脉冲发放神经元及其耦合系统的随机模型研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着物理、数学、生物、计算机等科学的发展,人类对大脑的认识和研究越来越深入,特别是对神经模型的研究。科学家希望通过神经模型的研究揭开大脑的信息存储和处理机制,建立具有认知功能的脑模型,直至实现人工智能。科学研究一般遵循从简单到复杂的规律,因此本文以脉冲发放神经元模型为基本研究对象,对这类神经元的非线性动力学特征和信号传输等问题进行了研究,特别探索了噪声在模型的信号传输和处理中扮演的角色。结果表明噪声在神经元模型及其耦合系统中通过随机共振现象起到了有益的作用,还可以提高图像处理的效果;根据计算结果分析了信号在神经模型中的传输特性,希望有助于揭开神经系统的信号传输机制;并且这些模型及其结果还可以从模型的角度解释神经系统的生物和生理实验现象,对实验和某些疾患的医治具有指导意义。
     本文的主要研究内容和成果为:
     1、综合分析了近年来对脉冲发放神经元及其网络模型的研究,特别是其中的随机共振问题,对HH、FN神经元模型的放电特征和非线性动力学特征进行了研究。
     2、在HH神经元随机模型中研究了噪声和高频信号的作用机制,强噪声导致的HH神经元长时放电,从模型角度解释了噪声引起耳鸣时听神经的自放电;噪声与高频的协作结果——高频信号对神经元放电有抑制,与生理实验结果一致,也表明神经系统中信号传输存在类似于听觉系统的双音遏制现象,即强度大的频率成分遏制强度低的频率成分;另外高频信号还导致神经元静息电位变为高频振荡,这些结果有助于开展神经系统的高频电磁场损伤治疗和防护研究。
     3、对阈上单频和多频信号在HH神经元随机模型中的研究表明存在阈上随机共振现象,即适当强度的噪声同样有助于阈上信号的传输;神经元具有频率敏感性,类似于带通特性,且噪声强度可以改变神经元的敏感频率,即带通中心频率偏移,这些特点对于信号处理的研究具有重要意义。另外模型和结果与听觉系统的频率选择性特征相似,据此可以探讨听觉神经元频率选择的机制。
     4、对阈下信号在FN神经元随机模型中的传输特性进行了研究和分析,结果不仅显示了随机共振的存在,还揭示FN神经元模型对正弦信号的传输与其频率密切相关,对频率处于0.2~0.8的正弦信号响应最强烈。此模型及结果可用于听神经纤维自发放电现象的解释。
     5、HH单向耦合随机系统中的弱信号传输特性研究表明噪声通过随机共振使得系统实现了弱信号的检测和传输;适当的耦合强度和噪声强度可以实现神经滞后同步和最优的信息传递,并对此处的滞后同步进行了重定义和分析;在100个FN神经元构成的单向耦合随机系统中也发现了滞后同步的存在;另外模型仿真中出现的强耦合自放电及其被噪声抑制,有助于解释生物神经系统中神经元的自放电与其自我调制等现象。
     6、首次对HH单向耦合随机系统的频率敏感性进行了分析,特别是接收元的行为,发现其敏感频率随噪声强度和耦合强度变化改变。多频叠加信号的结果与单频信号传输时一致,且噪声有碍于频率敏感性的表达。这些结果说明单向耦合系统也是一种带通器件,可通过改变自身的参数实现对某些频率的信号的最优传输。鉴于单向耦合网络源于中枢模式发生器,结果可用于解释它的节律发生机制。
     7、首次通过PCNN随机模型研究了二维图像信号的处理中噪声扮演的角色,在高斯噪声图像滤波和低对比度图像的增强过程中均出现了随机共振现象,图像处理的效果得到了提高。因此拓展了随机共振的模型研究范围,有助于新的图像处理方法的研究。
With the development of physics, math, biology and computer, the investigation on brain has gained great achievements, especially the research on neural model. Scientists work on all kinds of neural models, trying to disclose the signal storing and processing of the brain, build brain model of cognition and realize the annual intelligence at last. Usually the scientific research begins from simple to complex, so the spiking neuron models and their coupled neural nets were selected as the main subject of this dissertation. Their nonlinear dynamic characteristics and signal transmission were studied. The role of noise was also discussed in the signal processing of the neuron models and net. The results show that noise is helpful to the signal processing through stochastic resonance. The characteristics of signal transmission were analyzed to reveal the neuron’s signal processing mechanism. These results are a kind of explanation of neural biological and physiological experiments in the models, are of significance to the experiments and treatments of some neural diseases.
     The main contents and results of this thesis are as follows:
     1. The studies on spiking neuron and net in recent years were reviewed, especially stochastic resonance in neural models. The firing characteristics and nonlinear dynamics of Hodgkin-Huxley (HH) and FitzHugh-Nagumo (FN) spiking neuron models were investigated.
     2. The effects of high frequency (HF) signal on HH neuron stochastic model were studied. The HF signal inhibited the spiking of neuron, which was consistent with the physiological results. It was also similar with the two-tone suppression of auditory neuron. In addition, the HF signal could induce the resting potential change into high frequency oscillation. These results may be used to explain the corresponding physiological phenomenon.
     3. The transmission of suprathreshold signal and multi- frequencies signals in the stochastic HH neuron model was investigated. Their transmission was influenced by noise through suprathreshold stochastic resonance. The model was of frequency sensitivity, similar to bandpass. It was alike the characteristics of auditory system, so it could be used to discuss the frequency selectivity of auditory neuron. The noise could change the sensitive frequency, i.e., the shift of center frequency of bandpass. It is of significance to signal processing method.
     4. The transmission of subthreshold signal in FN stochastic model was investigated. The results showed that there was stochastic resonance and the transmission of sinusoidal signal was closely correlated with its frequency. The neuron model responded strongly with frequencies in the range of 0.2~0.8. Accordingly, the self firing activity of auditory neuron was analyzed.
     5. The one-way coupled HH neuron system was simulated. The suitable noise would improve the efficiency of signal transmission. In addition, the noise and coupling coefficient of suitable intensity could make the system be in lag synchronization. The lag synchronization was redefined and analyzed according to the characteristics of stochastic system. In a one-way coupled system composed of 100 FN neurons, the lag synchronization was found, too. The self firing induced by strong coupling and the inhibition of firing induced by noise can be used to explain the corresponding phenomena of neuron.
     6. The frequency sensitivity of the one way coupled HH neural system was investigated for the first time. The activities of the receptor changed with the variation of the parameters, i.e., the sensitive frequency changed with the noise and coupling. The transmission of multi-frequency signals was consistent with single-frequency signals. The noise was bad to the frequency sensitivity. The one way coupled neural net was alike a bandpass device. In addition, the one-way coupled net origins from central pattern generator, so the results can be used to explain the generating mechanism of its rhythm.
     7. The effect of noise in the image processing of Pulse Coupled Neural Networks (PCNN) was simulated. It showed that noise could improve the results of image filtering and image enhancement. The PSNR and MSE of images also showed the existence of stochastic resonance. This study expands the fields of stochastic resonance, and is helpful to the study of image processing method.
引文
[1] Benzi R, Sutera A, Vulpiani A. The mechanism of stochastic resonance. Journal of Physics A, 1981, 14: 453~457
    [2] Maass W. Networks of spiking neurons: the third generation of neural network models. Neural networks, 1997, 10(9):1659~1671
    [3] Pikovsky A S, Kurths J. Coherence resonance in a noise-driven excitable system. Physical Review Letters, 1997, 78(5): 775~778
    [4] Longtin A. Autonomous stochastic resonance in bursting neurons. Physical Review E, 1997, 55(1): 868~876
    [5] Stocks N G. Suprathreshold stochastic resonance in multilevel threshold system. Physical Review Letters, 2000, 84(11): 2310~2313
    [6] Douglass J K, Wilkens L, Pantazelou E, et al. Noise enhancement of the information transfer in crayfish mechanoreceptors by stochastic resonance. Nature, 1993, 365: 337~340
    [7] Moss F, Wiesenfeld K. The benefits of background noise stochastic resonance. Scientific American, 1995, 273(2): 50~53
    [8] Levin J E, Miller J P. Broadband neural encoding in the cricket cercal sensory system enhanced by stochastic resonance. Nature, 1996, 380: 165~168
    [9] Braun H A, Wissing H, Schafer K, et al. Oscillation and noise determine signal transduction in shark multimodal sensory cells. Nature, 1994, 367: 270~273
    [10] Wiesenfeld K, Moss F. Stochastic resonance and the benefits of noise: from ice ages to crayfish and SQUIDs. Nature, 1995, 373: 33~36
    [11] Gluckman B J, Netoff T I, Neel E J, et al. Stochastic resonance in a neuronal network from mammalian brain. Physical Review Letters, 1996, 77(19): 4098~4101
    [12] Greenwood P E, Ward L M, Russell D F, et al. Stochastic Resonance Enhances the Electrosensory Information Available to Paddlefish for Prey Capture. Physical Review Letters, 2000, 84(20): 4773~4776
    [13] Haggi P. Stochastic resonance in biology. Chemphyschem, 2002, 3:285~290
    [14] Fulinski A. Active Transport in Biological Membranes and Stochastic Resonances. Physical Review Letters, 1997, 71(24): 4926~4929
    [15] Jamarillo F, Wiesenfeld K. Mechanoeletrical transduction assisted by Brownianmotion: a role for noise in the auditory system. Nature Neuroscience, 1998, 1: 384
    [16] Chatterjee M, Robert M E. Noise enhances modulation sensitivity in cochlear implant listeners: stochastic resonance in a prosthetic sensory system? Journal of the Association for Research in Otolaryngology, 2001, 2: 159~171
    [17] Chatterjee M, Robert M E. Stochastic resonance in temporal processing by cochlear implant listeners? Proceeding of SPIE, 2003, 5110: 348~355
    [18] Long Z C, Shao F, Zhang Y P, et al. Noise-enhanced hearing sensitivity. Physics Letters A, 2004, 323: 434~438
    [19]龙贤明,戴冀斌,朱国斌,龙长才.噪声的听力增强效应研究.时珍国医国药,2005,16(4):284~286
    [20] Christoph E S, Heather L R, Mitchell L S. Modular organization of frequency integration in primary auditory cortex. Annual Review of Neuroscience, 2000, 23: 501~529
    [21] Moss F, Ward L M, Sannita W G. Stochastic resonance and sensory information processing: a tutorial and review of application. Clinical Neurophysiology, 2004, 115: 267~281
    [22] Priplata A, Niemi J, Salen M, et al. Noise-Enhanced Human Balance Control. Physical Review Letters, 2002, 89(23): 238101
    [23] Glass L. Synchronization and rhythmic processes in physiology. Nature, 2001, 410(8): 227~234
    [24] Collins J J, Attlia A P, Gravelle D C, et al. Noise-Enhanced Human Sensorimotor Function. IEEE Engineering in Medicine and Biology Magazine, 2003, 76~83
    [25] Mori T, Kai S. Noise-Induced Entrainment and Stochastic Resonance in Human Brain Waves. Physical Review Letters, 2002, 88(21): 218101
    [26] Manjarreza E, Mendez I, Martinez L, et al. Effects of auditory noise on the psychophysical detection of visual signals: Cross-modal stochastic resonance. Neuroscience Letters, 2007, 415(3): 231~236
    [27] Piana M, Canfora M, Riani M. Role of noise in image processing by the human perceptive system Physical Review E, 2000, 62(1):1104~1109
    [28] Wiesenfeld K, David P, Pantazelou E, et al. Stochastic resonance on a circle. Physical Review Letters, 1994, 72(14): 2125~2129
    [29]阮炯,顾凡及,蔡志杰.神经动力学模型方法和应用.北京:科学出版社,2002.9
    [30] Hodgkin A L, Huxley A F. A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology, 1952, 117: 500~544
    [31] Fitzhugh R. Impulse and physiological states in theoretical models of nerve membrane. Biophysical Journal, 1961, 1: 445~466
    [32] Nagumo J, Arimoto S, Yoshizawa S. An active pulse transmission line, simulating nerve axon. Proceedings of the IRE, 1962, 50: 2061~2071
    [33] Hindmarsh J L, Rose R M. A model of neuronal bursting using three coupled first-order differential equations. Proceeding of Royal Society London B, 1984, 221: 87~102
    [34] Wu S G, Ren W, He K, et al. Burst and coherence resonance in Rose-Hindmarsh model induced by additive noise. Physics Letters A, 2001, 279: 347~354
    [35] Lee S G, Neiman A, Kim S W. Coherence resonance in a Hodgkin-Huxley neuron. Physical Review E, 1998, 57(3): 3292~3297
    [36] Wang Y Q, Chick D T W, Wang Z D. Coherence resonance and noise-induced synchronization in globally coupled Hodgkin-Huxley neurons. Physical Review E, 2000, 61(1): 740~746
    [37] Zaikin A, Garcia-Ojalvo J, Bascones R, et al. Doubly stochastic coherence via noise-induced symmetry in bistable neural models. Physical Review Letters, 2003, 90(3): 030601
    [38] Shi X, Lu Q S. Coherence resonance and synchronization of Hindmarsh-Rose neurons with noise. Chinese Physics, 2005, 14(6): 1088~1094
    [39] Stocks N G, Mannella R. Generic noise-enhanced coding in neuronal arrays. Physical Review E, 2001, 64(03): 030902
    [40] Stocks N G. Information transmission in parallel threshold arrays: Suprathreshold stochastic resonance. Physical Review E, 2001, 63(4): 041114
    [41] Rousseau D,Chapeau-Blondeau F. Suprathreshold stochastic resonance and signal-to-noise ratio improvement in arrays of comparators. Physics Letters A, 2004, 321: 280~290
    [42] McDonnell M D, Stocks N G, Abbott D. Optimal stimulus and noise distributions for information transmission via suprathreshold stochastic resonance. Physical Review E, 2007, 75(6): 061105
    [43] Spagnolo B, Pankratova E V. Influence of noise sources on FitzHugh-Nagumo model in suprathreshold regime. Proceeding Of SPIE, 2005, 5841: 174~185
    [44] Huber M T, Braun H A. Neuromodulatory actions of noise on sub- and suprathreshold responses of intrinsically oscillatory neurons. Proceedings of SPIE, 2003, 5110: 332~339
    [45] Pankratova E V, Belykh V N, Mosekilde E. Role of the driving frequency in a randomly perturbed Hodgkin-Huxley neuron with suprathreshold forcing. The European Physical Journal B, 2006, 53: 529~536
    [46] Liu J, Wu J, Lou Z G. Suprathreshold stochastic resonance in single neuron using sinusoidal wave sequence. ICNC LNCS, 2006, 4221: 224~227
    [47] Jha R K, Biswas P K, Chatterji B N. Image denoising using stochastic resonance. Proceedings of the International Conference on Cognition and recognition, 2005, 343~348
    [48] Volar J M G, Rubi J M. Stochastic multiresonance. Physical Review Letters, 1997, 78(15): 2882~2885
    [49] Matyjaskiewicz S, Krawiecki A, Ho?yst J A, et al. Stochastic multiresonance due to interplay between noise and fractals. Physical Review E, 2003, 68(1): 016216
    [50] Liang G Y, Cao L, Wu D J. Modulated stochastic multiresonance in single-mode laser system without input periodic signal. Chinese Physics, 2003, 12(10): 1105~1108
    [51] Stemler T, Scheuermann M, Benner H. Spatiotemporal stochastic resonance in an array of Schmitt triggers. Proceedings of SPIE, 2004, 5471: 244~250
    [52] Zhang J Q, Hou Z H, Xin H W. Stochastic bi-resonance induced by external noise for Ca2+ signaling in hepatocytes. Science in China Series B Chemistry, 2005, 48(4): 286~291
    [53] Pikovsky A, Zaikin A, de la Casa M A. System size resonance in coupled noisy systems and in the Ising model. Physical Review Letters, 2002, 88(5): 050601
    [54] Wang M S, Hou Z H, Xin H W. Optimal network size for Hodgkin-Huxley neurons. Physics Letters A, 2005, 334: 93~97
    [55] Jung P, Mayer-Kress G. Spatiotemporal stochastic resonance in excitable media. Physical Review Letters, 1995, 74(11): 2130~2133
    [56] Perc M. Spatial coherence resonance in excitable media. Physical Review E, 2005, 72(1): 016207
    [57] Wang Q Y, Lu Q S, Chen G R. Spatio-temporal patterns in a square-lattice Hodgkin-Huxley neural network. The European physical Journal B, 2006, 54: 255~261
    [58] Tessone C J, Mirasso C R, Toral R, et al. Diversity-induced resonance. Physical Review Letters, 2006, 97(19): 194101
    [59] Gassel M, Glatt E, Kaiser F. Doubly diversity-induced resonance. Physical Review E, 2007, 76(1): 016203
    [60] Hu G, Haken H, Xie F G. Stochastic resonance with sensitive frequency dependence in globally coupled continuous systems. Physical Review Letters, 1996, 77(10): 1925~1928
    [61] Longtin A, Chialvo D R. Stochastic and deterministic resonances for excitable systems. Physical Review Letters, 1998, 81(18): 4012~4015
    [62] Volkov E I, Ullner E, Zaikin A A, et al. Frequency-dependent stochastic resonance in inhibitory coupled excitable systems. Physical Review E, 2003, 68(6): 061112
    [63] Ozer M. Frequency-dependent information coding in neurons with stochastic ion channels for subthreshold periodic forcing. Physics Letters A, 2006, 354: 258~263
    [64] Wang W, Wang Y Q, Wang Z D. Firing and signal transduction associated with an intrinsic oscillation in neuronal systems. Physical Review E, 1998, 57(3): 2527~2530
    [65] Liu F, Wang J F, Wang W. Frequency sensitivity in weak signal detection. Physical Review E, 1999, 59(3): 3453~3460
    [66] Liu F, Wang J F, Wang W. Frequency characteristics and intrinsic oscillation in a neuronal network. Physics Letters A, 1999, 256: 181~187
    [67] Lee S G, Kim S W. Parameter dependence of stochastic resonance in the stochastic Hodgkin-Huxley neuron. Physical Review E, 1999, 60(1): 826~830
    [68] Kanamaru T, Horita T, Okabe Y. Stochastic resonance for the superimposed periodic pulse train. Physics Letters A, 1999, 255: 23~30
    [69] Plesser HE, Geisel T. Bandpass properties of integrate-fire neurons. Neurocomputing, 1999, 26: 229~235
    [70] Yu Y G, Liu F, Wang W. Frequency sensitivity in Hodgkin-Huxley systems. Biological Cybernetics, 2001, 84: 227~235
    [71] Baltanas J P, Casado J M. Noise-induced resonances in the Hindmarsh-Rose neuronal model. Physical Review E, 2002, 65(4): 041915
    [72] Yoshioka M, Hayashi H, Tateno K, et al. Stochastic resonance in the hippocampal CA3-CA1 model: a possible memory recall mechanism. NeuralNetworks, 2002, 15: 1171~1183
    [73] Kanamaru T, Okabe Y. Associative Memory retrieval induced by fluctuations in a Pulse neural network. Physical Review E, 2000, 62: 2629~2635
    [74]彭建华,于洪洁,刘延柱.FitzHugh-Nagumo神经元网络的联想记忆与分割.计算物理,2005,22(4):337~343
    [75]吕晓莉,彭建华,刘延柱.延时FitzHugh-Nagumo神经网络的时空编码.上海交通大学学报,2005,39(10):1664~1667
    [76]李冰,彭建华,刘延柱.随机延时Hodgkin-Huxley神经网络的同步与联想记忆.上海交通大学学报,2005,39(11):1924~1928
    [77]彭建华,吕晓莉,刘延柱.阵发型神经元网络的联想记忆与分割,固体力学学报,2005, 26(2):225~229
    [78] Pantic L, Torres J J, Kappen H J, et al. Associative memory with dynamic synapses. Neural Computation, 2002, 14: 2903~2923
    [79] Simomotto E, Riani M, Seife C, et al. Visual Perception of Stochastic Resonacne. Physical Review Letters, 1997, 78(6): 1186~1189
    [80]冷永刚,王太勇,李瑞欣,等.视觉信息的随机共振.天津大学学报,2004,37(6):480~484
    [81]寿天德主编.神经生物学.北京:高等教育出版社,2001.
    [82] www.pfizer.com/brain/images/neuron_small.gif
    [83] Chay T R, Keizer J. Minimal model for membrane oscillations in the pancreaticβ–cell. Biophysical Journal, 1983, 42: 181~190
    [84] Izhikevich E M. Which model to use for cortical spiking neurons? IEEE Transaction on Neural Networks, 2004, 15(5): 1063~1070
    [85] Phillison P E, Schuster P. A comparative study of the Hodgkin-Huxley and FitzHugh-Nagumo models of neuron pulse propagation. International Journal of Bifurcation and Chaos, 2005, 15(12): 3851~3866
    [86]顾凡及,梁培基.神经信息处理.北京:北京工业大学出版社,2007.
    [87] Hartline H K, Wagner H G, Ratliff F. Inhibition in the eye of Limulus. Journal of General Physiology, 1956, 39: 651~673
    [88] Hartline H K, Ratliff F. Inhibitory interaction of receptor units in the eye of Limulus. Journal of General Physiology, 1957, 40: 357~376
    [89] Eckhorn R, Reitboeck H J, Arndt M, et al. Feature Linking via Synchronization among Distributed Assemblies: Simulations of Results from Cat Visual Cortex. Neural Computation, 1990, 2: 293~307
    [90]沈钧贤,徐智敏,沈力坚.昆明小鼠中脑下丘声反应特征的区域分布.科学通报,2002,47(19):1485~1488
    [91] Katsuki Y, Sumi T, Uchiyama H, et al. Electric responses of auditory neurons in cat to sound stimulation. Journal of Neurophysiology, 1958, 21: 569~588
    [92] Evans E F. The frequency response and other properties of single fibers in the Guinea-pig cochlear nerve. Journal of Physiology, 1972, 226: 263~287
    [93] Evans E F. The sharpening of frequency selectivity in the normal and abnormal cochlea. Audiology, 1975, 14(5-6): 419~442
    [94] Crawford A C, Fettiplace R. The frequency selectivity of auditory nerve fibers and hair cells in the cochlea of turtle. Journal of Physiology, 1980, 306: 79~125
    [95] Fauve S, Heslot F. Stochastic resonance in a bistable system. Physical Review Letters, 1983, 97A: 5~7
    [96] Honeycutt R L. Stochastic Runge-Kutta algorithms. I. white noise. Physical Review A, 1992, 45(2): 600~603
    [97]王洪飞,王会兵,马强,等.噪声对人体的危害及综合防治研究.职业卫生与病伤,2001,16(4):198~201
    [98]张倩,高下.噪声性聋预防机制的最新研究.中国临床康复,2003,7(22):3106~3107
    [99] International commission on non-ionizing radiation protection. Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields. Health Physics, 1998, 74(4): 494~522
    [100]邓桦,王德文,彭瑞云,等.非电离辐射对大鼠心肌细胞的损伤及其机制.环境与健康杂志,2004,21(3):137~139
    [101] Breckenkamp J, Berg G, Blettner M. Biological effects on human health due to radiofrequency-microwave exposure- a synopsis of cohort studies. Radiation Environment Biophysics, 2003, 42(3): 141~154
    [102] Borromeo M, Marchesoni F. Mobility oscillations in high-frequency modulated devices. Europhysical Letters, 2005, 72(3): 362~368
    [103] Cubero D, Baltanas J P, Casado-Pascual J. High-frequency effects in the FitzHugh-Nagumo neuron model. Physical Review E, 2006, 73(6): 061102
    [104] Chizhevsky V N, Giacomelli G. Improvement of signal-to-noise ratio in a bistable optical system: comparison between vibrational and stochastic resonance. Physical Review A, 2005, 71(1): 011801
    [105] Landa P S, McClintock P V E. Vibrational resonance. Journal of Physics A, 2000,33(45): 433~438
    [106] Ullner E, Zaikin A, Garcia-Ojalvo J, et al. Vibrational resonance and vibrational propagation in excitable systems. Physics Letters A, 2003, 312: 348~354
    [107] Bowman B R, McNeal D R. Response of single alpha motoneurons to high-frequency pulse train: firing behavior and conduction block phenomenon. Applied Neurophysiology, 1986, 49: 121~138
    [108] Kilgore K L, Bhadra N. Nerve conduction utilising high frequency alternating. Medical Biological Engineering Computation, 2004, 42: 394~406
    [109]张旭,邰常峰,马斌荣.用高频双向脉冲电刺激实现有髓神经传导阻断的仿真研究.北京生物医学工程,2006,25(3):280~284
    [110] Bulsara A R, Zador A. Threshold detection of wideband signals: A noise-induced maximum in the mutual information. Physical Review E, 1996, 54: 2185~2188
    [111] Stocks N G. Information transmission in parallel threshold arrays: Suprathreshold stochastic resonance. Physical Review E, 2001, 63: 041114
    [112] Stocks N G, Mannella R. Generic noise-enhanced coding in neuronal arrays. Physical Review E, 2001, 64: 030902
    [113] Schreiner C E, Read H L, Sutter M L. Modular organization of frequency integration in primary auditory cortex. Annual Review of Neuroscience, 2000, 23: 501~529
    [114] Regan D, Tansley B W. Selective adaptation to frequency-modulated tones: Evidence for an information-processing channel selectively sensitive to frequency changes. Journal of Acoustic Socociety Am. 1979, 65(5): 1249~1257
    [115] Kamper G. Abdominal ascending interneurons in crickets: responses to sound at the 30-Hz calling-song frequency. Journal of Computational Physiology A, 1984, 155: 507~520
    [116] Kepler T B, Marder E, Abbott L F. The effect of electrical coupling on the frequency of model neuronal oscillators. Science, 1990, 248: 83~85
    [117] Neiman A, Pei X, Russell D, et al. Synchronization of the Noisy Electrosensitive Cells in the Paddlefish. Physical Review Letters, 1999, 82(3): 660~663
    [118] Gray C M, Kong P, Engel A K, et al. Oscillatory responses in cat cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature, 1989, 338: 334~337
    [119] Steinmeta P N, Roy A, Fitzgerald P J, et al. Attention modulates synchronized neuronal firing in primate somatosensory cortex. Nature, 2000, 404: 187~190
    [120] Niebur E, Hsiao S S, Johnson K O. Synchrony: a neuronal mechanism for attentional selection? Current opinion in neurobiology, 2002, 12: 190~194
    [121] Fell J, Fernandez G, Klaver P, et al. Is synchronized neuronal gamma activity relevant for selective attentions? Brain research reviews, 2003,42: 265~272
    [122] Costa R M, Lin S C, Sotnikova T D, et al. Rapid alterations in corticostriatal ensemble coordination during acute dopamine-dependent motor dysfunction. Neuron, 2006, 52(2): 359~369
    [123]葛曼玲.脑神经电活动仿真模型的研究:学位论文.天津:河北工业大学,2004.
    [124]王青云,石霞,陆启韶.神经元耦合系统的同步动力学.北京:科学出版社,2008.
    [125] Abderrahim L, Ruggero M, Holger B. Gray-level object segmentation with a network of FitzHugh-Nagumo oscillators. Leture Notes in Computer Science, 1997, 1240: 1075~1084
    [126] Lindner J F, Chandramouli S, Bulsara A R, et al. Noise enhanced propagation. Physical Review Letters, 1998, 81(23): 5048~5051
    [127] Zhou C S,Kurths J,Hu B. Array-Enhanced coherence resonance:nontrivial effects of Heterogeneity and spatial independence of noise. Physical Review Letters, 2001, 87: 098101
    [128] Zhou C S,Kurths J,Hu B. Frequency and phase locking of noise-sustained oscillations in coupled excitable systems: array-enhanced resonances. Physical Review E, 2003, 67: 030101
    [129] Safonov L A, Yamamoto Y. Noise-driven switching between limit cycles and adaptability in a small-dimensional excitable network with balanced coupling. Physical Review E, 2006, 73: 031914
    [130] Zhang Y, Hu G, Gammaitoni L. Signal transmission in one-way coupled bistable systems: noise effect. Physical Review E, 1998, 58(3): 2952~2956
    [131] Jiang Y J, Xin H W. Coherent resonance in a one-way coupled system. Physical Review E, 2000, 62(2): 1846~1849
    [132] Postnov D E, Han S K, Yim T G, et al. Experimental observation of coherence resonance in casaded excitable systems. Physical Review E, 1999, 59(4): 3791~3794
    [133] La Rosa M, Rabinovich M I, Huerta R, et al. Slow regularization through chaotic oscillation transfer in a unidirectional chain of Hindmarsh-Rose models. PhysicsLetter A, 2000, 266(1): 88~93
    [134] Hou Z H, Qu K, Xin H W. Transfer of noise into signal through one-way coupled chemical oscillators. ChemPhysChem, 2005, 6(1): 58~61
    [135] Li Q S, Liu Y. Enhancement and sustainment of internal stochastic resonance in unidirectional coupled neural system. Physical Review E, 2006, 72(1): 016218
    [136] Li Q S, Lang X F. Internal signal transmission in one-way coupled excitable system: Noise and coupling effects. Physical Review E, 2006, 74(3): 031905
    [137] Marder E, Bucher D. Central pattern generators and the control of rhythmic movements. Current Biology, 2001, 11(23): 986~996
    [138] Taherion S, Lai Y C. Observability of lag synchronization of coupled chaotic oscillators. Physical Review E, 1999, 59(6): 6247~6250
    [139] Ranganath H S, Kuntimad G. image segmentation using pulse coupled neural networks. IEEE WCCI ICNN, USA Orlando, 1994, 2: 1285~1290
    [140] Kinser J M. Foveation by a pulse-coupled neural network. IEEE Transaction on neural networks, 1999, 10(3): 621~625
    [141] Ranganath H S, Kuntimad G. object detection using PCNN. IEEE Transactions on neural networks, 1999, 10(3): 615~620
    [142] Kuntimad G, Ranganath H S. Perfect image segmentation using pulse coupled neural networks. IEEE Transactions on neural networks, 1999, 10(3): 591~598
    [143] Johnson L J, Padgett M Lou. PCNN models and applications. IEEE Transactions on neural networks, 1999, 10(3): 480~498
    [144] Izhikevich E M. Class I neural excitability, conventional synapses, weakly connected networks, and mathematical foundations of pulse coupled models. IEEE Transactions on Neural Networks, 1999, 10(3): 499~507
    [145] Ma Y D, Shi F, Li L.A new kind of impulse noise filter based on PCNN. IEEE Int. Conf. Neural Networks & Signal Processing, Nanjing, 2003, 152~155
    [146]顾晓东,程承旗,余道衡.结合脉冲耦合神经网络与模糊算法进行四值图像去噪.电子与信息学报,2003,25(12):1585~1590
    [147]马义德,张红娟.PCNN与灰度形态学相结合的图像去噪方法.北京邮电大学学报,2008,31(2):108~112
    [148]李国友,李惠光,吴惕华.基于脉冲耦合神经网络和遗传算法的图像增强.测试技术学报,2005,19(3):304~309
    [149]李国友,李惠光,吴惕华,等.PCNN和Otsu理论在图像增强中的应用.光电子.激光,2005,16(3):358~362
    [150]李国友,李惠光,吴惕华.改进的PCNN与Otsu的图像增强方法研究.系统仿真学报,2005,17(6):1370~1372
    [151]朱昊,金文标.基于PCNN与LR的低对比度图像增强方法.计算机工程与应用,2008,44(17):162~165
    [152]余瑞星,朱冰,张科.基于PCNN的图像融合新方法.光电工程,2008,35(1):126~130
    [153]卢桂馥,王勇,窦易文.一种新的基于PCNN的图像脉冲噪声滤波算法.计算机技术与发展,2007,17(12):83~85
    [154]方勇,戚飞虎,裴炳镇.一种新的PCNN实现方法及其在图像处理中的应用,红外与毫米波学报,2005,24(4):291~295
    [155]蔡广宇,崔士林,吴昌林.弧焊机器人焊缝图像分割方法研究.计算机工程与应用,2008,44(1):223~225
    [156]齐春亮,马义德,张在峰.反馈式脉冲耦合神经网络模型及应用研究.无线电工程,2006,36(11):59~61
    [157]于江波,陈后金.PCNN模型的改进及其在医学图像处理中的应用.电子与信息学报,2007,29(10):2316~2320
    [158]冯登超,杨兆选,王哲,J. M. Dias Pereira.基于改进型PCNN的不规则图像自适应分割算法研究.计算机应用,2008,28(3):650~652
    [159]武尔维,周冬明,赵东风,等.基于双层PCNN的多级灰度图像增强.云南大学学报,2007,29(5):459~464
    [160] Ji L P, Yi Z. A mixed noise image filtering method using weighted-linking PCNNs. Neurocomputing, 2008, 71(13-15): 2986~3000
    [161]李利伟,马建文,温奇.双模态脉冲耦合神经网络高分辨率光学卫星影像分割.武汉大学学报,2008,33(3):322~325
    [162]马义德,戴若兰,李廉.一种基于脉冲耦合神经网络和图像熵的自动图像分割方法.通信学报.2002,23(1):46~51
    [163]刘勍,马义德,钱志柏.一种基于交叉熵的改进型PCNN图像自动分割新方法.中国图象图形学报,2005,10(5):579~584
    [164]张煜东,吴乐南.基于二维Tsallis熵的改进PCNN图像分割.东南大学学报,2008,38(4):579~584
    [165]赵峙江,赵春晖,张志宏.一种新的PCNN模型参数估算方法.电子学报,2007,35(5):996~1000
    [166]毕英伟,邱天爽.一种基于简化PCNN的自适应图像分割方法.电子学报,2005,33(4):647~650
    [167] Li M, Cai W, Tan Z. A region-based multi-sensor image fusion scheme using pulse-coupled neural network. Pattern Recognition Letters, 2006, 27: 1948~1956
    [168] Li M, Cai W, Li X Y. An adaptive image segmentation method based on a modified pulse coupled neural network. ICNC LNCS, 2006, 4221: 471~474
    [169]李敏,蔡骋,谈正.基于修正PCNN的多传感器图像融合方法.中国图象图形学报,2008,13(2):284~290
    [170]苗启广,王宝树.一种自适应PCNN多聚焦图像融合新方法.电子与信息学报,2006,28(3):466~470
    [171]苗启广,王宝树.基于局部对比度的自适应PCNN图像融合.计算机学报,2008,31(5):875~880
    [172]石美红,付蓉,毛江辉,等.一种自适应织物疵点图像分割的方法.东华大学学报,2007,33(6):743~750
    [173] Edmondson R, Rodgers M, Banish M. Using a genetic algorithm to find an optimized pulse coupled neural network solution. Proc. SPIE, Orlando USA, 2008, 6979: 69790M-69790M9
    [174]马义德,齐春亮.基于遗传算法的脉冲耦合神经网络自动系统的研究.系统仿真学报,2006,18(3):722~725
    [175] Broussard R P. Physiologically-based vision modeling applications and gradient descent-based parameter adaptation of pulse coupled neural networks: PhD Thesis. Ohio: Air force institute of technology, 1997
    [176]于江波,陈后金,王巍,等.脉冲耦合神经网络在图像处理中的参数确定.电子学报,2008,36(1):81~85
    [177]张军英,卢志军,石林,等.基于脉冲耦合神经网络的椒盐噪声图像滤波.中国科学E辑信息科学,2004,34(8):882~894
    [178]石美红,张军英,朱欣娟,等.基于PCNN的图像高斯噪声滤波的方法.计算机应用,2002,22(6):1~4
    [179]顾晓东,郭仕德,余道衡.一种基于PCNN的图像去噪新方法.电子与信息学报,2002,24(10):1304~1309
    [180] Ma Y D,Shi F,Li L.Gaussian noise filter based on PCNN. IEEE Int. Conf. Neural Networks and Signal Processing, Nanjing, China, 2003, 149~151
    [181]石美红,毛江辉,梁颖,等.一种强高斯噪声的图像滤波方法.计算机应用,2007,27(7):1637~1640

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700