鞘氨醇激酶1对阿尔茨海默病APP/PS1动物模型保护作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分鞘氨醇激酶1高表达对APP/PS1双转基因AD模型鼠的作用
     目的:异常产生和沉积的淀粉样-β蛋白(Aβ)是阿尔茨海默病(AD)发病机制和痴呆的重要原因。有证据表明鞘氨醇-1-磷酸(S1P)/神经酰胺变阻器失衡可能是AD的一种发病机制。本研究的目的是探讨鞘氨醇激酶1的高表达对APP/PS1转基因阿尔茨海默病模型小鼠的影响。
     方法:由于Sphk1是S1P/ceramide变阻器之间平衡的关键酶,因此本研究中我们采用立体定位注射的方法将靶基因为Sphk1重组腺病毒介导的载体(rAV-Sphk1)注射至海马以评估其对APPsw/PS1双转基因小鼠(APP/PS1)AD模型鼠的作用。用激光共聚焦显微镜观察淀粉样蛋白的沉积;western blot法检测SphK1的表达;酶联免疫吸附试验评估淀粉样蛋白的分泌;水迷宫实验检测小鼠行为学的改变。
     结果:立体定位注射rAV-Sphk1四个星期后APP/PS1小鼠出现Sphk1蛋白表达升高。同时降低Aβ蛋白的沉积和细胞凋亡程度,水迷宫试验中,小鼠潜伏期明显缩短,且首次穿越第三象限的平均时间及找到平台的次数明显优于其他两组。
     结论:这些结果表明,Sphk1高表达可以降低老年斑的沉积及环节小鼠行为学的损害,对APP/PS1小鼠起到一定的保护作用。因此,Sphk1高表达在AD的发病机制中起着重要的治疗的作用,通过基因水平干预Sphk1的表达有可能成为治疗AD的新手段。
     第二部分鞘氨醇激酶1高表达对APP/PS1双转基因AD鼠保护作用的机制
     目的:第一部分研究发现鞘氨醇激酶1高表达可以降低小鼠老年斑的沉积及缓解其行为学的损害,但是我们尚未清楚Sphk1保护作用的机制。因此本部分的研究目的就是探索鞘氨醇激酶1高表达对APP/PS1双转基因AD鼠保护作用的可能机制。
     方法:本部分我们采用Western blot法检测Caspase-3蛋白的表达; TUNEL法检测细胞的凋亡。 s1pr1,s1pr3mRNA的表达则通过实时Real time PCR来测定。酶联免疫吸附试验旨在评估CER,S1P的分泌。超微电子显微镜来检测APP/PS1双转基因小鼠模型海马超微结构。
     结果:立体定位注射rAV-Sphk1四个星期后APP/PS1小鼠出现cer表达减少,S1P表达明显升高,且ceramide/S1P比例下降。电镜结果显示海马超微结构未见明显的细胞核核质边缘化。且Sphk1高表达后caspase-3表达明显下降。而S1Pr1表达升高,且突触后膜SNAP-25蛋白的表达增加突触的活性。
     结论:这些研究结果表明,Sphk1可以通过capases-3途径抑制细胞凋亡,同时上调S1P受体(S1P-G蛋白偶联受体)及SNAP-25蛋白的表达来提高突触的活性。
     第三部分小分子RNA干扰鞘氨醇激酶1对APP/PS1双转基因AD鼠的作用
     目的:阿尔茨海默病是一种随着年龄逐渐进展并最终导致记忆、行为、人格改变的一种神经退行性疾病。之前的研究发现阿尔茨海默病患者存在鞘氨醇代谢异常。且前两部分研究结果显示鞘氨醇激酶1高表达可以有效地降低老年斑的沉积,及凋亡的发生,可以显著改变APP/PS1模型鼠的行为学损害,其从正面证实了鞘氨醇激酶1高表达对APP/PS1双转基因AD模型鼠的保护作用。本研究的目的就是为了从反面证实降低鞘氨醇激酶1的表达能否加快阿尔茨海默病动物模型中老年斑的沉积及损害其学习和记忆能力等的关系。
     方法:本研究中我们采用小分子干扰鞘氨醇激酶1基因的腺病毒载体进行海马立体定位注射转染APP/PS1小鼠,4周后检测其对APP/PS1小鼠的影响。采用RT-PCR检测鞘氨醇激酶1mRNA及及Western-blot检测鞘氨醇激酶1及caspase-3蛋白的表达,通过Elisa检测神经酰胺及S1P的含量,采用免疫荧光及Elisa来检测老年斑的沉积及水迷宫来检测小鼠行为学的改变。
     结果:干预组和对照组的鞘氨醇激酶1mRNA及蛋白表达存在明显的差异。干预组小鼠老年斑沉积速度加快,且其学习及记忆能力损害明显加重。
     结论:siRNA-sphk1的重组腺病毒构建成功,且具有抑制Sphk1蛋白表达的功能,该基因沉默后,促进了APP/PS1双转基因AD模型鼠老年斑的沉积及其学习和记忆能力的损害。
     第四部分小分子RNA干扰鞘氨醇激酶1对APP/PS1双转基因AD鼠作用机制的研究
     目的:观察腺病毒介导的鞘氨醇激酶1低表达对APP/PS1双转基因AD模型鼠海马区凋亡的影响,进一步明确sphk1低表达对AD模型鼠作用的可能机制。
     方法立体定位注射法将携带siRNA-sphk1的腺病毒载体注射至APP/PS1双转基因AD模型鼠海马区,以1X1011pfu/ml的病毒总量分2点注射,对照组海马内注射等量生理盐水,四周后进行检测,观察海马组织凋亡的改变,以及caspase-3表达的改变。
     结果:注射Sphk1-siRNA的小鼠30d后海马区与对照组相比,转染后TUNEL果显示凋亡程度显著提高,且western-blot结果显示caspase-3表达显著增多。
     结论:上述结果表明, siRNA-sphk1的重组腺病毒成功沉默sphk1基因后,促进了APP/PS1双转基因AD模型鼠海马区的凋亡。
Part I. Overexpression of Sphingosine Kinase-1Rescues TransgenicMouse Model of Alzheimer’s Disease from Neurotoxicity ofAmyloid-β (Aβ) protein
     Objective: Aberrant production and accumulation of amyloid-β(Aβ)protein is central tothe pathogenesis of Alzheimer’s disease (AD) and has a causal role in dementia. Evidenceshowed that imbalance of sphingosine1-phosphate (S1P)/ceramide rheostat may be part ofa mechanism. The aim of this study was to explore the effects of overexpression ofsphingosine kinase-1on the APP/PS1transgenic mouse model of Alzheimer’s Disease.
     Methods: In this study, APPsw/PS1double-transgenic(APP/PS1)mice were adopted andreceived an intra-hippocampal injection of recombinant adenovirus-mediated vectorstargeting Sphk1gene(rAV-Sphk1) to evaluate the role of sphingosine kinase-1(Sphk1), acritical regulator of the balance between S1P/ceramide rheostat, in the pathologicalprogression of AD. Confocal microscopy was used to evaluate the disposition of amyloidprotein. The protein expression of sphk1were determined by Western blot. Elisa wasdesigned to assess the secretion of amyloid protein. Mirror water maze was used to detectthe damage of behavior of APP/PS1double transgenic mouse model.
     Results: Administration of rAV-Sphk1to the APP/PS1mice four weeks later exhibitedoverexpression of Sphk1protein coupled with decreased deposition of Aβ protein followedby improved learning and memory abilities. Conclusions: These results demonstrate that overexpression of Sphk1could efficientlyattenuate the pathological damage of AD. Therefor, Sphk1overexpression mitigated thepathological damage of AD, establishing a critical role of Sphk1overexpression for AD andSphk1gene delivery would be a novel strategy for the treatment of AD.
     Part II. The mechanism of the protective effects of sphingosine kinase1on the of APP/PS1double transgenic AD mice
     Objective: The first part of the study found that sphingosine kinase1over-expression canreduce the deposition of senile plaques in mice and mitigate the damage of their behavior,but we have not yet to clear the way of Sphk1protective effect. The purpose of this part isto explore the mechanism of the protective effects of sphingosine kinase1on the APP/PS1double transgenic AD mice.
     Methods: In this section, Caspase-3protein expression was assessed by Western blot.TUNEL was used to assay the degree of apoptosis. The expression of s1pr1, s1pr3mRNAwere measured by real-time PCR. Enzyme-linked immunosorbent assay (ELISA) designedto evaluate the CER, S1P secretion. Ultrafine electron microscopy to detect thehippocampal ultrastructure of APP/PS1double transgenic mouse.Results: Four weeks after stereotactic injection, the APP/PS1mice showed a decline inceramide/S1P proportion coupled with a lower degree of apoptosis. And Sphk1over-expression could inhibite the caspase-3expression significantly. Elevated S1Pr1expression and postsynaptic membrane SNAP-25protein expression increased synapticactivity.
     Conclusion: These findings suggest that overexpression of Sphk1could suppress apoptosisvia the capases-3pathway and up-regulate synaptic activity by SNAP-25and s1p receptor(s1p-GPCRs).
     Part III. Effects of Small Interfering RNA Targeting SphingosineKinase-1Gene On The Animal Model Of Alzheimer’s Disease
     Objective:Alzheimer’s disease (AD) is an age-related, progressive neurodegenerativedisorder that occurs gradually and results in memory, behavior, and personality changes.Abnormal sphingolipid metabolism was reported in AD previously. And our previous studyshowed that:over-expression of Sphk1could suppress apoptosis and relieve the depositionof Aβ protein,which demonstrated from the good side the protective role of Sphk1in theAPP/PS1double transgenic mouse.The aim of this study was to explore the effects ofdownregulating the expression of Sphk1expression by the way of small interferingRNA(siRNA) on the APP/PS1double transgenic mouse.
     Mehtods: An adenovirus vector that expressed small interfering RNA(siRNA)against theSphk1gene(Sphk1-siRNA)was designed, then effects of Sphk1-siRNA on the APP/PS1mouse4weeks after treatment with sphk1-siRNA hippocampcal injection was examined.Sphk1protein expression were confirmed using Western blot and ceramide content coupledwith S1P secretion was evaluated by enzyme-linked immunosorbent assay (Elisa). Aβ loadwas detected by Immunohistochemical staining and ELISA. Morris water maze wasadopted to test the learning and memory ability of the APP/PS1mice.Results: A significant difference in the expression of Sphk1protein and mRNA wasobserved between the siRNA group and the control group. Aβ load in transfected mice wasaccelerated in vivo, with significant aggravation of the learning and memory ability.
     Conclusion: The results show that the recombinant adenovirus vector containing thesphk1gene was successfully constructed, which can accelerate the burdern of Aβ load andthe learning and memory ability, silence SPhK1gene in vivo. The Sphk1gene modulationin the in the animal model of AD may be important for the treatment of AD.
     Part IV. The mechanism of Small Interfering RNA TargetingSphingosine Kinase-1Gene On Apoptosis of The Animal Model OfAlzheimer’s Disease
     Objective To observe the effect of the recombinant adenovirus vector that expressed smallinterfering RNA(siRNA)against the sphk1gene(Sphk1-siRNA)on the apoptosis ofAPP/PS1double transgenic mouse.
     Methods After the recombinant adenovirus vector containing the sphk1gene wassuccessfully constructed,then effect of the recombinant adenovirus vector that expressedsmall interfering RNA(siRNA)against the sphk1gene(siRNA-sphk1)on the apoptosis ofAPP/PS1double transgenic mouse30days after treatment with siRNA-sphk1hippocampcal injection was examined.
     Results: Compared with the saline group, the apoptosis degree and the caspase-3expression in the siRNA-sphk1group were markedly increased.Conclusions The results show that the recombinant adenovirus vector containing thesphk1gene was successfully constructed, which can increase the apoptosis of hippocampusin vivo.
引文
[1] Xingxuan Hea, Yu Huangb, Bin Li b, Cheng-Xin Gongb, Edward H. Schuchmana.Deregulation ofsphingolipid metabolism in Alzheimer’s disease. Neurobiology of Aging,2008:1-15
    [2] Morishima-Kawashima, M., Ihara, Y. Alzheimer’s disease: beta-Amyloid protein and tau. J. Neurosci.Res,2002,70:392–401.
    [3] Yankner, B.A. New clues to Alzheimer’s disease: unraveling the roles of amyloid and tau. Nat. Med,1996,2,850–852.
    [4] Yankner, B.A., Lu, T., Loerch, P. The aging brain. Annu. Rev. Pathol,2007,27:41–66.
    [5] Hannun YA and Obeid LM.The Ceramide-centric universe of lipid-mediated cell regulation: stressencounters of the lipid kind. J Biol Chem,2002,277:25847–25850
    [6] Spiegel S and Milstien S.Sphingosine-1-phosphate: an enigmatic signaling lipid. Nat Rev Mol CellBiol,2003,4:397–407.
    [7] Indrapal N. Singh and Edward D. Hall. Multifaceted roles of sphingosinephosphate How does thisbioactive sphingolipid fit with acute neurological injury.J Neurosci Res,2008,86:1419-1433.
    [8] Morales, A., Lee, H., Goni, F.M., Kolesnick, R., Fernandez-Checa, J.C.Sphingolipids and cell death.Apoptosis,2007,12:923–939.
    [9] Goni, F.M., Alonso, A. Sphingomyelinases: enzymology and membrane activity. FEBS Lett,2002,531:38–46.
    [10] Costantini, C., Weindruch, R., Della Valle, G., Puglielli, L.,2005. A TrkAto-p75NTR molecularswitch activates amyloid beta-peptide generation during aging. Biochem. J,2005,391:59–67.
    [11] Cutler, R.G., Kelly, J., Storie, K., Pedersen, W.A., Tammara, A., Hatanpaa,K., Troncoso, J.C.,Mattson, M.P. Involvement of oxidative stress induced abnormalities in ceramide and cholesterolmetabolism in brain aging and Alzheimer’s disease.Proc.Natl.acad.Sci. U.S. A,2004,101:2070–2075.
    [12] Kolesnick, R.N., Kronke, M. Regulation of ceramide production and apoptosis. Annu. Rev.Physiol,1998,60:643–665
    [13] Perez, G.I., Jurisicova, A., Matikainen, T., Moriyama, T., Kim, M.R., Takai,Y., Pru, J.K., Kolesnick,R.N., Tilly, J.L. A central role for for atherosclerotic lesion development. J. Biol. Chem,2005,273:2738–2746.
    [14] Cuvillier O, Pirianov G, Kleuser B, Vanek PG, Coso OA, Gutkind S, and Spiegel S. Suppressionof ceramide-mediated programmed cell death by sphingosine-1-phosphate. Nature,1996,381:800–803.
    [15] Bonhoure E, Pchejetski D, Aouali N, Morjani H, Levade T, Kohama T, and Cuvillier O.Overcoming MDR-associated chemoresistance in HL-60myeloid leukemia cells by targetingsphingosine kinase-1. Leukemia,2006,20:95–102
    [16] Pchejetski D, Golzio M, Bonhoure E, Calvet C, Doumerc N, Garcia V, Mazerolles C, Rischmann P,Teissie J, Malavaud B, et al. Sphingosine kinase-1as a chemotherapy sensor in prostate adenocarcinomacell and mouse models. Cancer Res,2005,65:11667–11675
    [17] Jana, A., Pahan, K.,2004. Fibrillar amyloid-beta peptides kill human primary neurons via NADPHoxidase-mediated activation of neutral sphingomyelinase. Implications for Alzheimer’s disease. J.Biol. Chem.279,51451–51459.
    [18] Malaplate-Armand, C., Florent-Bechard, S., Youssef, I., Koziel, V., Sponne,I., Kriem, B.,Leininger-Muller, B., Olivier, J.L., Oster, T., Pillot, T. Soluble oligomers of amyloid-beta peptide induceneuronal apoptosis by activating a cPLA(2)-dependent sphingomyelinase-ceramide pathway. Neurobiol.Dis,2006,23:178–189.
    [19]Ayasolla, K., Khan, M., Singh, A.K., Singh, I.Inflammatory mediator and beta-amyloid(25-35)-induced ceramide generation and iNOS expression are inhibited by vitamin E. Free Radic. Biol.Med,2004,37:325–338
    [20] Satoi, H., Tomimoto, H., Ohtani, R., Kitano, T., Kondo, T., Watanabe, M.,Oka, N., Akiguchi, I.,Furuya, S., Hirabayashi, Y., Okazaki, T. Astroglial expression of ceramide in Alzheimer’s disease brains:a role during neuronal apoptosis. Neuroscience,2005,130:657–666.
    [21] Zeng, C., Lee, J.T., Chen, H., Chen, S., Hsu, C.Y., Xu, J. Amyloid-beta peptide enhances tumornecrosis factor-alpha-induced iNOS through neutral sphingomyelinase/ceramide pathway inoligodendrocytes. J.Neurochem,2005,94:703–712.
    [22] Patil, S., Melrose, J., Chan, C. Involvement of astroglial ceramide in palmitic acid-inducedAlzheimer-like changes in primary neurons. Eur. J. Neurosci,2007,26:2131–2141
    [23] Tamboli, I.Y., Prager, K., Barth, E., Heneka, M., Sandhoff, K., Walter, J. Inhibition ofglycosphingolipid biosynthesis reduces secretion of the beta-amyloid precursor protein and amyloidbeta-peptide. J. Biol. Chem,2005,280:28110–28117.
    [24] Katsel, P., Li, C., Haroutunian, V. Gene expression alterations in the sphingolipid metabolismpathways during progression of dementia and Alzheimer’s disease: a shift toward ceramideaccumulation at the earliest recognizable stages of Alzheimer’s disease? Neurochem. Res,2007,32:845–856.
    [25] Huang, Y., Tanimukai, H., Liu, F., Iqbal, K., Grundke-Iqbal, I., Gong, C.X.Elevation of the leveland activity of ceramidase in Alzheimer’s disease brain. Eur. J. Neurosci,2004,20:3489–3497.
    [1]FORLONIG, TAGLIAVINIF, BUGIANIO, etal. Amyloid in Alzheimer’s disease andprion-related encephalopathies: studies with synthetic peptides [J]. ProgNeurobiol,1996,49(4):287-315
    [2]PRICEDL, TANZIRE, BORCHELTDR, etal. Alzheimer’s disease: genetic studies andtransgenic models [J]. Annu Rev Genet,1998,32:461-493.
    [3]ODDO S, CACCAMO A, SHEPHERD J D, et al. Triple2transgenic model ofAlzheimer’s disease with plaques and tangles: intracellular Abeta and synaptic dysfunction[J]. Neuron,2003,39(3):409-421.
    [4]李达兵,等. PS1/APP双转基因AD模型小鼠与Aβ海马注射AD模型大鼠的组织病理学比较研究第三军医大学学报,2006,28(16):1648-1651
    [5]牛颖,宋波等.氨丁三醇在阿尔茨海默病治疗中的作用.实用医学杂志,2009,25(10):1575-1577
    [6] Hannun YA, Obeid LM.The Ceramide-centric universe of lipid-mediated cellregulation: stress encounters of the lipid kind. J Biol Chem,2002,277:25847-25850.
    [7]Spiegel S, Milstien S. Sphingosine-1-phosphate: an enigmatic signalling lipid. NatureReviews Molecular Cell Biology,2003,4:397-407.
    [8] Van Brocklyn JR, Jackson CA, Pearl DK, Kotur MS, Snyder PJ, et al. Sphingosinekinase-1expression correlates with poor survival of patients with glioblastoma multiforme:roles of sphingosine kinase isoforms in growth of glioblastoma cell lines. Journal ofNeuropathology&Experimental Neurology,2005,64:695.
    [9]Chang KA, Suh YH.Pathophysiological roles of amyloidogenic carboxy-terminalfragments of the β-amyloid precursor protein in Alzheimer’s disease. Journal ofpharmacological sciences,2005,97:461-471.
    [10] Arispe N, Rojas E, Pollard H B. Alzheimer disease amyloid beta protein forms calciumchannels in bilayer membranes: blockade by tromethamine and aluminum [J]. Proc NatlAcad Sci U S A,1993,90(2):567-571.
    [11]Rhee S K, Quist A P, Lal R. Amyloid beta protein-(1-42) forms calcium-permeable,Zn2+-sensitive channel [J]. J Biol Chem,1998,273(22):13379-13382.
    [12]Arispe N, Diaz J C, Simakova O. Aβ ion channels. Prospects for treating Alzheimer′sdisease with Aβ channel blockers [J]. Biochimica et Biophysica Acta,2007,1768(11):1952-1965.
    [13] Gomez-Brouchet A, Pchejetski D, Brizuela L, Garcia V, Altie MF, et al. Critical rolefor sphingosine kinase-1in regulating survival of neuroblastoma cells exposed toamyloid-beta peptide. Mol Pharmacol,2007,72:341-349.
    [14]Jana A PK. Fibrillar amyloid-b peptides kill human primary neurons via NADPHoxidase-mediated activation of neutral sphingomyelinase J Biol Chem,2004,279:51451–51459.
    [15]Lee JT XJ, Lee JM et al.Amyloid-β peptide induces oligodendrocyte death byactivating the neutral sphingomyelinase-ceramide pathway. J Cell Biol,2004,164:123-131.
    [16]Grimm MO GH, Patzold AJ et al.Regulation of cholesterol and sphingomyelinmetabolism by amyloid-β and presenilin. Nat Cell Biol,2005,7:1118–1123.
    [17]Puglielli, L., Ellis, B.C., Saunders, A.J., Kovacs, D.M. Ceramide stabilizes beta-siteamyloid precursor protein-cleaving enzyme1and promotes amyloid beta-peptidebiogenesis. J. Biol. Chem,2003,278,19777–19783.
    [18]Patil, S., Melrose, J., Chan, C. Involvement of astroglial ceramide in palmiticacid-induced Alzheimer-like changes in primary neurons. Eur. J. Neurosci,2007,26,2131–2141.
    [19]Gomez-Brouchet A, Pchejetski D, Brizuela L, Garcia V, Altie MF, et al. Critical rolefor sphingosine kinase-1in regulating survival of neuroblastoma cells exposed toamyloid-beta peptide. Mol Pharmacol,2007,72:341-349.
    [1]Indrapal N. Singh and Edward D. Hall. Multifaceted roles of sphingosinephosphate Howdoes this bioactive sphingolipid fit with acute neurological injury.J NeurosciRes,2008,86:1419-1433.
    [2]Okada T, Kajimoto T, Jahangeer S, et al. Sphingosine kinase/sphingosine1-phosphatesignalling in central nervous system.Cellular Signalling.2009,21:7–13.
    [3]H. Grassme AC, R. Kolesnick, E. Gulbins.Ceramide-mediated clusteringis required forCD95-DISC formation Oncogene,2003,22:5457-5470.
    [4]Grullich C SM, Fukz Z, Merrill AH Jr, Kolesnick R, Kolesnick. CD95(Fas/APO-1)signals ceramide generation independent of the effector stage of apoptosis.. J BiolChem,2000,275:8650-8656.
    [5]Pant AB, Lee W-C, Kan D, Chen Y-Y, Han S-K, et al. Suppression of ExtensiveNeurofilament Phosphorylation Rescues α-Internexin/Peripherin-Overexpressing PC12Cells from Neuronal Cell Death. PLoS ONE,2012,7: e43883.
    [6]陈丽敏,陈晓春等. β淀粉样肽(1-40)通过激活caspase-3诱导大鼠皮层神经元凋亡.解剖学报,2003,4:379-383
    [7]Leonard ASM, J.O. Does epileptiform activity contribute to cognitiveimpairment inAlzheimer’s disease?. Neuron,2007,55:677-678.
    [8]Yu N, Lariosa‐Willingham KD, Lin FF, Webb M, Rao TS.Characterization oflysophosphatidic acid and sphingosine‐1‐phosphate‐mediated signal transduction inrat cortical oligodendrocytes. Glia,2004,45:17-27.
    [9]Bryan L, Kordula T, Spiegel S, Milstien S. Regulation and functions of sphingosinekinases in the brain. Biochim Biophys Acta,2008,1781:459-466.
    [10]Zhang YH, Fehrenbacher JC, Vasko MR, Nicol GD.Sphingosine-1-phosphate viaactivation of a G-protein-coupled receptor (s) enhances the excitability of rat sensoryneurons. Journal of neurophysiology,2006,96:1042-1052.
    [11]T. Kajimoto TO, H. Yu, S.K. Goparaju, S. Jahangeer, S. Nakamura. Involvement ofsphingosine1-phosphate in glutamate secretion in hippocampal neurons. Mol CellBiol,2007,27:3429-3440.
    [12]I. Ishii NF, X. Ye, J. Chun. Lysophospholipid receptors: signaling and biology. AnnuRev Biochem,2004,73:321-354.
    [13]R.E. Toman SGP, K. Watterson, M. Maceyka, N.H. Lee, S. Milstien, J.W. Bigbee, S.Spiegel.Differential transactivation of sphingosine-1-phosphate receptors modulates nervegrowth factor-induced neurite extension. J Cell Biol,2004,166:381–392.
    [14]Shinpo K, Kikuchi S, Moriwaka F, Tashiro K. Protective effects of the TNF-ceramidepathway against glutamate neurotoxicity on cultured mesencephalic neurons. Brainresearch,1999,819:170-173.
    [15]Kajimoto T, Okada T, Yu H, Goparaju SK, Jahangeer S, et al. Involvement ofsphingosine-1-phosphate in glutamate secretion in hippocampal neurons. Molecular andcellular biology,2007,27:3429-3440.
    [16]Palop JJ, Mucke L. Amyloid-beta-induced neuronal dysfunction in Alzheimer's disease:from synapses toward neural networks. Nat Neurosci,2010,13:812-818.
    [1] Selkoe D. The deposition of amyloid proteins in the aging mammalian brain:implications for Alzheimer’s disease. Ann Med1989;21(2):73-6.
    [2] He X, Huang Y, Li B, Gong CX, Schuchman EH. Deregulation of sphingolipidmetabolism in Alzheimer's disease. Neurobiology of aging2010;31(3):398-408.
    [3] Walsh DM, and Selkoe, D. J. Aβ oligomers-a decade of discovery. J Neurochem2007;101(5):1172-84.
    [4] Kirkitadze MD, Bitan, G., and Teplow, D. B. Paradigm shifts in Alzheimer’s disease andother neurodegenerative disorders: the emerging role of oligomeric assemblies. J NeurosciRes2002;69(5):567-77.
    [5] Shankar GM, Li, S., Mehta, T. H., Garcia-Munoz, A., Shepardson, N. E., Smith, I.,Brett, F. M., Farrell, M. A., Rowan, M. J., Lemere, C. A., Regan, C. M., Walsh, D. M.,Sabatini, B. L., and Selkoe, D. J. Amyloid-β protein dimers isolated directly fromAlzheimer’s brains impair synaptic plasticity and memory. Nat Med2008;14(8):837-42.
    [6] Na slund J HV, Mohs R, Davis K, Davies P, et al. Correlation between elevated levelsof amyloid beta-peptide in the brain and cognitive decline. JAMA2000;283(12):1571-7.
    [7] Hannun YA, Obeid LM. The Ceramide-centric universe of lipid-mediated cellregulation: stress encounters of the lipid kind. The Journal of biological chemistry2002;277(29):25847-50.
    [8] S. Spiegel SM. Sphingosine-1-phosphate: an enigmatic signalling. Nat Rev Mol CellBiol2003;4(5):397-407.
    [9] Bryan L, Kordula T, Spiegel S, Milstien S. Regulation and functions of sphingosinekinases in the brain. Biochimica et biophysica acta2008;1781(9):459-66.
    [10] Gomez-Brouchet A, Pchejetski D, Brizuela L, Garcia V, Altie MF, Maddelein ML, etal.Critical role for sphingosine kinase-1in regulating survival of neuroblastoma cellsexposed to amyloid-beta peptide. Molecular pharmacology2007;72(2):341-9.
    [11] J.R. Van Brocklyn CAJ, D.K. Pearl, M.S. Kotur, P.J. Snyder, T.W. Prior. Sphingosinekinase-1expression correlates with poor survival of patients with glioblastoma multiforme:roles of sphingosine kinase isoforms in growth of glioblastoma cell lines. Journal ofNeuropathology&Experimental Neurology2005;64(8):695.
    [12] H. Liu MS, V.E. Nava, L.C. Edsall, K. Kono, S. Poulton, S. Milstien, T. Kohama, S.Spiegel. Molecular cloning and functional characterization of a novel mammaliansphingosine kinase type2isoform. J Biol Chem2000;275(26):19513-20.
    [13] S. Spiegel SM. Functions of the multifaceted family of sphingosine kinases and someclose relatives. J Biol Chem2007;282(4):2125-9.
    [14] V.V. Anelli CRG, A.B. Cheng, L.M. Obeid., Sphingosine kinase1is upregulatedduring hypoxia in U87MG glioma cells: role of hypoxia-inducible factors1and2. J BiolChem2008;283(6):3365-75.
    [15] K. Shinpo SK, F. Moriwaka, K. Tashiro. Protective effects of the TNFceramidepathway against glutamate neurotoxicity on cultured mesencephalic neurons. Brainresearch1999;819(1-2):170-3.
    [16] T. Kajimoto TO, H. Yu, S.K. Goparaju, S. Jahangeer, S. Nakamura. Involvement ofsphingosine-1-phosphate in glutamate secretion in hippocampal neurons. Mol Cell Biol2007;27(9):3429-40.
    [17] Robbins P D GSC. Viral vectors for gene therapy. Pharmacol Ther1998;80:35-47.
    [18] Chang KA, Suh YH. Pathophysiological roles of amyloidogenic carboxy-terminalfragments of the β-amyloid precursor protein in Alzheimer’s disease. Journal ofpharmacological sciences2005;97(4):461-71.
    [19] Zhang YH, Fehrenbacher JC, Vasko MR, Nicol GD. Sphingosine-1-phosphate viaactivation of a G-protein-coupled receptor (s) enhances the excitability of rat sensoryneurons. Journal of neurophysiology2006;96(3):1042-52.
    [20] Patil S, Melrose, J., Chan, C. Involvement of astroglial ceramide in palmiticacid-induced Alzheimer-like changes in primary neurons. Eur J Neurosci2007;26(8):2131-41.
    [21] Puglielli L, Ellis, B.C., Saunders, A.J., Kovacs, D.M. Ceramide stabilizes beta-siteamyloid precursor protein-cleaving enzyme1and promotes amyloid beta-peptidebiogenesis. J Biol Chem2003;278(22):19777-83.
    [22] Tamboli IY, Prager, K., Barth, E., Heneka, M., Sandhoff, K., Walter, J. Inhibition ofglycosphingolipid biosynthesis reduces secretion of the beta-amyloid precursor protein andamyloid beta-peptide. J Biol Chem2005;280(30):28110-7.
    [23] Grimm MO GH, Patzold AJ et al. Regulation of cholesterol and sphingomyelinmetabolism by amyloid-β and presenilin. Nat Cell Biol2005;7(11):1118–23.
    [24] Palop JJ, Mucke L. Amyloid-beta-induced neuronal dysfunction in Alzheimer's disease:from synapses toward neural networks. Nature neuroscience2010;13(7):812-8.
    [25] Haughey NJ, Bandaru VV, Bae M, Mattson MP. Roles for dysfunctional sphingolipidmetabolism in Alzheimer's disease neuropathogenesis. Biochimica et biophysica acta2010;1801(8):878-86.
    [26] Yu N, Lariosa‐Willingham KD, Lin FF, Webb M, Rao TS. Characterization oflysophosphatidic acid and sphingosine‐1‐phosphate‐mediated signal transduction inrat cortical oligodendrocytes. Glia2004;45(1):17-27.
    [1]Xingxuan He,Yu Huang,Bin Li b,Cheng-Xin Gong,EdwardH. Schuchmana.Deregulationof sphingolipid metabolism in Alzheimer’s disease. Neurobiology of Aging,2010(3):1-15
    [2] Morishima-Kawashima, M., Ihara, Y. Alzheimer’s disease: beta-Amyloid protein andtau. J. Neurosci Res,2002(70):392–401.
    [3] Yankner, B.A. New clues to Alzheimer’s disease: unraveling the roles of amyloid andtau. Nat. Med,1996(2):850–852.
    [4]Yankner, B.A., Lu, T., Loerch, P. The aging brain. Annu. Rev. Pathol,2007(27):41–66.
    [5] Bonhoure E, Pchejetski D, Aouali N, Morjani H, Levade T, Kohama T, and CuvillierO.Overcoming MDR-associated chemoresistance in HL-60acute myeloid leukemia cellsby targeting sphingosine kinase-1. Leukemia,2006(20):95–102
    [6] Pchejetski D, Golzio M, Bonhoure E, Calvet C, Doumerc N, Garcia V, MazerollesC,Rischmann P, Teissie J, Malavaud B, et al. Sphingosine kinase-1as a chemotherapysensor in prostate adenocarcinoma cell and mouse models. Cancer Res,2005(65):11667–11675
    [7] Yuan Zhang1,2#, Qian Yu3#,et al.Effects of Small Interfering RNA TargetingSphingosine Kinase-1Gene On The Animal Model Of Alzheimer’s Disease. Journal ofHuazhong University of Sciecne and Technology,2013,5(3):41-47
    [8] Morales, A., Lee, H., Go ni, F.M., Kolesnick, R., Fernandez-Checa, J.C. Sphingolipidsand cell death. Apoptosis,2007(12):923–939.
    [9] Kohama T, Olivera A, Edsall L, Nagiec MM, Dickson R, Spiegel S. Molecular cloningand functional characterization of murine sphingosine kinase. J Biol Chem,1998(37):23722-8.
    [10] Nagiec MM, Skrzypek M, Nagiec EE, Lester RL, Dickson RC. The LCB4(YOR171c)and LCB5(YCR260w) genes of saccha-romyces encode sphingoid long chain base kinase.J Biol Chem,1998(31):19437-42.
    [11] Cuvillier O, Pirianov G, Kleuser B, Vanek PG, Coso OA, Gutkind S, and SpiegelS.Suppression of ceramide-mediated programmed cell death by sphingosine-1-phosphate.Nature,1996(381):800–803.
    [12] Bonhoure E, Pchejetski D, Aouali N, Morjani H, Levade T, Kohama T, and CuvillierO.Overcoming MDR-associated chemoresistance in HL-60acute myeloid leukemia cellsby targeting sphingosine kinase-1. Leukemia,2006(20):95–102
    [13] Pchejetski D, Golzio M, Bonhoure E, Calvet C, Doumerc N, Garcia V, MazerollesC,Rischmann P, Teissie J, Malavaud B, et al. Sphingosine kinase-1as a chemotherapysensor in prostate adenocarcinoma cell and mouse models. Cancer.Res,2005(65):11667–11675
    [14] Okada T, Kajimoto T, Jahangeer S, Nakamura S. Sphingosine kinase/sphingosine1-phosphate signaling in central nervous sys-tem. Cell Signal,2009(1):7-13.
    [15]He X,Huang Y,Li B,et al.Deregulation ofsphingolipid metabolism in Alzhimer,sdisease.Neurobiol Aging,2008(31):398-408.
    [16]Jana A, Hogan EL, Pahan K. Ceramide and neurodegeneration susceptibility ofneurons and oligodendrocytes to cell damage and death. J Neuro Sci,2009(278):5-15
    [17]Barrier L, Ingrand S, Fauconneau B, et al. Gender-dependent accumulation ofceramides in the cerebral cortex of the APPsl/PS1Ki mouse model of Alzheimer’s disease.Neurobiol. Aging (2008), doi:10.1016/j.neurobiolaging.2008.10.011
    [18] Satoi, H., Tomimoto, H., Ohtani, R., Kitano, T., Kondo, T., Watanabe, M.,Oka, N.,Akiguchi, I., Furuya, S., Hirabayashi, Y., Okazaki, T.Astroglial expression of ceramide inAlzheimer’s disease brains: a role during neuronal apoptosis.Neuroscience,2005(130):657–666.
    [19] Jana, A., Pahan, K. Fibrillar amyloid-beta peptides kill human primary neuronsviaNADPHoxidase-mediated activation of neutral sphingomyelinase.Implications forAlzheimer’s disease. J. Biol. Chem,2004(279):51451–51459.
    [20] Patil, S., Melrose, J., Chan, C. Involvement of astroglial ceramide in palmiticacid-induced Alzheimer-like changes in primary neurons. Eur. J. Neurosci,2007(26):2131–2141
    [21] Tamboli, I.Y., Prager, K., Barth, E., Heneka, M., Sandhoff, K., Walter, J. Inhibition ofglycosphingolipid biosynthesis reduces secretion of the beta-amyloid precursor protein andamyloid beta-peptide. J. Biol. Chem,2005(280):28110–28117.
    [22] Katsel, P., Li, C., Haroutunian, V. Gene expression alterations in the sphingolipidmetabolism pathways during progression of dementia and Alzheimer’s disease: a shifttoward ceramide accumulation at the earliest recognizable stages of Alzheimer’s disease?Neurochem. Res,2007(32):845–856.
    [23] Huang, Y., Tanimukai, H., Liu, F., Iqbal, K., Grundke-Iqbal, I., Gong, C.X. Elevationof the level and activity of acid ceramidase in Alzheimer’s disease brain. Eur. J. Neurosci,2004(20):3489–3497.
    [24] Malaplate-Armand, C., Florent-Bechard, S., Youssef, I., Koziel, V., Sponne,I., Kriem,B., Leininger-Muller, B., Olivier, J.L., Oster, T., Pillot, T. Soluble oligomers ofamyloid-beta peptide induce neuronal apoptosis by activating a cPLA(2)-dependentsphingomyelinase-ceramide pathway. Neurobiol. Dis,2006(23):178–189.
    [25] Ayasolla, K., Khan, M., Singh, A.K., Singh, I. Inflammatory mediator andbeta-amyloid (25-35)-induced ceramide generation and iNOS expression are inhibited byvitamin E. Free Radic. Biol. Med,2004(37):325–338
    [26] Gomez-Brouchet A,Pchejetski D,Brizuela L,et al.Critical role for sphingosine kinase-1in regulating survival of neuroblastoma cells exposed to amyloid-beta peptide.MolPharmacol,2007(72):341-9.
    [27]杨阳,马嵘,张远.携带siSPK1重组腺病毒的构建及其对N2a细胞凋亡的影响.中国细胞生物学学报,2012,34(8):775–780
    [1] Xingxuan Hea, Yu Huangb, Bin Li b, Cheng-Xin Gongb, Edward H. Schuchmana,Deregulation of sphingolipid metabolism in Alzheimer’s disease.Neurobiology of Aging,2008:1-15
    [2] Morishima-Kawashima, M., Ihara, Y. Alzheimer’s disease: beta-Amyloid protein andtau. J. Neurosci. Res,2002,70:392–401.
    [3] Yankner, B.A. New clues to Alzheimer’s disease: unraveling the roles of amyloid andtau. Nat. Med.1996,2:850–852.
    [4] Yankner, B.A., Lu, T., Loerch, p. The aging brain. Annu. Rev. Pathol.2007,27:41–66.
    [5] Hannun YA and Obeid LM.The Ceramide-centric universe of lipid-mediated cellregulation: stress encounters of the lipid kind. J Biol Chem,2002,277:25847–25850
    [6] Spiegel S and Milstien S.Sphingosine-1-phosphate: an enigmatic signalling lipid. NatRev Mol Cell Biol,2002,4:397–407.
    [7]Morales,A., Lee, H., Goni, F.M., Kolesnick, R., Fernandez-Checa, J.C. Sphingolipidsand cell death. Apoptosis,2007,12:923–939
    [8] Goni, F.M., Alonso, A. Sphingomyelinases: enzymology and membrane℃tivity.FEBS Lett,2002,531:38–46.
    [9] Costantini, C., Weindruch, R., Della Valle, G., Puglielli, L. A TrkAto-p75NTRmolecular switch activates amyloid beta-peptide generation during aging. Biochem. J,2005,391:59–67.
    [10]Cutler, R.G., Kelly, J., Storie, K., Pedersen, W.A., Tammara, A., Hatanpaa,K., Troncoso,J.C., Mattson, M.P.Involvement of oxidative stress induced abnormalities in ceramide andcholesterol metabolism in brain aging and Alzheimer’s disease. Proc. Natl. aciad. Sci,2004,101:2070–2075.
    [11] Kolesnick, R.N., Kronke, M. Regulation of ceramide production and apoptosis.Annu. Rev. Physiol,1998,60:643–665
    [12] Perez, G.I., Jurisicova, A., Matikainen, T., Moriyama, T., Kim, M.R., Takai,Y., Pru,J.K., Kolesnick, R.N., Tilly, J.L. A central role for atherosclerotic lesion development. J.Biol. Chem,2005,273:2738–2746.
    [13] Radin NS. Killing cancer cells by poly-drug elevation of ceramidelevels, ahypothesis whose time has come. Eur J Biochem,2001,268(2):193-204
    [14]肖秀斌,张伟京.鞘氨醇代谢物——肿瘤治疗的新靶点.军事医学科学院院刊,2009,6:593-595
    [15]陈永红,丁光海,楼旭鹏,许小明.神经酰胺诱导的细胞凋亡在抗肿瘤研究中的应用。中华医学研究杂志,2008,8(4):316--319
    [16] S. Fulda KM. Debatin.Extrinsic versus intrinsic apoptosis pathwaysin anticancerchemotherapy. Oncogene,2006,25:4798-4811
    [17]Richard Kolesnick.The therapeutic potential of modulating the ceramide/sphingomyelin pathway. J. Clin. Invest,2002,110:3-8.
    [18] Hannun Y A, Obeid L M. The ceramide-centric universe of lipidmediated cellregulation: stress encounters of the lipid kind. J. Biol.Chem,2002,277(29):25847-25850.
    [19] Futerman AH, Riezman H. The ins and outs of sphingolipid synthe sis. TrendsCellBiol,2005,15(6):312–314
    [20]Yu N, Lariosa‐Willingham KD, Lin FF, Webb M, Rao TS. Characterization oflysophosphatidic acid and sphingosine‐1‐phosphate‐m ediated signal transduction inrat cortical oligodendrocytes. Glia,2004,45:17-27.
    [21] Bryan L, Kordula T, Spiegel S, Milstien S.Regulation and functions of sphingosinekinases in the brain. Biochim Biophys Acta,2008,1781:459-466.
    [22] Zhang YH, Fehrenbacher JC, Vasko MR, Nicol GD.Sphingosine-1-phosphate viaactivation of a G-protein-coupled receptor (s) enhances the excitability of rat sensoryneurons. Journal of neurophysiology,2006,96:1042-1052.
    [23] T. Kajimoto TO, H. Yu, S.K. Goparaju, S. Jahangeer, S. Nakamur. Involvement ofsphingosine1-phosphate in glutamate secretion in hippocampal neurons. Mol CellBiol,2007,27:3429-3440.
    [24]Shinpo K, Kikuchi S, Moriwaka F, Tashiro K.Protective effects of the TNF-ceramidepathway against glutamate neurotoxicity on cultured mesencephalic neurons. Brainresearch,1999,819:170-173.
    [25]Kajimoto T, Okada T, Yu H, Goparaju SK, Jahangeer S, et al. Involvement ofsphingosine-1-phosphate in glutamate secretion in hippocampal neurons. Molecular andcellular biology,2007,27:3429-3440.
    [26]C. Mao, L.M. Obeid, Ceramidases: regulators of cellular responses mediated byceramide, sphingosine, and sphingosine-1-phosphate, Biochim. Biophys. Acta,2008,1781:424–434.
    [27]T.N. Seyfried, R.K. Yu, Cellular localization of gangliosides in the mouse cerebellum:analysis using neurological mutants, Adv. Exp. Med. Biol,1984,174:169–181.
    [28] B.W. Brooksbank, J. McGovern, Gangliosides in the brain in adult Down's syndromeand Alzheimer's disease, Mol. Chem. Neuropathol,1989,11:143–156.
    [29] C.M. Khoury, Z. Yang, S. Ismail, M.T. Greenwood, Characterization of a novelalternatively spliced human transcript encoding an N-terminally truncated Vps24proteinthat suppresses the effects of Bax in an ESCRT independent manner in yeast.Gene,2007,391:233–241.
    [30] P. Palestini, M. Masserini, A. Fiorilli, E. Calappi, G. Tettamanti, Age-related changesin the ceramide composition of the major gangliosides present in rat brain subcellularfractions enriched in plasma membranes of neuronal and myelin origin, J. Neurochem,1993,61:955–960.
    [31]W. Cammer, H. Zhang, Ganglioside GD3in radial glia and astrocytes in situ in brainsof young and adult mice, J. Neurosci. Res,1996,46:18–23.
    [32] P. Paul, Y. Kamisaka, D.L. Marks, R.E. Pagano, Purification and characterization ofUDP-glucose: ceramide glucosyltransferase from rat liver Golgi membranes, J. Biol. Chem,1996,271:2287–2293.
    [33] Jin ZQ, Goetzl EJ, Karliner Js. Sphingsoine kinase activation mediated ischemicpreconditioning in murine heart. Circulation,2004,110(14):1980
    [34] Van Brocklyn JR, Jackson CA, Pearl DK, Kotur MS, Snyder PJ, et al. Sphingosinekinase-1expression correlates with poor survival of patients with glioblastoma multiforme:roles of sphingosine kinase isoforms in growth of glioblastoma cell lines. Journal ofNeuropathology&Experimental Neurology,2005,64:695.
    [35]Okada T, Kajimoto T, Jahangeer S, et al. Sphingosine kinase/sphingosine1-phosphatesignalling in central nervous system. Cellular Signalling.2009,21:7–13.
    [36]He X, Huang Y, Li B, et al. Deregulation of sphingolipid metabolism in Alzheimer'sdisease. Neurobiol Aging.2008,31:398-408.
    [37]Jana A, Hogan EL, Pahan K.Ceramide and neurodegeneration:susceptibility of neuronsand oligodendrocytes to cell damage and death. J Neuro Sci.2009:278:5-15
    [38]Patil S, Melrose J, Chan C. Involvement of astroglial ceramide in palmitic acid-inducedAlzheimer-like changes in primary neurons. Eur J Neurosci.2007,26:2131-41
    [39]Malaplate-Armand C, Florent-Béchard S, Youssef I, et al. Soluble oligomers ofamyloid-beta peptide induce neuronal apoptosis by activating a cPLA2-dependentsphingomyelinase-ceramide pathway. Neurobiol Dis.2006,23:178-89.
    [40]Wang, G, Silva, J, Dasgupta, S, Bieberich, E, Long-chain ceramide is elevated inpresenilin1(PS1M146V) mouse brain and induces apoptosis in PS1astrocytes. Glia,2008,56:449–456
    [41]Barrier L, Ingrand S,Fauconneau B,et al. Gender-dependent accumulation ofceramides in the cerebral cortex of the APPSL/PS1Ki mouse model of Alzheimer’s disease.Neurobiol.Aging (2008), doi:10.1016/j.neurobiol aging.2008.10.011
    [42]Satoi, H., Tomimoto, H., Ohtani, R., Kitano, T., Kondo, T., Watanabe, M., Oka, N.,Akiguchi, I., Furuya, S., Hirabayashi, Y., Okazaki, T. Astroglial expression of ceramide inAlzheimer’s disease brains: a role during neuronal apoptosis. Neuroscience,2005,130:657–666.
    [43]Jana,A., Pahan,K. Fibrillar amyloid-beta peptides kill human primary neurons viaNADPH oxidase-mediated activation of neutral sphingomyelinase.Implications forAlzheimer’s disease. J. Biol. Chem,2004,279:51451–51459.
    [44]Gomez-Brouchet A, Pchejetski D, Brizuela L, Garcia V, Altie MF, et al. Critical rolefor sphingosine kinase-1in regulating survival of neuroblastoma cells exposed toamyloid-beta peptide. Mol Pharmacol,2007,72:341-349.
    [45]Jana A PK. Fibrillar amyloid-b peptides kill human primary neurons via NADPHoxidase-mediated activation of neutral sphingomyelinase J Biol Chem,2004,279:51451–51459.
    [46] Lee JT XJ, Lee JM et al. Amyloid-β peptide induces oligodendrocyte death byactivating the neutral sphingomyelinase-ceramide pathway. J Cell Biol,2004,164:123-131.
    [47]Grimm MO GH, Patzold AJ et al. Regulation of cholesterol and sphingomyelinmetabolism by amyloid-β and presenilin. Nat Cell Biol,2005,7:1118–1123.
    [48]Puglielli, L., Ellis, B.C., Saunders, A.J., Kovacs, D.M. Ceramide stabilizes beta-siteamyloid precursor protein-cleaving enzyme1and promotes amyloid beta-peptidebiogenesis. J. Biol. Chem,2003,278:19777–19783.
    [49]Patil, S., Melrose, J., Chan, C. Involvement of astroglial ceramide in palmiticacid-induced Alzheimer-like changes in primary neurons. Eur. J. Neurosci,2007,26:2131–2141.
    [50]Tamboli, I.Y., Prager, K., Barth, E., Heneka, M., Sandhoff, K., Walter, J. Inhibition ofglycosphingolipid biosynthesis reduces secretion of the beta-amyloid precursor protein andamyloid beta-peptide. J. Biol. Chem,2005,280:28110–28117.
    [51]Katsel, P., Li, C., Haroutunian, V. Gene expression alterations in the sphingolipidmetabolism pathways during progression of dementia and Alzheimer’s disease: a shifttoward ceramide accumulation at the earliest recognizable stages of Alzheimer’s disease?Neurochem. Res,2007,32,845–856.
    [52]Huang, Y., Tanimukai, H., Liu, F., Iqbal, K., Grundke-Iqbal, I., Gong, C.X. Elevation ofthe level and activity of acid ceramidase in Alzheimer’s disease brain. Eur. J. Neurosci,2004,20:3489–3497.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700