哇巴因致大鼠视网膜内核层变性与再生及明胶酶的调控作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水平细胞和无长突细胞是视网膜中间神经元,分别位于INL两侧。目前,研究表明水平细胞和无长突细胞在发育形成时紧密关联;而且脊椎动物水平细胞具有重要意义,体现在有其独特的发育过程,如双向迁移方式、可塑性高和发育晚期分裂以及成熟水平细胞能重新进入细胞周期等特点,这些独特性挑战了当前人们对神经发育模式和癌症生物学的认识。最近,研究又证实鱼类水平细胞能直接感光,打破了传统认为水平细胞间接影响感光功能的局限性。但是,关于成年哺乳动物INL损伤和再生的相关研究却少见。本课题旨在建立INL变性模型;观察Muller细胞是否具有干细胞特性,包括活化、去分化、增殖及再生出新的水平细胞等,以期扩大对水平细胞的认识;最后,探讨内源性明胶酶在本模型的视网膜变性与再生中的作用。
     主要的研究方法和内容如下:
     1、建立INL变性模型。①经SD大鼠玻璃体腔注射不同剂量的哇巴因,HE组织学观察哇巴因损伤视网膜的部位是否在INL,以及确定合适的剂量。②采用HE染色、透射电镜和TUNEL方法检测不同时间点INL损伤程度及细胞死亡方式,③运用免疫荧光法确定哇巴因损伤的细胞类型,western-blot半定量calbindinD-28k蛋白量变化。
     2、MUller细胞具有干细胞特性。①经免疫荧光法单标GS表达变化、以及双标GS/GFAP和GS/nestin用来检测Muller细胞是否被活化;Western-blot检测GS和GFAP蛋白表达量。②透射电镜显示INL是否存在有丝分裂核形态。③采用免疫荧光法标记Brdu与PCNA标记以检测INL增殖细胞,并分别与GS双标,显示MUller细胞增殖情况。④经免疫双标Brdu/Proxl和Brdu/calbindin D-28k,以分析新的神经元再生;并填加生长因子SHH,观察它对再生的影响。
     3、MMPs,尤其MMP9在哇巴因致INL神经元死亡和Muller细胞增殖的作用。①MMP2/9在哇巴因致视网膜变性中的表达和活性。采用明胶酶谱和原位酶谱检测MMP2/9的活性,运用Western-blot和免疫组化检测MMP9表达。②采用明胶酶谱和原位酶谱法检测MMP9i是否能抑制内源性MMP9活性。③MMP9i在哇巴因致视网膜INL神经元死亡的作用。指标是INL厚度(DAPI染色)、calbindin D-28k和syntaxin免疫标记阳性细胞数量;Western-blot检测calbindin D-28K蛋白表达量。④经DAPI染色,观察视网膜中凋亡样细胞核数量和Western-blot检测caspase3表达量。⑤MMP9i在哇巴因致视网膜INL变性后Muller细胞增殖的作用。应用免疫双标法,检测GS和GFAP在视网膜的共表达情况,Western-blot检测GFAP蛋白表达量;采用Brdu和PCNA标记物分别与GS行免疫双标,显示Mtiller细胞增殖情况。
     主要的研究结果和结论如下:
     1、大鼠水平细胞和无长突细胞对哇巴因敏感
     当哇巴因剂量达到2.75nmol,玻璃体注射后3d时,HE组织学观察可见SD大鼠视网膜INL开始变薄,细胞数量下降;至剂量高至22nmol时,INL厚度显著变薄,其它层次无明显变化。选用22nmol剂量,HE染色显示哇巴因致视网膜变性的病理进程,结果如下:在给药后6h、12h和1d时,INL可见许多浓缩的凋亡样细胞核,细胞间隙变大;2d时,INL凋亡样细胞核减少,仅剩1-2层细胞;4d至28d时,INL厚度再无明显变化,这表明2d是ouabain引起视网膜INL明显损伤的时间点。透射电镜显示给药后7h和1d时,在INL水平细胞位置均有凋亡和坏死特征的细胞。TUNEL染色显示INL中TUNEL阳性细胞数量最多,给药后12h达到峰值。免疫荧光染色经统计分析显示,2dpi组calbindin D-28k阳性水平细胞数量明显减少,syntaxin阳性无长突细胞次之,PKCa双极细胞以及rhodopsin感光细胞等变化不明显。
     2、成年哺乳动物水平细胞和无长突细胞的再生
     哇巴因经玻璃体单次注射后7d内,视网膜GS(Muller细胞标记物)表达(?)过性下降、Nestin(神经干细胞标记物)表达先上调后下降,表明Muller细胞被激活并且去分化成神经干细胞。同时Muller细胞掺入brdu和表达PCNA,表明Muller细胞发生增殖,并在2d时能力最强。延长观察时间至15d、21d和35d,部分Brdu阳性细胞分别表达proxl和calbindin D-28k(标记所有水平细胞和小部分无长突细胞),而且双标阳性细胞位于水平细胞和无长突细胞的位置,表明在无外源性生长因子辅助刺激下,大鼠视网膜水平细胞和无长突细胞再生成功。SHH-N不能促进这两种细胞再生。。
     3、MMP9减缓哇巴因致视网膜INL神经元非凋亡性死亡和促进Muller细胞增殖
     不同剂量哇巴因诱导视网膜急性表达MMP9并且有活性,于22nmol剂量时MMP9活性最强;同一剂量(22nmol)哇巴因作用下,在0-4d检测视网膜MMP9的活性,结果显示出先增加后降低的趋势,在2d时最强;原位酶谱显示2d时,实验组视网膜在原位有明胶酶活性,结合免疫组化结果提示MMP9可能来源于Muller细胞、INL神经元和GCL细胞。但在7-21d时,MMP2在损伤的视网膜具有活性。MMP9i和哇巴因联用后2d时,结果表明MMP9i能抑制大部分内源性MMP9活性。MMP9i的作用之一是加剧了INL厚度变薄、calbindin D-28k和syntaxin免疫阳性数量减少;而减少INL中凋亡样细胞核,下调caspase3蛋白表达。综合这些变化,表明在2d时,内源性MMP9能诱导凋亡,但延缓哇巴因致视网膜INL神经元的非凋亡性死亡。另一作用是MMP9i下调GFAP在视网膜的表达,并且在给药后4d时效果明显;同时发现2d时MMP9i抑制Muller细胞的增殖能力,表明内源性MMP9能促进哇巴因致视网膜INL变性后的Muller增殖。
Retina is an organ forming the vision. Horizontal cells (HCs) are, together with amacrine cells, retinal interneurons that lie within the inner nuclear layer (INL).They play a role in color vision formation. Vertebrate retinal HCs have recently been shown to exhibit a variety of unique biological properties, as compared with other nerve cells, that challenge many long-standing assumptions in the fields of neural development and cancer biology. These features include their unusual migratory behavior, their unique morphological plasticity, and their propensity to divide at a relatively late stage during development. At adulthood, fully differentiated mouse HCs have the ability to re-enter cell cycle and to give rise to metastatic retinoblastoma. In addition, the latest study showed intrinsic light response of retinal HCs of teleosts. There results suggest their significance. However, few papers have reported on HCs damage and regeneration since less attention is paid to HCs. In our study, we establish the animal model of INL degeneration, in SD rats and observe stem cell potential of Muller cell,including horizontal cells regeneration, which may broaden our understanding of HCs.; explore the roles of gelatinases.
     The methods are as following:
     1 Establishment of INL, especially HCs degeneration animal model.①INL degeneration was induced by intravitreal injection of the different doses of ouabain into Sprague-Dawley rats.②The degree of INL damage and cell death pathway were investigated by HE staining, TUNEL and transmission electron microscopy.③The types of ouabain-injured retinal cells were identified by immunoflurorescent staining of specific antigens of retinal cells and synapses and western-blot semi-quantitive analysis of calbindin D-28k protein.
     2 INL degeneration induced stem cell potential of Muller cell.①Muller cell activation was detected by immunostaining, single and double, of GS, GFAP and Nestin. The change of GS and GFAP protein was assessed by western-blot.②the mitosis in INL was observed by transmission electron microscopy.③Double staining of GS/brdu and GS/PCNA was applied to analyze the number of proliferating Mullercells in ouabain-induced retinal degeneration.④Double staining of brdu/prox1 and brdu/calbindin D-28k were used to detect new HCs and ACs regeneration in adult rats. The effect of SHH-N on retinal regeneration was assessed by the same indicator.
     3 Endogenous MMPs, especially MMP9 functions in neuronal death and Muller cell proliferation.①The expression and activity of MMP9 in ouabain-treated retina. Gelatin zymography and in situ zymography were used to detect MMP2/9 activity; western-blot assays and immunohistochemistry were used to analyse MMP9 expression.②The effect of MMP9 inhibitor on endogenous MMP9 activity was assessed by gelatin zymography and in situ zymography.③The influence of MMP9 inhibitor on ouabain-induced retinal damage. The indicators were INL thickness, the number of calbindin D-28k and syntaxin immnuopositive cells, respectively, and the change of calbindin D-28k protein by western-blot.④The effect of MMP9 inhibitor on INL apoptosis was determined by the number of apoptosis-like nuclear by DAPI staining and the change of caspase 3 protein by western-blot.⑤The effect of MMP9 inhibitor on Muller cell proliferation. Double immunostaining of GS/GFAP, GS/brdu and GS/PCNA were used to detect Muller cell activation and proliferation. GFAP protein was analyzed by western-blot.
     Results and conclusions:
     1 Rat HCs and ACs were sensitive to ouabain.
     At 3 dpi (day post injection), ouabain induced a rapid and obvious cell loss in the INL at all doses≥2.75 nmol, with little effect on GCL and ONL. The effect was dose- and time-dependent; at 22nmol dose and 2dpi, the damage was the severest. TUNEL staining showed there were many apoptotic nuclear in INL; at 12hpi, the number of TUNEL positive cells reached a peak. Immunostaining showed calbindin D-28k and syntaxin positive cells were lost, with horizontal cells the most susceptible.
     2 HCs and ACs were regenerated from adult mammalian retina.
     After ouabain treatment, actived Muller cells dedifferentiated into stem cells via downregulation of GS expression (mature Mullercells marker) and upregulation of Nestin expression (neuronal stem cell marker), and proliferated through brdu incorporation and upregulation of PCNA, with 2dpi the most pronounced. At 15dpi,21dpi and 35dpi(single ouabain injection), a portion of brdu positive cells expressed prox1 and calbindin D-28k, respectively (marker for all HCs and a fraction of amacrine cell), and these double immunopositive cells were located in horizontal cell and amacrine cell layer. These suggest HCs and amacrine cells regeneration from adult mammalian retina. SHH-N did not promote the two types of cell regeneration.
     3 MMP9 protected retinal interneurons from ouabain-induced non-apoptotic cell death and enhanced Muller cell proliferation.
     Ouabain induced acute MMP9 expression and resulted in an increase in MMP9 activity. At the highest dose (22nmol) and 2dpi, MMP9 active was the strongest. Muller cells and neurons in INL and cells in GCL upregulated MMP9 protein and activity. While, there was MMP2 activity in retinas at 7-21 days after ouabain treatment. At 2dpi, MMP9 inhibitor blocked most of endogenous MMP9 activity. The effect of MMP9 inhibitor on ouabain-induced retinal damage was to accelerate the change through the decrease in INL thickness and the number of calbindin D-28k and syntaxin immunopositive cells in INL. However, it resulted in the decrease in the number of apoptotic-like nuclear in INL and caspase 3 protein. Therefore, endogenous MMP9 may protect retinal interneurons from ouabain-induced non-apoptotic cell death. With respect to Muller cell reaction, the inhibitor inhibited Muller cell activation through downregulation of GFAP in NF layer and proliferation via the decrease of brdu incorporation and PCNA expression in Muller cell.
引文
[1]Papaconstantinou D., Georgalas I., Kalantzis G. Acquired color vision and visual field defects in patients with ocular hypertension and early glaucoma.[J]. Clin Ophthalmol,2009,3:251-257
    [2]Gobba F. Color vision:a sensitive indicator of exposure to neurotoxins.[J]. Neurotoxicology, 2000,21 (5):857-862
    [3]Poche R. A., Reese B. E. Retinal horizontal cells:challenging paradigms of neural development and cancer biology.[J]. Development,2009,136(13):2141-2151
    [4]Wakabayashi T., Kosaka J., Mori T. Doublecortin expression continues into adulthood in horizontal cells in the rat retina. [J]. Neurosci Lett,2008,442(3):249-252
    [5]Cheng N., Tsunenari T., Yau K. W. Intrinsic light response of retinal horizontal cells of teleosts.[J]. Nature,2009,460 (7257):899-903
    [6]Rompani S. B., Cepko C. L. Retinal progenitor cells can produce restricted subsets of horizontal cells.[J].Proc Natl Acad Sci U S A,2008,105(1):192-197
    [7]Peichl L., Gonzalez-Soriano J. Morphological types of horizontal cell in rodent retinae:a comparison of rat, mouse, gerbil, and guinea pig. [J]. Vis Neurosci,1994,11(3):501-517
    [8]Wan J., Zheng H., Chen Z. L. Preferential regeneration of photoreceptor from Muller glia after retinal degeneration in adult rat.[J]. Vision Res,2008,48(2):223-234
    [9]Karl M. O., Hayes S., Nelson B. R. Stimulation of neural regeneration in the mouse retina. [J]. Proc Natl Acad Sci U S A,2008,105(49):19508-19513
    [10]Wan J., Zheng H., Xiao H. L. Sonic hedgehog promotes stem-cell potential of Muller glia in the mammalian retina.[J]. Biochem Biophys Res Commun,2007,363(2):347-354
    [11]Osakada F., Ooto S., Akagi T. Wnt signaling promotes regeneration in the retina of adult mammals.[J].J Neurosci,2007,27 (15):4210-4219
    [12]Ooto S., Akagi T., Kageyama R. Potential for neural regeneration after neurotoxic injury in the adult mammalian retina.[J]. Proc Natl Acad Sci U S A,2004,101(37):13654-13659
    [13]Marquardt T., Gruss P. Generating neuronal diversity in the retina:one for nearly all.[J]. Trends Neurosci,2002,25 (1):32-38
    [14]Das A. V., Mallya K. B., Zhao X. Neural stem cell properties of Muller glia in the mammalian retina:regulation by Notch and Wnt signaling.[J].Dev Biol,2006,299(1):283-302
    [15]Moshiri A., Close J., Reh T. A. Retinal stem cells and regeneration.[J]. Int J Dev Biol,2004, 48 (8-9):1003-1014
    [16]Chang C., Werb Z. The many faces of metalloproteases:cell growth, invasion, angiogenesis and metastasis.[J]. Trends Cell Biol,2001,11 (11):S37-S43
    [17]Tonti G. A., Mannello F., Cacci E. Neural stem cells at the crossroads:MMPs may tell the way.[J].Int J Dev Biol,2009,53 (1):1-17
    [18]Cunningham L. A., Wetzel M., Rosenberg G. A. Multiple roles for MMPs and TIMPs in cerebral ischemia.[J]. Glia,2005,50(4):329-339
    [19]Barkho B. Z., Munoz A. E., Li X. Endogenous matrix metalloproteinase (MMP)-3 and MMP-9 promote the differentiation and migration of adult neural progenitor cells in response to chemokines.[J]. Stem Cells,2008,26 (12):3139-3149
    [20]Mali R. S., Cheng M., Chintala S. K. Intravitreous injection of a membrane depolarization agent causes retinal degeneration via matrix metalloproteinase-9.[J]. Invest Ophthalmol Vis Sci,2005,46 (6):2125-2132
    [21]Manabe S., Gu Z., Lipton S. A. Activation of matrix metalloproteinase-9 via neuronal nitric oxide synthase contributes to NMDA-induced retinal ganglion cell death. [J]. Invest Ophthalmol Vis Sci,2005,46 (12):4747-4753
    [22]Zhang X., Cheng M., Chintala S. K. Kainic acid-mediated upregulation of matrix metalloproteinase-9 promotes retinal degeneration. [J]. Invest Ophthalmol Vis Sci,2004,45 (7) 2374-2383
    [23]Zhang Y., Klassen H. J., Tucker B. A. CNS progenitor cells promote a permissive environment for neurite outgrowth via a matrix metalloproteinase-2-dependent mechanism.[J]. J Neurosci,2007, 27 (17):4499-4506
    [24]Suzuki T., Mandai M., Akimoto M. The simultaneous treatment of MMP-2 stimulants in retinal transplantation enhances grafted cell migration into the host retina.[J]. Stem Cells,2006,24 (11): 2406-2411
    [25]Tucker B. A., Redenti S. M., Jiang C. The use of progenitor cell/biodegradable MMP2-PLG A polymer constructs to enhance cellular integration and retinal repopulation.[J]. Biomaterials,2009
    [26]Chintala S. K., Zhang X., Austin J. S. Deficiency in matrix metalloproteinase gelatinase B (MMP-9) protects against retinal ganglion cell death after optic nerve ligation.[J]. J Biol Chem,2002, 277 (49):47461-47468
    [27]Yamamoto H., Schmidt-Kastner R., Hamasaki D.I. Complex neurodegeneration in retina following moderate ischemia induced by bilateral common carotid artery occlusion in Wistar rats.[J]. Exp Eye Res,2006,82 (5):767-779
    [28]Mathalone N., Lahat N., Rahat M. A. The involvement of matrix metalloproteinases 2 and 9 in rat retinal ischemia. [J]. Graefes Arch Clin Exp Ophthalmol,2007,245(5):725-732
    [29]Hood D. C., Kardon R. H. A framework for comparing structural and functional measures of glaucomatous damage.[J]. Prog Retin Eye Res,2007,26(6):688-710
    [30]Garcia-Campos J., Villena A., Diaz F. Morphological and functional changes in experimental ocular hypertension and role of neuroprotective drugs.[J]. Histol Histopathol,2007,22(12):1399-1411
    [31]Chauhan B. C., LeVatte T. L., Jollimore C. A. Model of endothelin-1-induced chronic optic neuropathy in rat.[J]. Invest Ophthalmol Vis Sci,2004,45(1):144-152
    [32]Oku H., Sugiyama T., Kojima S. Experimental optic cup enlargement caused by endothelin-1-induced chronic optic nerve head ischemia. [J]. Surv Ophthalmol,1999,44 Suppl 1: S74-S84
    [33]Cioffi G. A. Ischemic model of optic nerve injury.[J]. Trans Am Ophthalmol Soc,2005,103: 592-613
    [34]Gomez-Ramos P., Perez-Rico C. Morphological alterations of retinal cells accompanying inhibition of axonal transport by kainic acid.[J]. Exp Eye Res,1983,36(2):299-304
    [35]Li Y., Schlamp C. L., Poulsen G. L. p53 regulates apoptotic retinal ganglion cell death induced by N-methyl-D-aspartate.[J].Mol Vis,2002,8:341-350
    [36]Li Y., Schlamp C. L., Nickells R. W. Experimental induction of retinal ganglion cell death in adult mice.[J]. Invest Ophthalmol Vis Sci,1999,40(5):1004-1008
    [37]Izumi Y., Hammerman S. B., Kirby C. O. Involvement of glutamate in ischemic neurodegeneration in isolated retina.[J]. Vis Neurosci,2003,20(2):97-107
    [38]Isenmann S., Kretz A., Cellerino A. Molecular determinants of retinal ganglion cell development, survival, and regeneration. [J]. Prog Retin Eye Res,2003,22 (4):483-543
    [39]Dijk F., van Leeuwen S., Kamphuis W. Differential effects of ischemia/reperfusion on amacrine cell subtype-specific transcript levels in the rat retina.[J]. Brain Res,2004,1026(2):194-204
    [40]Chun M. H., Kim I. B., Ju W. K. Horizontal cells of the rat retina are resistant to degenerative processes induced by ischemia-reperfusion.[J]. Neurosci Lett,1999,260(2):125-128
    [41]Kuroiwa S., Katai N., Yoshimura N. A possible role for p 16INK4 in neuronal cell death after retinal ischemia-reperfusion injury. [J]. Invest Ophthalmol Vis Sci,1999,40(2):528-533
    [42]Pulsinelli W. A. Selective neuronal vulnerability:morphological and molecular characteristics.[J]. Prog Brain Res,1985,63:29-37
    [43]Nagafuji T., Koide T., Takato M. Neurochemical correlates of selective neuronal loss following cerebral ischemia:role of decreased Na+,K(+)-ATPase activity. [J]. Brain Res,1992,571 (2):265-271
    [44]Pylova S. I., Majkowska J., Hilgier W. Rapid decrease of high affinity ouabain binding sites in hippocampal CA1 region following short-term global cerebral ischemia in rat.[J]. Brain Res,1989,490 (1):170-173
    [45]Robinson J. D., Flashner M. S. The (Na++K+)-activated ATPase. Enzymatic and transport properties.[J]. Biochim Biophys Acta,1979,549(2):145-176
    [46]Geering K. Functional roles of Na,K-ATPase subunits.[J]. Curr Opin Nephrol Hypertens,2008, 17 (5):526-532
    [47]Blanco G., Mercer R. W. Isozymes of the Na-K-ATPase:heterogeneity in structure, diversity in function.[J].Am J Physiol,1998,275 (5 Pt 2):F633-F650
    [48]Blanco G. Na,K-ATPase subunit heterogeneity as a mechanism for tissue-specific ion regulation.[J]. Semin Nephrol,2005,25 (5):292-303
    [49]Wetzel R. K., Arystarkhova E., Sweadner K. J. Cellular and subcellular specification of Na,K-ATPase alpha and beta isoforms in the postnatal development of mouse retina. [J]. J Neurosci, 1999,19 (22):9878-9889
    [50]McGrail K. M., Sweadner K. J. Complex Expression Patterns for Na+,K+-ATPase Isoforms in Retina and Optic Nerve.[J]. Eur J Neurosci,1990,2(2):170-176
    [51]McGrail K. M., Sweadner K. J. Immunofluorescent localization of two different Na,K-ATPases in the rat retina and in identified dissociated retinal cells.[J]. J Neurosci,1986,6(5):1272-1283
    [52]Richards K. S., Bommert K., Szabo G. Differential expression of Na+/K+-ATPase alpha-subunits in mouse hippocampal interneurones and pyramidal cells.[J]. J Physiol,2007,585 (Pt 2):491-505
    [53]Lang H., Schulte B. A., Schmiedt R. A. Ouabain induces apoptotic cell death in type I spiral ganglion neurons, but not type Ⅱ neurons.[J].J Assoc Res Otolaryngol,2005,6(1):63-74
    [54]Wolburg H. Influence of ouabain on the fine structure of teleost retina. [J]. Acta Neuropathol, 1976,34 (3):255-266
    [55]Wolburg H. Time-and dose-dependent influence of ouabain on the ultrastructure of optic neurones.[J]. Cell Tissue Res,1975,164(4):503-517
    [56]Norido F., Canella R., Gorio A. Functional and morphological abnormalities induced by ouabain intoxication of the rabbit retina.[J]. Acta Neuropathol,1983,62(1-2):41-45
    [57]Sahel J. A., Albert D. M., Lessell S. Mitogenic effects of excitatory amino acids in the adult rat retina.[J].Exp Eye Res,1991,53 (5):657-664
    [58]Lipton P. Ischemic cell death in brain neurons.[J]. Physiol Rev,1999,79(4):1431-1568
    [59]Janowski M., Gornicka-Pawlak E., Kozlowska H. Structural and functional characteristic of a model for deep-seated lacunar infarct in rats.[J]. J Neurol Sci,2008,273(1-2):40-48
    [60]Nishizawa Y. Glutamate release and neuronal damage in ischemia.[J]. Life Sci,2001,69 (4): 369-381
    [61]Iijima T., Iijima C., Iwao Y. Difference in glutamate release between retina and cerebral cortex following ischemia.[J]. Neurochem Int,2000,36(3):221-224
    [62]Kalamkarov G. R., Tsapenko I. V., Zueva M. V. Experimental model of acute ischemia of the retina in rats. [J]. Bull Exp Biol Med,2008,145 (6):688-691
    [63]Goldenberg-Cohen N., Dadon S., Avraham B. C. Molecular and histological changes following central retinal artery occlusion in a mouse model. [J]. Exp Eye Res,2008,87(4):327-333
    [64]Zhang X., Cheng M., Chintala S. K. Kainic acid-mediated upregulation of matrix metalloproteinase-9 promotes retinal degeneration. [J]. Invest Ophthalmol Vis Sci,2004,45 (7): 2374-2383
    [65]Schmiedt R. A., Okamura H. O., Lang H. Ouabain application to the round window of the gerbil cochlea:a model of auditory neuropathy and apoptosis.[J]. J Assoc Res Otolaryngol,2002,3(3) 223-233
    [66]McLean W. J., Smith K. A., Glowatzki E. Distribution of the Na,K-ATPase alpha Subunit in the Rat Spiral Ganglion and Organ of Corti.[J]. J Assoc Res Otolaryngol,2009,10(1):37-49
    [67]Xiao A. Y., Wei L., Xia S. Ionic mechanism of ouabain-induced concurrent apoptosis and necrosis in individual cultured cortical neurons.[J]. J Neurosci,2002,22(4):1350-1362
    [68]Stelmashook E. V., Weih M., Zorov D. Short-term block of Na+/K+-ATPase in neuro-glial cell cultures of cerebellum induces glutamate dependent damage of granule cells.[J]. FEBS Lett,1999,456 (1):41-44
    [69]Li S., Stys P. K. Na(+)-K(+)-ATPase inhibition and depolarization induce glutamate release via reverse Na(+)-dependent transport in spinal cord white matter.[J]. Neuroscience,2001,107 (4): 675-683
    [70]Brines M. L., Robbins R. J. Inhibition of alpha 2/alpha 3 sodium pump isoforms potentiates glutamate neurotoxicity.[J]. Brain Res,1992,591(1):94-102
    [71]Young R.W. Cell differentiation in the retina of the mouse.[J]. Anat Rec,1985,212(2): 199-205
    [72]Cepko C. L., Austin C. P., Yang X. Cell fate determination in the vertebrate retina.[J]. Proc Natl Acad Sci U S A,1996,93 (2):589-595
    [73]Fischer A. J., Reh T. A. Muller glia are a potential source of neural regeneration in the postnatal chicken retina.[J]. Nat Neurosci,2001,4(3):247-252
    [74]Fischer A. J., Reh T. A. Potential of Muller glia to become neurogenic retinal progenitor cells.[J]. Glia,2003,43 (1):70-76
    [75]Fischer A. J., Reh T. A. Exogenous growth factors stimulate the regeneration of ganglion cells in the chicken retina. [J]. Dev Biol,2002,251 (2):367-379
    [76]Moshiri A., Reh T. A. Persistent progenitors at the retinal margin of ptc+/-mice.[J]. J Neurosci, 2004,24 (1):229-237
    [77]Wang Y. P., Dakubo G., Howley P. Development of normal retinal organization depends on Sonic hedgehog signaling from ganglion cells.[J]. Nat Neurosci,2002,5(9):831-832
    [78]Yu C., Mazerolle C. J., Thurig S. Direct and indirect effects of hedgehog pathway activation in the mammalian retina.[J]. Mol Cell Neurosci,2006,32(3):274-282
    [79]Shkumatava A., Fischer S., Muller F. Sonic hedgehog, secreted by amacrine cells, acts as a short-range signal to direct differentiation and lamination in the zebrafish retina.[J]. Development, 2004,131 (16):3849-3858
    [80]Wang L., Zhang Z. G., Gregg S. R. The Sonic hedgehog pathway mediates carbamylated erythropoietin-enhanced proliferation and differentiation of adult neural progenitor cells.[J]. J Biol Chem,2007,282 (44):32462-32470
    [81]Zhang X., Klueber K. M., Guo Z. Induction of neuronal differentiation of adult human olfactory neuroepithelial-derived progenitors.[J]. Brain Res,2006,1073-1074:109-119
    [82]Palma V., Lim D. A., Dahmane N. Sonic hedgehog controls stem cell behavior in the postnatal and adult brain.[J]. Development,2005,132(2):335-344
    [83]Bringmann A., Iandiev I., Pannicke T. Cellular signaling and factors involved in Muller cell gliosis:Neuroprotective and detrimental effects.[J]. Prog Retin Eye Res,2009
    [84]Bringmann A., Pannicke T., Grosche J. Muller cells in the healthy and diseased retina.[J]. Prog Retin Eye Res,2006,25 (4):397-424
    [85]Verardo M. R., Lewis G. P., Takeda M. Abnormal reactivity of muller cells after retinal detachment in mice deficient in GFAP and vimentin.[J]. Invest Ophthalmol Vis Sci,2008,49 (8) 3659-3665
    [86]Fischer A. J., Schmidt M., Omar G. BMP4 and CNTF are neuroprotective and suppress damage-induced proliferation of Muller glia in the retina.[J]. Mol Cell Neurosci,2004,27(4):531-542
    [87]Fischer A. J., Omar G., Eubanks J. Different aspects of gliosis in retinal Muller glia can be induced by CNTF, insulin, and FGF2 in the absence of damage.[J]. Mol Vis,2004,10:973-986
    [88]Larsson A., Wilhelmsson U., Pekna M. Increased cell proliferation and neurogenesis in the hippocampal dentate gyrus of old GFAP(-/-)Vim(-/-) mice.[J].Neurochem Res,2004,29(11): 2069-2073
    [89]Widestrand A., Faijerson J., Wilhelmsson U. Increased neurogenesis and astrogenesis from neural progenitor cells grafted in the hippocampus of GFAP-/-Vim-/-mice.[J]. Stem Cells,2007,25 (10):2619-2627
    [90]Wilhelmsson U., Li L., Pekna M. Absence of glial fibrillary acidic protein and vimentin prevents hypertrophy of astrocytic processes and improves post-traumatic regeneration.[J]. J Neurosci,2004, 24 (21):5016-5021
    [91]Kinouchi R., Takeda M., Yang L. Robust neural integration from retinal transplants in mice deficient in GFAP and vimentin.[J]. Nat Neurosci,2003,6(8):863-868
    [92]Ramirez M., Lamas M. NMDA receptor mediates proliferation and CREB phosphorylation in postnatal Muller glia-derived retinal progenitors.[J]. Mol Vis,2009,15:713-721
    [93]Locker M., Borday C., Perron M. Sternness or not sternness? Current status and perspectives of adult retinal stem cells.[J]. Curr Stem Cell Res Ther,2009,4(2):118-130
    [94]Fischer A. J., Seltner R. L., Poon J. Immunocytochemical characterization of quisqualic acid-and N-methyl-D-aspartate-induced excitotoxicity in the retina of chicks.[J]. J Comp Neurol,1998,393 (1):1-15
    [95]Hayes S., Nelson B. R., Buckingham B. Notch signaling regulates regeneration in the avian retina.[J].Dev Biol,2007,312 (1):300-311
    [96]Roesch K., Jadhav A. P., Trimarchi J. M. The transcriptome of retinal Muller glial cells.[J]. J Comp Neurol,2008,509 (2):225-238
    [97]Takeda M., Takamiya A., Jiao J. W. alpha-Aminoadipate induces progenitor cell properties of Muller glia in adult mice.[J]. Invest Ophthalmol Vis Sci,2008,49 (3):1142-1150
    [98]Basarsky T. A., Feighan D., MacVicar B. A. Glutamate release through volume-activated channels during spreading depression.[J]. J Neurosci,1999,19(15):6439-6445
    [99]Balestrino M., Young J., Aitken P. Block of (Na+,K+)ATPase with ouabain induces spreading depression-like depolarization in hippocampal slices.[J]. Brain Res,1999,838(1-2):37-44
    [100]de Rezende Correa G., Araujo dos Santos A., Frederico Leite Fontes C. Ouabain induces an increase of retinal ganglion cell survival in vitro:the involvement of protein kinase C.[J]. Brain Res, 2005,1049 (1):89-94
    [101]Golden W. C., Martin L. J. Low-dose ouabain protects against excitotoxic apoptosis and up-regulates nuclear Bcl-2 in vivo.[J]. Neuroscience,2006,137(1):133-144
    [102]Sundelacruz S., Levin M., Kaplan D. L. Membrane potential controls adipogenic and osteogenic differentiation of mesenchymal stem cells.[J]. PLoS One,2008,3(11):e3737
    [103]Hajszan T., Milner T. A., Leranth C. Sex steroids and the dentate gyrus.[J]. Prog Brain Res, 2007,163:399-415
    [104]Galea L. A. Gonadal hormone modulation of neurogenesis in the dentate gyrus of adult male and female rodents.[J]. Brain Res Rev,2008,57(2):332-341
    [105]Fischer A. J., McGuire C. R., Dierks B. D. Insulin and fibroblast growth factor 2 activate a neurogenic program in Muller glia of the chicken retina. [J]. J Neurosci,2002,22(21):9387-9398
    [106]Fischer A. J. Neural regeneration in the chick retina.[J]. Prog Retin Eye Res,2005,24 (2) 161-182
    [107]Chen Z. L., Strickland S. Neuronal death in the hippocampus is promoted by plasmin-catalyzed degradation of laminin.[J]. Cell,1997,91 (7):917-925
    [108]Gu Z., Cui J., Brown S. A highly specific inhibitor of matrix metalloproteinase-9 rescues laminin from proteolysis and neurons from apoptosis in transient focal cerebral ischemia.[J]. J Neurosci,2005, 25 (27):6401-6408
    [109]Lee S. R., Tsuji K., Lee S. R. Role of matrix metalloproteinases in delayed neuronal damage after transient global cerebral ischemia. [J]. J Neurosci,2004,24(3):671-678
    [110]Chattopadhyay S., Shubayev V. I. MMP-9 controls Schwann cell proliferation and phenotypic remodeling via IGF-1 and ErbB receptor-mediated activation of MEK/ERK pathway.[J]. Glia,2009, 57 (12):1316-1325
    [111]Kobayashi H., Chattopadhyay S., Kato K. MMPs initiate Schwann cell-mediated MBP degradation and mechanical nociception after nerve damage.[J]. Mol Cell Neurosci,2008,39 (4): 619-627
    [112]Cunningham L. A., Wetzel M., Rosenberg G. A. Multiple roles for MMPs and TIMPs in cerebral ischemia.[J]. Glia,2005,50(4):329-339
    [113]Zhang X., Sakamoto T., Hata Y. Expression of matrix metalloproteinases and their inhibitors in experimental retinal ischemia-reperfusion injury in rats.[J]. Exp Eye Res,2002,74(5):577-584
    [114]Zhang X., Cheng M., Chintala S. K. Optic nerve ligation leads to astrocyte-associated matrix metalloproteinase-9 induction in the mouse retina. [J]. Neurosci Lett,2004,356(2):140-144
    [115]Guo L., Moss S. E., Alexander R. A. Retinal ganglion cell apoptosis in glaucoma is related to intraocular pressure and IOP-induced effects on extracellular matrix.[J]. Invest Ophthalmol Vis Sci, 2005,46 (1):175-182
    [116]Limb G. A., Daniels J. T., Pleass R. Differential expression of matrix metalloproteinases 2 and 9 by glial Muller cells:response to soluble and extracellular matrix-bound tumor necrosis factor-alpha.[J]. Am J Pathol,2002,160 (5):1847-1855
    [117]Rivera S., Ogier C., Jourquin J. Gelatinase B and TIMP-1 are regulated in a cell-and time-dependent manner in association with neuronal death and glial reactivity after global forebrain ischemia.[J]. Eur J Neurosci,2002,15(1):19-32
    [118]Zhang X., Chintala S. K. Influence of interleukin-1 beta induction and mitogen-activated protein kinase phosphorylation on optic nerve ligation-induced matrix metalloproteinase-9 activation in the retina.[J].Exp Eye Res,2004,78 (4):849-860
    [119]Lu L., Tonchev A. B., Kaplamadzhiev D. B. Expression of matrix metalloproteinases in the neurogenic niche of the adult monkey hippocampus after ischemia. [J]. Hippocampus,2008,18(10): 1074-1084
    [120]Wojcik L., Sawicka A., Rivera S. Neurogenesis in gerbil hippocampus following brain ischemia: Focus on the involvement of metalloproteinases.[J]. Acta Neurobiol Exp (Wars),2009,69 (1):52-61
    [121]Masuda T., Isobe Y., Aihara N. Increase in neurogenesis and neuroblast migration after a small intracerebral hemorrhage in rats.[J].Neurosci Lett,2007,425 (2):114-119
    [122]Zhao B. Q., Wang S., Kim H. Y. Role of matrix metalloproteinases in delayed cortical responses after stroke.[J].Nat Med,2006,12 (4):441-445
    [123]Kim D. H., Lilliehook C., Roides B. Testosterone-induced matrix metalloproteinase activation is a checkpoint for neuronal addition to the adult songbird brain.[J]. J Neurosci,2008,28 (1):208-216
    [124]Wang L., Zhang Z. G., Zhang R. L. Matrix metalloproteinase 2 (MMP2) and MMP9 secreted by erythropoietin-activated endothelial cells promote neural progenitor cell migration.[J]. J Neurosci, 2006,26 (22):5996-6003
    [125]Dzwonek J., Rylski M., Kaczmarek L. Matrix metalloproteinases and their endogenous inhibitors in neuronal physiology of the adult brain.[J]. FEBS Lett,2004,567(1):129-135
    [126]Jourquin J., Tremblay E., Decanis N. Neuronal activity-dependent increase of net matrix metalloproteinase activity is associated with MMP-9 neurotoxicity after kainate.[J]. Eur J Neurosci, 2003,18 (6):1507-1517
    [127]Svedin P., Hagberg H., Savman K. Matrix metalloproteinase-9 gene knock-out protects the immature brain after cerebral hypoxia-ischemia.[J]. J Neurosci,2007,27(7):1511-1518
    [128]Asahi M., Asahi K., Jung J. C. Role for matrix metalloproteinase 9 after focal cerebral ischemia: effects of gene knockout and enzyme inhibition with BB-94.[J]. J Cereb Blood Flow Metab,2000,20 (12):1681-1689
    [129]Vaillant C., Meissirel C., Mutin M. MMP-9 deficiency affects axonal outgrowth, migration, and apoptosis in the developing cerebellum.[J].Mol Cell Neurosci,2003,24(2):395-408
    [130]Romanic A. M., White R. F., Arleth A. J. Matrix metalloproteinase expression increases after cerebral focal ischemia in rats:inhibition of matrix metalloproteinase-9 reduces infarct size.[J]. Stroke, 1998,29 (5):1020-1030
    [131]Leonardo C. C., Eakin A. K., Ajmo J. M. Delayed administration of a matrix metalloproteinase inhibitor limits progressive brain injury after hypoxia-ischemia in the neonatal rat.[J]. J Neuroinflammation,2008,5:34
    [132]Mizoguchi H., Takuma K., Fukuzaki E. Matrix metalloprotease-9 inhibition improves amyloid {beta}-mediated cognitive impairment and neurotoxicity in mice.[J]. J Pharmacol Exp Ther,2009
    [133]Chen W., Hartman R., Ayer R. Matrix metalloproteinases inhibition provides neuroprotection against hypoxia-ischemia in the developing brain.[J]. J Neurochem,2009
    [134]Campbell S. J., Finlay M., Clements J. M. Reduction of excitotoxicity and associated leukocyte recruitment by a broad-spectrum matrix metalloproteinase inhibitor.[J]. J Neurochem,2004,89 (6): 1378-1386
    [135]Gu Z., Kaul M., Yan B. S-nitrosylation of matrix metalloproteinases:signaling pathway to neuronal cell death.[J]. Science,2002,297(5584):1186-1190
    [136]Xue M., Hollenberg M. D., Yong V. W. Combination of thrombin and matrix metalloproteinase-9 exacerbates neurotoxicity in cell culture and intracerebral hemorrhage in mice.[J]. J Neurosci,2006,26 (40):10281-10291
    [137]Gu Z., Cui J., Brown S. A highly specific inhibitor of matrix metalloproteinase-9 rescues laminin from proteolysis and neurons from apoptosis in transient focal cerebral ischemia.[J]. J Neurosci,2005, 25 (27):6401-6408
    [138]Guo Z., Sun X., He Z. Matrix metalloproteinase-9 potentiates early brain injury after subarachnoid hemorrhage. [J]. Neurol Res,2009
    [139]Kiaei M., Kipiani K., Calingasan N. Y. Matrix metalloproteinase-9 regulates TNF-alpha and FasL expression in neuronal, glial cells and its absence extends life in a transgenic mouse model of amyotrophic lateral sclerosis.[J]. Exp Neurol,2007,205 (1):74-81
    [140]Miao B., Degterev A. Methods to analyze cellular necroptosis.[J]. Methods Mol Biol,2009,559: 79-93
    [141]Galluzzi L., Kroemer G. Necroptosis:a specialized pathway of programmed necrosis.[J]. Cell, 2008,135 (7):1161-1163
    [142]Hitomi J., Christofferson D. E., Ng A. Identification of a molecular signaling network that regulates a cellular necrotic cell death pathway.[J]. Cell,2008,135(7):1311-1323
    [143]Xu X., Chua C. C., Kong J. Necrostatin-1 protects against glutamate-induced glutathione depletion and caspase-independent cell death in HT-22 cells. [J]. J Neurochem,2007,103 (5): 2004-2014
    [144]Grossetete M., Rosenberg G. A. Matrix metalloproteinase inhibition facilitates cell death in intracerebral hemorrhage in mouse. [J]. J Cereb Blood Flow Metab,2008,28(4):752-763
    [145]Tang J., Liu J., Zhou C. Mmp-9 deficiency enhances collagenase-induced intracerebral hemorrhage and brain injury in mutant mice.[J]. J Cereb Blood Flow Metab,2004,24(10):1133-1145
    [146]Dewil M., Schurmans C., Starckx S. Role of matrix metalloproteinase-9 in a mouse model for amyotrophic lateral sclerosis.[J].Neuroreport,2005,16(4):321-324
    [147]Chew D. K., Conte M. S., Khalil R. A. Matrix metalloproteinase-specific inhibition of Ca2+ entry mechanisms of vascular contraction.[J]. J Vasc Surg,2004,40(5):1001-1010
    [148]Manoonkitiwongsa P. S., Jackson-Friedman C., McMillan P. J. Angiogenesis after stroke is correlated with increased numbers of macrophages:the clean-up hypothesis.[J]. J Cereb Blood Flow Metab,2001,21 (10):1223-1231
    [149]Milenkovic I., Weick M., Wiedemann P. P2Y receptor-mediated stimulation of Muller glial cell DNA synthesis:dependence on EGF and PDGF receptor transactivation.[J]. Invest Ophthalmol Vis Sci,2003,44 (3):1211-1220
    [150]Yang H., Cheng X. P., Li J. W. De-differentiation response of cultured astrocytes to injury induced by scratch or conditioned culture medium of scratch-insulted astrocytes.[J]. Cell Mol Neurobiol,2009,29 (4):455-473
    [151]Yu T., Cao G., Feng L. Low temperature induced de-differentiation of astrocytes. [J]. J Cell Biochem,2006,99 (4):1096-1107
    [152]Lang B., Liu H. L., Liu R. Astrocytes in injured adult rat spinal cord may acquire the potential of neural stem cells.[J]. Neuroscience,2004,128(4):775-783
    [153]Okamoto M., Wang X., Baba M. HIV-1-infected macrophages induce astrogliosis by SDF-lalpha and matrix metalloproteinases.[J]. Biochem Biophys Res Commun,2005,336 (4) 1214-1220
    [154]Hernandez-Guillamon M., Delgado P., Ortega L. Neuronal TIMP-1 release accompanies astrocytic MMP-9 secretion and enhances astrocyte proliferation induced by beta-amyloid 25-35 fragment.[J].J Neurosci Res,2009,87(9):2115-2125
    [155]Hollborn M., Jahn K., Limb G. A. Characterization of the basic fibroblast growth factor-evoked proliferation of the human Muller cell line, MIO-M1.[J]. Graefes Arch Clin Exp Ophthalmol,2004, 242 (5):414-422
    [156]Mantuano E., Inoue G., Li X. The hemopexin domain of matrix metalloproteinase-9 activates cell signaling and promotes migration of schwann cells by binding to low-density lipoprotein receptor-related protein.[J]. J Neurosci,2008,28(45):11571-11582
    [157]Dufour A., Sampson N. S., Zucker S. Role of the hemopexin domain of matrix metalloproteinases in cell migration.[J].J Cell Physiol,2008,217(3):643-651
    [158]Page-McCaw A., Ewald A. J., Werb Z. Matrix metalloproteinases and the regulation of tissue remodelling.[J]. Nat Rev Mol Cell Biol,2007,8 (3):221-233
    [159]Close J. L., Liu J., Gumuscu B. Epidermal growth factor receptor expression regulates proliferation in the postnatal rat retina.[J]. Glia,2006,54(2):94-104
    [1]Tonti G. A., Mannello F., Cacci E. Neural stem cells at the crossroads:MMPs may tell the way.[J].Int J Dev Biol,2009,53 (1):1-17
    [2]Mott J. D., Werb Z. Regulation of matrix biology by matrix metalloproteinases.[J]. Curr Opin Cell Biol,2004,16 (5):558-564
    [3]Cauwe B., van den Steen P. E., Opdenakker G. The biochemical, biological, and pathological kaleidoscope of cell surface substrates processed by matrix metalloproteinases.[J]. Crit Rev Biochem Mol Biol,2007,42 (3):113-185
    [4]Page-McCaw A., Ewald A. J., Werb Z. Matrix metalloproteinases and the regulation of tissue remodelling.[J]. Nat Rev Mol Cell Biol,2007,8(3):221-233
    [5]Mannello F., LuchettiF., Falcieri E. Multiple roles of matrix metalloproteinases during apoptosis.[J]. Apoptosis,2005,10(1):19-24
    [6]Vu T. H., Werb Z. Matrix metalloproteinases:effectors of development and normal physiology.[J]. Genes Dev,2000,14(17):2123-2133
    [7]Rosell A., Lo E. H. Multiphasic roles for matrix metalloproteinases after stroke.[J]. Curr Opin Pharmacol,2008,8(1):82-89
    [8]Zhang S., Dailey G. M., Kwan E. An MMP liberates the Ninjurin A ectodomain to signal a loss of cell adhesion.[J]. Genes Dev,2006,20(14):1899-1910
    [9]McCawley L. J., Matrisian L. M. Matrix metalloproteinases:they're not just for matrix anymore![J]. Curr Opin Cell Biol,2001,13(5):534-540
    [10]McQuibban G. A., Gong J. H., Tam E. M. Inflammation dampened by gelatinase A cleavage of monocyte chemoattractant protein-3.[J]. Science,2000,289(5482):1202-1206
    [11]Mannello F. Multipotent mesenchymal stromal cell recruitment, migration, and differentiation: what have matrix metalloproteinases got to do with it?[J]. Stem Cells,2006,24 (8):1904-1907
    [12]Hamano Y., Zeisberg M., Sugimoto H. Physiological levels of tumstatin, a fragment of collagen IV alpha3 chain, are generated by MMP-9 proteolysis and suppress angiogenesis via alphaV beta3 integrin.[J]. Cancer Cell,2003,3(6):589-601
    [13]Sternlicht M. D., Werb Z. How matrix metalloproteinases regulate cell behavior. [J]. Annu Rev Cell Dev Biol,2001,17:463-516
    [14]Visse R., Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry.[J]. Circ Res,2003,92(8):827-839
    [15]Overall C. M. Molecular determinants of metalloproteinase substrate specificity:matrix metalloproteinase substrate binding domains, modules, and exosites.[J]. Mol Biotechnol,2002,22(1): 51-86
    [16]Brinckerhoff C. E., Matrisian L. M. Matrix metalloproteinases:a tail of a frog that became a prince.[J]. Nat Rev Mol Cell Biol,2002,3(3):207-214
    [17]Nagase H., Jr Woessner J. F. Matrix metalloproteinases.[J]. J Biol Chem,1999,274(31): 21491-21494
    [18]Bode W., Gomis-Ruth F. X., Stockler W. Astacins, serralysins, snake venom and matrix metalloproteinases exhibit identical zinc-binding environments (HEXXHXXGXXH and Met-turn) and topologies and should be grouped into a common family, the'metzincins'.[J]. FEBS Lett,1993,331 (1-2):134-140
    [19]Shipley J. M., Doyle G. A., Fliszar C. J. The structural basis for the elastolytic activity of the 92-kDa and 72-kDa gelatinases. Role of the fibronectin type Ⅱ-like repeats. [J]. J Biol Chem,1996,271 (8):4335-4341
    [20]Murphy G., Nguyen Q., Cockett M. I. Assessment of the role of the fibronectin-like domain of gelatinase A by analysis of a deletion mutant. [J]. J Biol Chem,1994,269(9):6632-6636
    [21]Candelario-Jalil E., Yang Y., Rosenberg G. A. Diverse roles of matrix metalloproteinases and tissue inhibitors of metalloproteinases in neuroinflammation and cerebral ischemia.[J]. Neuroscience, 2009,158 (3):983-994
    [22]Cunningham L. A., Wetzel M., Rosenberg G. A. Multiple roles for MMPs and TIMPs in cerebral ischemia.[J]. Glia,2005,50(4):329-339
    [23]Lee S. R., Kim H. Y., Rogowska J. Involvement of matrix metalloproteinase in neuroblast cell migration from the subventricular zone after stroke.[J]. J Neurosci,2006,26(13):3491-3495
    [24]Barkho B. Z., Munoz A. E., Li X. Endogenous matrix metalloproteinase (MMP)-3 and MMP-9 promote the differentiation and migration of adult neural progenitor cells in response to chemokines.[J]. Stem Cells,2008,26 (12):3139-3149
    [25]Vincenti M. P., Brinckerhoff C. E. Signal transduction and cell-type specific regulation of matrix metalloproteinase gene expression:can MMPs be good for you?[J]. J Cell Physiol,2007,213 (2):355-364
    [26]Yan C., Boyd D. D. Regulation of matrix metalloproteinase gene expression.[J]. J Cell Physiol, 2007,211 (1):19-26
    [27]Burrage P. S., Mix K. S., Brinckerhoff C. E. Matrix metalloproteinases:role in arthritis.[J]. Front Biosci,2006,11:529-543
    [28]Mancini A., di Battista J. A. Transcriptional regulation of matrix metalloprotease gene expression in health and disease.[J]. Front Biosci,2006, 11:423-446
    [29]Strongin A. Y., Collier I., Bannikov G. Mechanism of cell surface activation of 72-kDa type IV collagenase. Isolation of the activated form of the membrane metalloprotease. [J]. J Biol Chem,1995, 270 (10):5331-5338
    [30]Overall C.M., Wrana J. L., Sodek J. Transcriptional and post-transcriptional regulation of 72-kDa gelatinase/type IV collagenase by transforming growth factor-beta 1 in human fibroblasts. Comparisons with collagenase and tissue inhibitor of matrix metalloproteinase gene expression.[J]. J Biol Chem,1991,266(21):14064-14071
    [31]Rosenberg G. A. Matrix metalloproteinases and their multiple roles in neurodegenerative diseases.[J].Lancet Neurol,2009,8 (2):205-216
    [32]Jian Liu K., Rosenberg G. A. Matrix metalloproteinases and free radicals in cerebral ischemia.[J]. Free Radic Biol Med,2005,39 (1):71-80
    [33]Adibhatla R. M., Hatcher J. F. Tissue plasminogen activator (tPA) and matrix metalloproteinases in the pathogenesis of stroke:therapeutic strategies. [J]. CNS Neurol Disord Drug Targets,2008,7(3): 243-253
    [34]Clark I. M., Swingler T. E., Sampieri C. L. The regulation of matrix metalloproteinases and their inhibitors.[J].Int J Biochem Cell Biol,2008,40(6-7):1362-1378
    [35]Garneau N. L., Wilusz J., Wilusz C. J. The highways and byways of mRNA decay.[J]. Nat Rev Mol Cell Biol,2007,8(2):113-126
    [36]Vincenti M. P. The matrix metalloproteinase (MMP) and tissue inhibitor of metalloproteinase (TIMP) genes. Transcriptional and posttranscriptional regulation, signal transduction and cell-type-specific expression.[J]. Methods Mol Biol,2001,151:121-148
    [37]Ra H. J., Parks W. C. Control of matrix metalloproteinase catalytic activity.[J]. Matrix Biol, 2007,26 (8):587-596
    [38]Gu Z., Kaul M., Yan B. S-nitrosylation of matrix metalloproteinases:signaling pathway to neuronal cell death.[J]. Science,2002,297(5584):1186-1190
    [39]Morgunova E., Tuuttila A., Bergmann U. Structural insight into the complex formation of latent matrix metalloproteinase 2 with tissue inhibitor of metalloproteinase 2.[J]. Proc Natl Acad Sci U S A, 2002,99 (11):7414-7419
    [40]Lohi J., Lehti K., Valtanen H. Structural analysis and promoter characterization of the human membrane-type matrix metalloproteinase-1 (MT1-MMP) gene.[J]. Gene,2000,242(1-2):75-86
    [41]Brooks P. C., Stromblad S., Sanders L. C. Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin alpha v beta 3.[J]. Cell,1996,85(5):683-693
    [42]Bourguignon L. Y., Gunja-Smith Z., Iida N. CD44v(3,8-10) is involved in cytoskeleton-mediated tumor cell migration and matrix metalloproteinase (MMP-9) association in metastatic breast cancer cells.[J].J Cell Physiol,1998,176(1):206-215
    [43]Mannello F. Natural bio-drugs as matrix metalloproteinase inhibitors:new perspectives on the horizon?[J]. Recent Pat Anticancer Drug Discov,2006,1(1):91-103
    [44]Olson M. W., Gervasi D. C., Mobashery S. Kinetic analysis of the binding of human matrix metalloproteinase-2 and -9 to tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2.[J]. J Biol Chem,1997,272 (47):29975-29983
    [45]Fridman R., Fuerst T. R., Bird R. E. Domain structure of human 72-kDa gelatinase/type IV collagenase. Characterization of proteolytic activity and identification of the tissue inhibitor of metalloproteinase-2 (TIMP-2) binding regions.[J]. J Biol Chem,1992,267(22):15398-15405
    [46]Butler G. S., Apte S. S., Willenbrock F. Human tissue inhibitor of metalloproteinases 3 interacts with both the N- and C-terminal domains of gelatinases A and B. Regulation by polyanions.[J]. J Biol Chem,1999,274 (16):10846-10851
    [47]Oh J., Takahashi R., Kondo S. The membrane-anchored MMP inhibitor RECK is a key regulator of extracellular matrix integrity and angiogenesis.[J]. Cell,2001,107(6):789-800
    [48]Mott J. D., Thomas C. L., Rosenbach M. T. Post-translational proteolytic processing of procollagen C-terminal proteinase enhancer releases a metalloproteinase inhibitor.[J]. J Biol Chem, 2000,275 (2):1384-1390
    [49]Luo J. The role of matrix metalloproteinases in the morphogenesis of the cerebellar cortex. [J]. Cerebellum,2005,4(4):239-245
    [50]Komuro H., Rakic P. Distinct modes of neuronal migration in different domains of developing cerebellar cortex.[J]. J Neurosci,1998,18(4):1478-1490
    [51]Vaillant C., Meissirel C., Mutin M. MMP-9 deficiency affects axonal outgrowth, migration, and apoptosis in the developing cerebellum. [J]. Mol Cell Neurosci,2003,24(2):395-408
    [52]Dzwonek J., Rylski M., Kaczmarek L. Matrix metalloproteinases and their endogenous inhibitors in neuronal physiology of the adult brain. [J]. FEBS Lett,2004,567(1):129-135
    [53]Kaczmarek L., Lapinska-Dzwonek J., Szymczak S. Matrix metalloproteinases in the adult brain physiology:a link between c-Fos, AP-1 and remodeling of neuronal connections? [J]. EMBO J,2002, 21 (24):6643-6648
    [54]Madani R., Hulo S., Toni N. Enhanced hippocampal long-term potentiation and learning by increased neuronal expression of tissue-type plasminogen activator in transgenic mice.[J]. EMBO J, 1999,18 (11):3007-3012
    [55]Yoshida S., Shiosaka S. Plasticity-related serine proteases in the brain (review).[J]. Int J Mol Med,1999,3 (4):405-409
    [56]Szklarczyk A., Lapinska J., Rylski M. Matrix metalloproteinase-9 undergoes expression and activation during dendritic remodeling in adult hippocampus.[J]. J Neurosci,2002,22 (3):920-930
    [57]Ayoub A. E., Cai T. Q., Kaplan R. A. Developmental expression of matrix metalloproteinases 2 and 9 and their potential role in the histogenesis of the cerebellar cortex.[J]. J Comp Neurol,2005,481 (4):403-415
    [58]Ulrich R., Gerhauser I., Seeliger F. Matrix metalloproteinases and their inhibitors in the developing mouse brain and spinal cord:a reverse transcription quantitative polymerase chain reaction study.[J].Dev Neurosci,2005,27 (6):408-418
    [59]Ogier C., Bernard A., Chollet A. M. Matrix metalloproteinase-2 (MMP-2) regulates astrocyte motility in connection with the actin cytoskeleton and integrins.[J]. Glia,2006,54(4):272-284
    [60]Mun-Bryce S., Rosenberg G. A. Gelatinase B modulates selective opening of the blood-brain barrier during inflammation. [J]. Am J Physiol,1998,274(5Pt2):R1203-R1211
    [61]Rosenberg G. A., Estrada E. Y., Dencoff J. E. Matrix metalloproteinases and TIMPs are associated with blood-brain barrier opening after reperfusion in rat brain.[J]. Stroke,1998,29 (10): 2189-2195
    [62]Mun-Bryce S., Rosenberg G. A. Matrix metalloproteinases in cerebrovascular disease.[J]. J Cereb Blood Flow Metab,1998,18(11):1163-1172
    [63]Rosenberg G. A. Matrix metalloproteinases in brain injury.[J]. J Neurotrauma,1995,12(5): 833-842
    [64]Rosenberg G. A., Kornfeld M., Estrada E. TIMP-2 reduces proteolytic opening of blood-brain barrier by type IV collagenase.[J]. Brain Res,1992,576(2):203-207
    [65]Asahi M., Wang X., Mori T. Effects of matrix metalloproteinase-9 gene knock-out on the proteolysis of blood-brain barrier and white matter components after cerebral ischemia. [J]. J Neurosci, 2001,21 (19):7724-7732
    [66]Asahi M., Asahi K., Jung J. C. Role for matrix metalloproteinase 9 after focal cerebral ischemia: effects of gene knockout and enzyme inhibition with BB-94.[J]. J Cereb Blood Flow Metab,2000,20 (12):1681-1689
    [67]Chang D. I., Hosomi N., Lucero J. Activation systems for latent matrix metalloproteinase-2 are upregulated immediately after focal cerebral ischemia.[J]. J Cereb Blood Flow Metab,2003,23 (12): 1408-1419
    [68]Heo J. H., Lucero J., Abumiya T. Matrix metalloproteinases increase very early during experimental focal cerebral ischemia.[J]. J Cereb Blood Flow Metab,1999,19(6):624-633
    [69]Montaner J., Molina C. A., Monasterio J. Matrix metalloproteinase-9 pretreatment level predicts intracranial hemorrhagic complications after thrombolysis in human stroke.[J]. Circulation,2003,107 (4):598-603
    [70]Montaner J., Alvarez-Sabin J., Molina C. Matrix metalloproteinase expression after human cardioembolic stroke:temporal profile and relation to neurological impairment.[J]. Stroke,2001,32 (8):1759-1766
    [71]Montaner J., Alvarez-Sabin J., Molina C. A. Matrix metalloproteinase expression is related to hemorrhagic transformation after cardioembolic stroke.[J]. Stroke,2001,32(12):2762-2767
    [72]Lo E. H., Rosenberg G. A. The neurovascular unit in health and disease:introduction.[J]. Stroke,2009,40 (3 Suppl):S2-S3
    [73]Rosenberg G. A., Cunningham L. A., Wallace J. Immunohistochemistry of matrix metalloproteinases in reperfusion injury to rat brain:activation of MMP-9 linked to stromelysin-1 and microglia in cell cultures.[J]. Brain Res,2001,893(1-2):104-112
    [74]Hamann G. F., del Zoppo GJ, von Kummer R. Hemorrhagic transformation of cerebral infarction--possible mechanisms.[J]. Thromb Haemost,1999,82 Suppl 1:92-94
    [75]Hamann G. F., Okada Y., del Zoppo GJ. Hemorrhagic transformation and microvascular integrity during focal cerebral ischemia/reperfusion.[J]. J Cereb Blood Flow Metab,1996,16(6) 1373-1378
    [76]Hamann G. F., Okada Y., Fitridge R. Microvascular basal lamina antigens disappear during cerebral ischemia and reperfusion.[J]. Stroke,1995,26(11):2120-2126
    [77]Furuse M., Fujita K., Hiiragi T. Claudin-1 and-2:novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin.[J]. J Cell Biol,1998,141(7):1539-1550
    [78]Watson P. M., Anderson J. M., Vanltallie C. M. The tight-junction-specific protein ZO-1 is a component of the human and rat blood-brain barriers.[J]. Neurosci Lett,1991,129(1):6-10
    [79]Harkness K. A., Adamson P., Sussman J. D. Dexamethasone regulation of matrix metalloproteinase expression in CNS vascular endothelium.[J]. Brain,2000,123 (Pt 4):698-709
    [80]Jourquin J., Tremblay E., Decanis N. Neuronal activity-dependent increase of net matrix metalloproteinase activity is associated with MMP-9 neurotoxicity after kainate.[J]. Eur J Neurosci, 2003,18 (6):1507-1517
    [81]Rivera S., Ogier C., Jourquin J. Gelatinase B and TIMP-1 are regulated in a cell-and time-dependent manner in association with neuronal death and glial reactivity after global forebrain ischemia.[J]. Eur J Neurosci,2002,15(1):19-32
    [82]Lee S. R., Tsuji K., Lee S. R. Role of matrix metalloproteinases in delayed neuronal damage after transient global cerebral ischemia.[J]. J Neurosci,2004,24 (3):671-678
    [83]Gu Z., Kaul M., Yan B. S-nitrosylation of matrix metalloproteinases:signaling pathway to neuronal cell death.[J]. Science,2002,297(5584):1186-1190
    [84]Asahi M., Sumii T., Fini M. E. Matrix metalloproteinase 2 gene knockout has no effect on acute brain injury after focal ischemia.[J]. Neuroreport,2001,12(13):3003-3007
    [85]Lin T. N., Sun S. W., Cheung W. M. Dynamic changes in cerebral blood flow and angiogenesis after transient focal cerebral ischemia in rats. Evaluation with serial magnetic resonance imaging.[J]. Stroke,2002,33 (12):2985-2991
    [86]Marti H. J., Bernaudin M., Bellail A. Hypoxia-induced vascular endothelial growth factor expression precedes neovascularization after cerebral ischemia.[J]. Am J Pathol,2000,156 (3): 965-976
    [87]Krupinski J., Kaluza J., Kumar P. Role of angiogenesis in patients with cerebral ischemic stroke.[J]. Stroke,1994,25 (9):1794-1798
    [88]Heissig B., Hattori K., Friedrich M. Angiogenesis:vascular remodeling of the extracellular matrix involves metalloproteinases.[J]. Curr Opin Hematol,2003,10(2):136-141
    [89]Chang C., Werb Z. The many faces of metalloproteases:cell growth, invasion, angiogenesis and metastasis.[J]. Trends Cell Biol,2001,11 (11):S37-S43
    [90]Werb Z., Vu T. H., Rinkenberger J. L. Matrix-degrading proteases and angiogenesis during development and tumor formation.[J]. APMIS,1999,107(1):11-18
    [91]Vu T. H., Shipley J. M., Bergers G. MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes.[J]. Cell,1998,93(3):411-422
    [92]Hanahan D., Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis.[J]. Cell,1996,86 (3):353-364
    [93]Bergers G., Brekken R., McMahon G. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis.[J]. Nat Cell Biol,2000,2 (10):737-744
    [94]Zhu Y., Lee C., Shen F. Angiopoietin-2 facilitates vascular endothelial growth factor-induced angiogenesis in the mature mouse brain. [J]. Stroke,2005,36(7):1533-1537
    [95]Zhang Z. G., Zhang L., Jiang Q. VEGF enhances angiogenesis and promotes blood-brain barrier leakage in the ischemic brain.[J]. J Clin Invest,2000,106(7):829-838
    [96]Lee C. Z., Xu B., Hashimoto T. Doxycycline suppresses cerebral matrix metalloproteinase-9 and angiogenesis induced by focal hyperstimulation of vascular endothelial growth factor in a mouse model.[J]. Stroke,2004,35 (7):1715-1719
    [97]Seo D. W., Li H., Guedez L. TIMP-2 mediated inhibition of angiogenesis:an MMP-independent mechanism.[J]. Cell,2003,114(2):171-180
    [98]Qi J. H., Ebrahem Q., Moore N. A novel function for tissue inhibitor of metalloproteinases-3 (TIMP3):inhibition of angiogenesis by blockage of VEGF binding to VEGF receptor-2.[J]. Nat Med, 2003,9 (4):407-415
    [99]Lee S. R., Kim H. Y., Rogowska J. Involvement of matrix metalloproteinase in neuroblast cell migration from the subventricular zone after stroke.[J]. J Neurosci,2006,26(13):3491-3495
    [100]Ben-Hur T., Ben-Yosef Y., Mizrachi-Kol R. Cytokine-mediated modulation of MMPs and TIMPs in multipotential neural precursor cells.[J]. J Neuroimmunol,2006,175(1-2):12-18
    [101]Palmer T. D., Willhoite A. R., Gage F. H. Vascular niche for adult hippocampal neurogenesis.[J]. J Comp Neurol,2000,425 (4):479-494
    [102]Teng H., Zhang Z. G., Wang L. Coupling of angiogenesis and neurogenesis in cultured endothelial cells and neural progenitor cells after stroke.[J]. J Cereb Blood Flow Metab,2008,28(4): 764-771
    [103]Wang L., Zhang Z., Wang Y. Treatment of stroke with erythropoietin enhances neurogenesis and angiogenesis and improves neurological function in rats.[J]. Stroke,2004,35(7):1732-1737
    [104]Wang L., Zhang Z. G., Zhang R. L. Matrix metalloproteinase 2 (MMP2) and MMP9 secreted by erythropoietin-activated endothelial cells promote neural progenitor cell migration.[J]. J Neurosci, 2006,26 (22):5996-6003
    [105]Taguchi A., Soma T., Tanaka H. Administration of CD34+ cells after stroke enhances neurogenesis via angiogenesis in a mouse model.[J]. J Clin Invest,2004,114(3):330-338

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700