燕.应用RAPD分析新疆主要梨品种的遗传关系[J].果树学报,2004,21(6):521-525
    马兵钢,赵宗胜,冯建荣,高剑峰,蒋迪军,牛建新.梨属DNA提纯方法的比较研究[J].石河子大学学报(自然科学版),2000,4(4):26-32
    马明臻.梨品种AFLP指纹图谱的构建[D].河北农业大学,2005
    #12
    #12
    蒲富慎,王宇霖.中国果树志,第三卷:梨[M].上海科学技术出版社,1953
    齐国辉.鸭梨自交不亲和与亲和变异的生理生化特性及分子机理研究[D].河北农业大学,2005
    齐洁.杏自交不亲和相关基因的克隆及表达分析[D].山东农业大学,2003 曲柏宏,金香兰,陈艳秋,刘洪章,王丕武,郑东虎.苹果梨分类地位的RAID鉴定[J].吉林农业大学学报,2003,25(3):292-295
    曲柏宏,金香兰,陈艳秋,刘洪章,王丕武.梨属种质资源的RAPD分析[J].园艺学报,2001,28(5):460-462
    任羽,王得元,张银东.相关序列扩增多态性(SRAP)一种新的分子标记技术[J].中国农学通报,2004,20(6):11-13
    #12
    #12
    王丙旭.RAPD在梨种质资源亲缘关系和品种鉴定中的应用[D].吉林农业大学,1998
    王斐.梨新品种及其亲本的AFLP分析[D].中国农业科学院,2006
    王同坤,柏素花,董超华,胡彦江,齐永顺,张京政.燕山板栗种质资源AFLP遗传多样性分析[J].分子植物育种,2007,5(1):121—127
    王中英,杨佩芳,解思敏,古润泽.梨属果树不同树种的解剖学研究[J].落叶果树,1993(4):9-12
    #12
    #12
    乌云塔娜.中国白梨自交不亲和基因的分离鉴定[D].中南林学院,2003
    吴耕民.中国温带果树分类学[M].农业出版社,1984
    吴华清,张绍铃,吴巨友,王迎涛,吴俊.金坠梨花粉S基因功能丧失而导致自花结实的初步研究[J].园艺学报,2007,34(2).295-300
    吴子龙,方连玉,王军,沈育杰.15份葡萄种质亲缘关系的ISSR分析[J].果树学报,2006,23(4):605-608
    郗荣庭.中国鸭梨[M].北京:中国林业出版社,1999
    辛培刚,王存喜,公庆党,程炳嵩.梨树过氧化物酶同工酶分析[J].果树学报,1989,6(3):153-158
    薛勇彪.高等植物自交不亲和性的分子生物学[J].生物工程进展,1995,15(1):32-42
    易芍文,胡忠荣,陈伟,高正清,李坤明.梨属植物收录序列中简单重复序列的分析[J].西南农业学报,2004,17(1):65-70
    易芍文,李进斌,周小罡,袁媛,胡忠荣.云南省梨属植物资源的微卫星分析研究[J].西南农业大学,2004,17(2):125-136
    于拴仓,柴敏,姜立纲.主要番茄品种的分子鉴别研究[J].中国农学通报,2005,21(5):84—89 俞德浚.中国果树分类学[M].农业出版社,1979
    袁维风,徐凯,徐德聪,钱玉梅.葡萄种质资源的RAPD分析[J].安徽农业科学,2006,34(23):6130-6131
    张绍铃,平塚伸.梨花柱S糖蛋白对离体花粉萌发及花粉管伸长的影响[J].园艺学报,2000,27(4):251-256
    张绍铃,周建涛,徐义流,陈迪新,徐国华,吴桂法.梨花柱半离体培养法及品种自交不亲和基因型鉴定[J].园艺学报,2003,30(6):703-706
    张妤艳,吴俊,衡伟,张绍铃.京白梨等品种s基因型鉴定及新基因S_(28)和S_(30)的核苷酸序列分析[J].园艺学报,2006,33(3):496-500
    邹乐敏,张西民,张志德,宋保邦,郭绍仙.根据花粉形态探讨梨属植物的亲缘关系[J].园艺学报,1986,13(4):219-223
    #12
    Alburquerque N, Egea J, Perez-Tomero O, Burgos L. Genotyping apricot cultivars for self-(in)compatibility by means of RNases associated with S alleles[J]. Plant Breeding, 2002,121:343-347
    Anderson M A. Sequence variability of three alleles of the self-incompatibility gene of Nicotiana alata[J]. Plant Cell, 1989,1:483-491
    Boskovic R,Tobutt K R. Correlation of stylar ribonuclease zymograms with incompatibility alleles in sweet cherry[J]. Euphytica,1996, 90:245-250
    Bosttein D R, White R L, Skolnick M, Davis R W. Construction of a genetic linkage map in man using restriction fragment length polymorphisms[J]. American Journal of Human Genetics, 1980, 32:314-331
    Broothaerts W J. Purification and N-terminal sequencing of style glycoprotein associated with self-incomptibility in Petunia hybrida[J]. Plant Molecular Biology, 1990, 14:93-102
    Broothyaerts W, Janssens G A, Proost P. cDNA cloning and molecular analysis of two self-incompatibility alleles from apple[J]. Plant Molecular Biology, 1995, 27:499-511
    Budak H, Shearman R C, Parmaksiz I, Gaussoin R E, Riordan T P, Dweikat I. Molecular characterization of Buffalograss germplasm using sequence-related amplified polymorphism markers[J]. Theoretical and Applied Genetics, 2004,108:328-3341
    Castillo C, Takasaki T, Saito T, Yoshimura Y, Norioka S, Nakanishi T. Reconsideration of S-genotypes assignments, and discovery of a new allele based on S-RNase PCR-RFLPs in Japanese pear cultivars[J].Breeding Science, 2001, 51:5-11
    Challice J S, Westwood M N. Numerical taxonomic studies of the genus Pyrus using both chemical and botanical characters[J]. Botanical Journal of the Lirmean Society, 1973, 67:121-148 Chung I K. Molecular diversity of three S-allele cDNAs associated with gametophytic self-incompatibility in Lycopersiconperu vianun[J]. Plant Molecular Biology, 1994, 26:757-762
    Ciptiani G, Lot G, Huang W G, Marrazzo M T, Peterlunger E, Testolin R. AC/GT and AGICT microsatellite repeats in peach (Prunus persika (L)Batsh):Isolation, eharacterisation and cross-species amplification[J]. Theoretical and Applied Genetics, 1999, 99:65-72
    de Nettancourt D. Incompatibility and Incongruity in Wild and Cultivated Plants[M]. 2rid edn. Springer, Berlin Heidelberg, New York, 2001
    Degani C, Rowland L J, Saunders J A. A comparison of genetic relationship measures in strawberry (Fragaria ananassa Duch. ) based on AFLPs, RAPDs, and pedigree data[J]. Euphytica, 2001,117: 1-12
    Dicenta F, Omega E, Martinez-Gomez P, Boskovie R, Tobutt K R. Comparison of homozygous and heterozygous self-compatible seedlings in an almond breeding programme[J]. Euphytiea, 2002,124:23-27
    Ed N Ewbigin. The evolution of self-incompatibility: a molecular voyeur's perspective. Sexual Plant Reproduction, 1996, 9:357-361
    Entain T, Iwano M, Shiba H, Che F S, Isogai A, Takayama S. Comparative analysis of the self-incompatibility (S-)locus region ofPrunus mume: Identification of a pollen-expressed F-box gene with allelic diversity [J]. Genes to Cells, 2003, 8:203-213
    Fanklin F C H, Lawrence M J, Franklin-Tong. Cell and molecular biology of self-incompatibility in flowering planlt[J]. International Review of Cytology, 1994, 158:1-63
    Ferriol M, Pico B, Nuez F. Genetic diversity of a gerrnplasm collection of Cucurbita pepo using SRAP and AFLP markers[J]. Theoretical and Applied Genetics, 2003, 107 : 271-282
    Ferriol M, Pico B, Nuez F. Genetic diversity of some accessions of Cucurbita maxima from Spain using RAPD and SRAP markers[J]. Genetic Resources and Crop Evolution, 2003, 50 (3) :227 - 238
    Franklin-Tong V E, Franklin F C. The different mechanisms of gametophytic self-incompatibility[J]. Philosphical Transactions of the Royal Society B:Biological Sciences,2003, 358:1025-1032
    Geitmanna, Snowmanbn, Emonsamc. Alterations to the actin cytoskeleton of pollen tubes are induced by the self-incompatility Reaction in Papaver Rhoeas[J]. Plant Cell, 2000,12:1239-1252
    Graham J, McNicol R J, McNicol J W. A comparison of methods for the estimation of genetic diversity in strawberry cultivars[J]. Theoretical and Applied Genetics, 1996, 93:402-406
    Gupta P K, Balyan H S, Sharma P C, Remesh B. Microsatellites in plants:a new class of molecular markers[J]. Current Science, 1996, 70:45-54
    Halasz J, Hegediis A, Herman R, Stefanovits-Banyai E, Pedryc A. New self-incompatibility alleles in apricot (Prunus armeniaca L.) revealed by stylar ribonuclease assay and S-PCR analysis[J]. Euphytica, 2005, 145:57-66
    Hamada H, Kakunaga T. Potential Z-DNA forming sequences are highly dispersed in the human genome[J]. Nature, 1982, 298:396-398
    Hamada H, Seidaman M, Howard B H, Gorman C M. Enhanced gene expression by the poly (dT-dG) poly (dC-dA) sequence[J]. Moleular and Cell BiologY, 1984, 4:2622-2630
    Hiratsuka S, Kubo T, Okada Y. Estimation of self-incompatibility genotype in Japanese pear cultivars by stylar protein analysis[J]. Journal of the Japanese Society for Horticultural Science, 1998, 67:491-496
    Hiscock S J and Mclnnis S M. The diversity of self-incompatibility systems in flowering plants[J]. Plant Molecular Biology, 2003, 5:23-32
    Horiuchi H. Primary structure of abass non-specific ribonuclease from Rhizopusniveus[J]. The Journal of Biochemistry, 1988, 103:408-418
    Ida K, Norioka S, Yamarnoto M, Kumasaka T, Yamashita E, Newbigin E, Clarke A E, Sakiyama F, Sato M. The 1.55 A resolution structure of Nicotiana alata S_(F11)-RNase associated with gametophytic self-incompatibility [J]. The Journal of Molecular Biology, 2001, 314:103-112
    Ida K, Norioka S, Yamamoto M, Kumasaka T, Yamashita E, Newbigin E, Clarke A E, Sakiyama F, Sato M. The 1.55 A resolution structure of Nicotiana alata S_(F11)-RNase associated with gametophytic self-incompatibility[J]. The Journal of Molecular Biology, 2001, 314:103-112
    lgic B. Evolutionary relationships among self-incompatibility RNases[J]. Proceedings of the National Academy of Sciences of United States of America, 2001, 98:13167-13171
    Ikeda K, Igic B, Ushijima K,Yamane H, Hauck NR, Nakano R, Sassa H, Iezzoni A F, Kohn J R, Tao R. Primary structural features of the S haplotype-specific F-box protein, SFB, in Prunus [J]. Sexural Plant Reprodution, 2004a, 16:235-243
    Ikeda K, Watari A, Ushijima K, Yamane H, Tan R, Hauck N R, Lezzoni A F. Molecular markers for the self-compatible S_4-haplotype, a pollen-part mutant in sweet cherry (Prunus avium L.) [J]. Journal of the American Society for Horticultural Science, 2004b, 129(5):724-728
    Iketani H, Manabe T, Matsuta N, Akihama T, Hayashi T. Incongruence between RFLPs of chroloplast DNA and morphological claasification in east Asian pear[J]. Genetic Resources and Crop Evolution,1998, 45:533-539
    Ishimizu T, Inoue K, Shimonaka M, Saita T, Terai O, Norioka S. PCR-based method for identifying the S-genotypes of Japanese pear cultivars[J]. Theoretical and Applied Genetics, 1999, 98:961-967
    Ishimizu T, Sato Y, Saito T. Identification and partial aminoacid sequences of seven S-RNase associated with self-incompatibility of Japanese pear Pyrus Pyrifollia[J]. The Journal of Biochemistry,1996,120:326-334 Ishimizu T, Shinkawa T, Saldyama F, Norioka S. Primary structural features of rosaceous S-RNascs with gametophytic self-incompatibility[J]. Plant Molecular Biology, 1995, 37:931-941
    Joazeiro C A, Weissman A M. RING finger proteins: mediators of ubiquitin ligase activity[J]. Cell, 2000,102:549-552
    Jordannd, Franklinfch, Franklin-Tongve. Evidence for DNA fragrncntation triggered in the self-incompatibility response in pollen of Papaver Rhoeas[J]. Plant Journal, 2000, 23:471-479
    Kachroo A, Nasrallah M E, Nasrallah J B. Self-incompatibility in the Brassicaceae:Receptor-ligand signaling and cell-to-cell communication[J]. Plant Cell, 2002, 14:227-238
    Kajiura M F, Kanato K, Machida Y, Kozaki I. New Japanese pear variety 'Shinsui' (in Japanese)[J]. Bulletin of the Horticulture Research Station(Minist Agricultural &Forest), 1967, 6:69-76
    Kao T H, McCubbin A G. How flowering plants discriminate between self and non-self pollen to prevent inbreeding[J]. Proceedings of the National Academy of Sciences of United States of America, 1996, 93:12059-12065
    Kao T H. Gamctophytic self-incompatibility: Amechanism for self/non-self discrimination during sexual reproduction[J]. Plant Physiology, 1994,105:461-466
    Kentaro K, Shogo M. Sequence of the S_(10) cDNA from 'Mclnlosh' apple and a PCR-digestion identification method[J]. Horticultural Science, 2002, 37(I): 187-190
    Kim H T, Hirata Y, Nou I S. Determination of S-genotypes of pear (Pyrus pyrifolia) cultivars by S-RNase sequencing and PCR-RFLP analyses[J]. Molecular Cells, 2002, 13:444-451
    Kimura T, Shi Y Z, Shoda M, Kotobuki K, Matsuta N, Hayashi T, Ban Y, Yamamoto T. Identification of Asian pear varieties by SSR analysis[J].BreedingScicnce, 2002, 52: 115-121
    Kirch H. Characterization of proteins associated with self-incompatibility in Solanumtuberosum[J]. Theoretical and Applied Genetics, 1989, 78:581-555
    Korbin M, Kuras A, Zurawicz E. Fruit plant germplasm characterization using molecular markers generated in RAPD and ISSR-PCR[J]. Cellular and Molecular Biology Letters, 2002, 7:785-794
    Lai Z. An F-box gene linked to the self-incompatibility(S) locus of Antirrhinum is expressed specificially in pollen and tapetum[J]. Plant Molecular Biology, 2002, 50:29-42
    Lanham P G, Bremman R M. Genetic characterization of gooseberry (Ribes grossularia subgenus Grossularia) germplasm using RAPD, ISSR and AFLP markers[J]. Journal of Horticultural Science and Biotechnology, 1999, 74(3):361-366
    Lewis D. Serological reactions of pollen incompatibility subsatances[J]. Proceedings of the Royal Society of London Series B, 1952, 140:127-135
    Li G, Gao M, Yang B, Quiros C F. Gene for gene alignment between the Brassica and Arobidopsis genomes by direct transcriptomemapping[J]. Theoretical and Applied Genetics, 2003,107:168-180
    
    Li G, Quiros C F. Sequence related amplified polymorphism (SRAP), A new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica[i]. Theoretical and Applied Genetics, 2001, 103:455-461
    
    Lin Shenghua, Song Wenqin, Fang Chengquan, Zhang Feng. AFLP Molecular Markers of Pyrus[J]. PLANT GENOMICS IN CHINA I, 2006
    
    Luu D T. S-RNase uptake by compatible pollen tubes in gametophytic self-incompatibility[J]. Nature, 2000,407:649-651
    
    Machida Y. Morphological and physiological characteristics of Japanese and Chinese pear in Dictionary of Pomology[M]. Tokoyo, Yakendo, 1972, 527-529
    
    Matsumoto S, Furusawa Y, Komatsu H. S-allele genotypes of apple pollenizers, cultivars and lineages including those resistant to scab[J]. Journal of Horticultural Science and Biotechnology, 2003, 78: 634-637
    
    Matsuura T, Sakai H, Unno M, Ida K, Sato M, Sakiyama F, Norioka S. Crystal structure at 1.5-A resolution of Pyrus pyrifolia pistil ribonuclease responsible for gametophytic self-incompatibility[J]. The Journal of Biological Chemistry, 2002, 276(48):45261-45269
    
    Matsuura T, Unno M, Sakai H, Tsukihara T, Norioka S. Purification and crystallization of Japanese pear S-RNase associated with gametophytic self-incompatibil[J]. Acta Crystallographica, Section D, 2001, 57(1):172-73
    
    Matton D P. The S-locus of Nicotiana alata: gene micorganization and sequence analysis of two S-RNase alleles[J]. Plant Molecular Biology, 1995,28:847-858
    
    McClure B A. Style self-incomptibility gene products of Nicotiana alata are ribonuclesses[J]. Nature, 1989,342:955-975
    
    Monte C L, Cabrita L, Oliverira C, Leitao J. Assessment of genetic relationships among Pyrus species and cultivars using AFLP and RAPD markers[J]. Genetic Resources and Crop Evolution, 2000, 47: 257-265
    
    Nei M, Li W H. Mathematical model for studying genetic variation in terms of restriction endonucleases[J]. Proceedings of the National Academy of Sciences of United States of America, 1979, 76: 5269-5273
    
    Norioka N, Norioka S, Ohnishi Y. Moleculat cloning and nucleotide sequences of cDNAs encoding S-allele specific stylar RNases in a self-incmpatible cultivar and its self-compatible mutant of Japanese pear Pyrus pyrifolia Nakai[J]. The Journal of Biochemistry, 1996, 120:335-345
    
    Norioka N, Ohnishi Y, Norioka S, Ishimizu T. Nucleotide sequences of cDNAs encoding S_2-and S_4-RNases (D49527 amd D49528 for EMBL) [J]. Plant Physiology, 1995, 108-134
    Omega E, Sutherland B G, Dicenta F, Boskovid R, Tobutt K R. Determination of incompatibility genotypes in almond using first and second intron consensus primers: detection of new S alleles and correction of reported S genotypes[J]. Plant Breeding, 2005, 124: 188-196
    Pan Z, Sugiyama N, .Sugiyama N.Genetic diversity of cultivated resources of pear in North China[J]. Acta Horticulturae, 2002, 587:187-194
    Riaz A, Li G, Quresh Z, Swati M S, Quiros C F. Genetic diversity of oilseed Brassica napus inbred lines based on sequence related amplified polymorphism and its relation to hybrid performance[J]. Plant Breeding, 2001, 120 (5) :411-415
    Riaz A, Potter D, Stephen M. Genotyping of peach and nectarine cultivars with SSR and SRAP molecular markers[J]. Journal of the American Society for Horticultural Science, 2004, 129:204-211
    Rolf F J. Numerical taxonomy and multivariate analysis system. Version2.0. Exeter Software, Setauket, New York, 1998
    Royo J, Kunz C, Kowyama Y, Anderson M, Clarke A E, Newbigin E. Loss of a histiddine residue at the active site of S-locus ribonuclease is associated with self-incompatibility in Lycopersicon peruvianum[J]. Proceedings of the National Academy of Sciences of United States of America, 1994, 91:6511-6514
    Rubtsov G A. Geographical distribution of the genus Pyrus and trends and factors in its evolution[J]. American Naturalist, 1944, 78:358-366
    Rudd J J, Franklin-Tongve. Unravelling Response-specificity in Ca~(2+) signaling pathways in plant cells[J]. New Phytologist, 2001, 151:7-34
    Ruiz J J, Garcia M S, Pico B, Gao M, Quiros C F. Genetic variability and relationship of closely related Spanish traditional cultivars of tomato as detected by SRAP and SSR markers[J]. Journal of the American Society for Horticultural Science, 2005, 130:88-95
    Sapir G, Stern R A, Eisikowiteh D, Goidway M. Cloning of four new Japanese plum S-alleles and determination of the compatibility between cultivars by PCR analysis[J]. Journal of Horticultural Science and Biotechnology, 2004, 79:223-227
    Sassa H, Hirano H, Ikeshashi H. Identification and characterization of stylar glycoproteins associated with self-incompatibility of Japanese pear Pyrus serotina Rehd[J]. Molecular and General Genetics,1993, 241:17-25
    Sassa H, Hirano H, Ikeshashi H. Self-incompatibility related RNases in styles of Japanese pear (Pyrus serotina Rehd.) [J]. Plant Cell Physiology, 1992, 33:811-814
    Sassa H, Mase N, Hirano H, Ikeshashi H. Identification of self-incompatibility related glycoproteins in styles of apple (Malus x domestica) [J]. Theoretical and Applied Genetics, 1994, 89:201-205
    Sassa H, Nishio T, Kowyama Y, Hirano H, Koba T, Ikehashi H. Self-incompatibility (5) alleles of the Rosaceae encode members of adistinct class of the T2/S ribonuclease superfamily[J]. Molecular and General Genetics, 1996, 250:547-557
    
    Sawamura Y, Saito T, Shoda M, Yamamoto T, Sato Y, Hayashi T, Kotobuki K. A new self-incompatible allele in Japanese pears 'Shinsei' and 'Shinkou'[J]. Journal of the Japanese Society for Horticultural Science, 2002, 71:342-347
    
    Schlotterer C, Tautz D. Slippage synthesus of simple sequence DNA[J]. Nucleic Acid Research, 1992, 20:211-215
    
    Shinya K, Keizo Y, Akihiko S, Masahiko Y, Akira S. Analysis of the genetic relationships among pollination-constant and non-astrigent (PCNA) cultivars of Persimmon (Diospyros kaki Thunb.) from Japan and China using Amplified Fragment Length Polymorphism (AFLP) [J]. Journal of the Japanese Society for Horticultural Science, 2000,69(6):665-670
    
    Silva N F, Stone S L, Christie L N, Sulaman W, Nazarian K A P, Burnett L A, Arnoldo A, Rothstein S J, Goring D R. Expression of the S receptor kinase in self-compatible Brassica napus cv Westar leads to the allele-specifjic rejection of self-incompatile Brassica napus pollen[J]. Molecular Genetics and Genomics, 2001,265:552-559
    
    Sims T L, Ordanic M. Identification of a S-ribonuclease-binding protein in Petunia hybrida[J]. Plant Molecular Biology, 2001,47:771-783
    
    Snowmanbn, Geitmamma, Clarkersr. Signalling and the cytoskeleton in pollen tubes of Papaver Rhoeas[J]. Annals of Botany, 2000, 85:49-57
    
    Southern E M. Detection of specific sequences among DNA fragments separated by gel electrophoresis[J]. Journal of Molecular Biology, 1976,98:503-517
    
    Steinbachs J E. S-RNase-mediated gametophytic self-incompatibility is ancestral in eudiots[J]. Molecular Biology Evolution, 2002, 19:825-829
    
    Stone S L, Anderson E M, Mullen R T, Goring D R. ARC1 is an E3 ubiquitin ligase and promotes the ubiquitination of proteins during the rejection of self-incompatible Brassica pollen[J]. Plant cell, 2003, 15:885-898
    
    Surbanovski N, Tobutt K R, Konstantinovic M, Maksimovic V, Sargent D J, Stevanovic V, Ortega E, Boskovic R I. Self-incompatibility of Prunus tenella and evidence that reproductively isolated species of Prunus have different SFB alleles coupled with an identical S-RNase allele[J]. The Plant Journal, 2007, 50(4):723-724
    
    Suzanne L D, Amy F Z. Polymorphic DNA markers in Black Cherry(Prunus serorina) are identified using sequences from sweet cherry.peach and sour cherry[J]. Journal of the American Society for Horticultural Science, 2000, 125(1 ):76-80
    Swallow D M, Gendler S. The human tumour-associated epithelial mucins are coded by expressed hypervariable gene locus PUM[J]. Nature, 1987, 328:82-84
    Takayama S, Shimosato H, Shiba H, Funato M, Che F S, Watanabe M, Iwano M, Isogai A. Direct ligand-receptor interation controls Brassiea self-incompatibiltiy[J]. Nature, 2001, 413:534-538
    Tanksley S D, Hewill J. Use of molecular markers in breeding for soluble solides content in tomato are-examination[J]. Theoretical and Applied Genetics, 1988, 74:811-823
    Tao R, Watari A, Hanada T, Habu T, Yaegaki H, Yamaguchi M, Yamane H. Self-compatible peach (Prunus persica) has mutant versions of the S haplotypes found in self-incompatible Prunus species[J]. Plant Molecular Biology, 2007, 61(1):109-123
    Tao R, Yamane H, Sassa H, Mori H, Graclziel T M, Dandekar A M, Sugiura A. Identification of stylar RNases associated with gametophytic self-incompatibility in almond (Prunus dulcis) [J]. Plant and Cell Physiology, 1997, 38:304-311
    Tao R, Yamane H, Sugiura A. Molecular typing of S-alleles through identification, characterization and cDNA cloning for S-RNases in sweet cherry[J]. Journal of the American Society for Horticultural Science, 1999, 124(3):224-233
    Tautz D. Hypervariability of simple sequence as a general source for polymorphic DNA markers[J]. Nucleic Acid Research, 1989, 17:6463-6471
    Teng Y W, Tanabe K, Tamura F, Itai A. Genetic relationships of pear cultivars in Xinjiang, China as measured by RAPD markers[J]. Journal of Horticultural Science and Biotechnology, 2001, 76:771-779
    Teng Y W, Tanabe K, Tamura F, Tamura F, Ital A. Genetic relationships of Pyrus species and cultivars native to East Asia revearled by randomly amplified polymorphic DNA markers[J]. Journal of the American Society for Horticultural Science, 2002, 127:262-270
    Teramoto S, Kano-Murakami Y, Hori M, Kamiyama K. 'DNA finger-Printing'to distinguish cultivar and parental relation of Japanese pear[J]. Journal of the Japanese Society for Horticultural Science, 1994,63:17-21
    Thomas S, Osman K, de Graf B H J, Shevchenka G, Wheeler M, Franklin C, Franklin-Tong N. Investigating mechanisms involved in the self-incompatibility response in Papaver rhoeas[J]. Philosphical Transactions of the Royal Society B:Biological Sciences, 2003, 358:1033-1036
    Tsukamoto T, Hauck N R, Tao R, Jiang N, Iezzoni A F. Molecular characterization of three non-functional S-haplotypes in sour cherry (Prunus cerasus)[J]. Plant Molecular Biology, 2006,62(3):371-383
    Ushijima K, Sassa H, Dandekar A M, Gradziel T M, Tao R, Hirano H. Structural and transcriptional analysis of the self-incompatibility locus of almond: identification of a pollen-expressed F-box gene with haplotype-specific polymorphism[J]. Plant Cell, 2003, 15:771-781
    Ushijima K, Sassa H, Tao R, Yamane H, Dandekar A M, Gradziel T M, Hirano H. Cloning and characterization of cDNAs encoding S-RNases from almond (Prunus duleis): primary structural features and sequence diversity of the S-RNases in Rosaceae[J]. Molecular and General Genetics, 1998,260:261-268
    Ushijima K, Yamane H, Watari A, Kakehi E, Ikeda K, Hauck N R, lezzoni A F, Tao R. The S haplotype-specific F-box protein gene, SFB, is defective in self-compatible haplotypes of Prunus avium and P. mume [J]. Plant Journal, 2004, 39:573-586
    Vaughan S P, Russell K, Sargent D J, Tobutt K R. Isolation of S-locus F-box alleles in Prunus avium and their application in a novel method to determine self-incompatibility genotype[J]. Theoretical and Applied Genetics, 2006, 112(5):856-866
    Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Homes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M. AFLP: a new technique for DNA fingerprinting[J]. Nucleic Acids Research, 1995, 23(21):4407-4414
    Wang Z, Weber J L, Zhong G, Tanksley S D. Survey of plant short tandem DNA repeat[J]. Theoretical and Applied Genetics, 1994, 88:1-6
    Welsh J, McClelland M. Fingerprinting genomes using PCR with arbitrary primers[J]. Nucleic Acids Research, 1990, 18:7213-7218
    Wiersma P A, Wu Z, Zhou L, Hampson C, Kappei F. Identification of new self-incompatibility alleles in sweet cherry (Pyrus avium L.) and charification of incompatibility groups by PCR and sequencing analysis[J]. Theoretical and Applied Genetics, 2001, 102(5):700-708
    Williams J G K, Kubelic A R, Livak K J, Rafalski J A, Tingey S V. DNApolymorphism amplified by arbitrary primers are useful as genetic markers[J]. Nucleic Acids Research, 1990,18:6531-6535
    Williams W, Brown A G. Genetic response to selection in cultivated plants: gene frequencies in Prunus avium[J]. Heredity. 1956, 10:237-245
    Wunsch A, Hormaza J I. Cloning and characterization of genomic DNA sequences of four self-incompatibility alleles in sweet cherry (Prunus avium L.) [J]. Theoretical and Applied Genetics, 2004, 108:299-305
    Yaegaki H, Shimada T, Moriguchi T, Hayama H, Haji T, Yamaguchi M. Molecular characterization of S-RNase genes and S-genotypes in the Japanese apricot (Prunus mume) [J]. Sexural Plant Reprodution,2001, 13:251-257
    Yamamoto N G. Phenetic clustering of grape (Vitis pp.) by AFLP analysis[J]. Breeding Science, 2000, 50:53-57
    Yamarnoto T, Kimura T, Sawamura Y, Kotobuki K, Ban Y, Hayashi T, Matsuta N. SSRs isolatied from apple can identify polymorphism and genetic diversity in pear[J]. Theoretical and Applied Genetics,2001, 102:865-870
    Yamamoto T, Kimura T, Sawarnura Y, Manabe T, Kotabuki K, Hayashi T, Ban Y, Matsuta N. Simple sequence repeats for genetic analysis in pear[J]. Euphytica, 2002, 124(1 ): 129-137
    Yamamoto T, Shimada T, Kotobuki K, Morimoto Y, Yoshida M. Genetic characterization of Asian chestnut varieties assessed by AFLP [J]. Breeding Science, 1998, 48(4):359-363
    Yamane H, Ikeda K, Ushijima K, Sassa H, Tao R. A pollen-expressed gene for a novel proteinwith an F-box motif that is very tightly linked to a gene for S-RNase in two species of cherry, Prunes cerasus and P. avium[J]. Plant Cell Physiology, 2003b, 44:764-769
    Yamane H, Tao R, Sugiura A, Nathanael R H, Amy F I. Identification and characterization of S-RNasesin tetraploid sour cherry (Prunus cerasus) [J]. Journal of the American Society for Horticultural Science,2001, 126:661-667
    Yamane H, Ushijma K, Sassa H, Tao R. The use of S haplotype-specific F-box protein gene, SFB, as a molecular marker for S-haplotype and self-compatibility in Japanese apricot (Prunes mume) [J]. Theoretical and Applied Genetics, 2003c, 107:1357-1361
    Zabeau M, Vos P. Selective restriction fragment amplification: a general method for DNA fingerprinting[P]. European Patent Application 94202629.7 (Publication No05348A1)Pads: European Patent Office, 1993
    Zhang S L, Huang S X, Kitashiba H. Identification of S-haplotype-specific F-box gene in Japanese plum (Prunus salicina Lindl.)[J]. Sex Plant Reprod, 2007, 20:1-8
    Zuccherelli S, Tassinad P, Broothaerts W, Tartadni S, Dondini L, Sansavini S. S-Allele characterization in self-incompatible pear (Pyrus communis L.) [J]. Sexural Plant Reprodution, 2002, 15(3): 153-158

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700