红系细胞终末分化的排核机制及分化相关基因的克隆与鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
发育生物学自1894年由德国生物学家Wilhelm Roux及其同事奠基以来,在一个多世纪的发展过程中一直是生命科学领域的研究热点之一,其中细胞分化与去分化更是倍受重视。在生物体的发育过程中,细胞按照一定的方向进行分化,产生具有不同功能的终末细胞,当这一过程受到干扰时,细胞分化受阻,甚至恶变成为肿瘤细胞。肿瘤细胞在一定条件下可以再分化,恶性表型逆转。因此,细胞的分化-去分化-再分化是一个动态的过程,对其机理的研究可为肿瘤的发生机理研究和防治提供重要的依据。哺乳类红系细胞的分化具有明显的特征,当红系细胞进入终末分化时,细胞开始表达红系特异的珠蛋白,同时细胞形态出现明显的改变,即核固缩进而出现排核。当红系细胞癌变时,细胞停滞于较幼稚的阶段,形成红白血病细胞,其珠蛋白基因处于关闭状态,在一定条件下,红白血病细胞可以重新分化,表达珠蛋白,并且这一过程可以人为控制。因此红系细胞是研究细胞分化与癌变的良好模型。
     直至目前为止,文献报道的红系特异的作用因子主要集中于红系分化的早期阶段。但当红系细胞进入终末分化阶段时,出现细胞分裂停止、珠蛋白基因表达、核固缩和排核等一系列特征性改变,涉及与终末分化相关基因开启和关闭的调控因子则尚无确切报道,鉴定这些因子,对阐明红系细胞终末分化的机制及红系细胞恶变的机理有重要的理论意义和实用价值。近年来,本室对哺乳类红系细胞的终末分化,尤其是排核
Developmental biology has been the hot point of biological sciences over a century since it was founded by German biologist Roux and his colleagues in 1894. Among so many active fields of developmental biology, cell differentiation and dedifferentiation has being paid more and more attention. When cells become committed to particular developmental fates, they undergo a series of divisions and differentiations, and finally give rise to terminally differentiatal cells specialized in certain functions. If this program is disturbed by some unexpected factors, differentiations are hindered, and cells even become tumor cells. Under some enviromental conditions, some tumor cells redifferentiate and give rise to normal functional terminal cells. So cell differentiation-dedifferentiation-redifferentiation is a dynamic process, and the investigation of its mechanism can provide us some important dates for tumor and its therapy researches. Terminal differentiation of mammalian erythroblasts is characterized by two main peculiar features, such as the active expression of globin gene, the pyknosis and denucleation to the anucleus rcticulocytes. Erythroblasts could become erythroleukemia cells and lost the above characteristics of differentiation stage when the differentiation process is blocked. And under certain conditions, erythroleukemia cells might regain its differentiation capacity and undergo normal differentiation. So erythroblasts provide a good model for the study of cell differentiation and dedifferentiation.
    Up to now, the reports on the erythroblast differentiation regulatory factors are mainly focused on the early stage of erythroblast, the early erythroblasts are known to be the last stage of EPO dependant. The factors that may regulate the further processes of differentiation and maturation are not known. A series of characterized changes such as cell division stopping, nuclear pyknosis and denucleation, however, are not certain and need to be elucitated. During recent years, Dr. Xue's group has made intensive studies on the factors related to the terminal differentiation of mammalian erythoblast, including the process of denucleation . Their early works are mainly focused on the morphological
引文
Angelides KJ, Smith KE, Takeda M. Assembly and exchange of intermediate filament proteins of neurons: neurofilaments are dynamic structures. J Cell Biol 1989; 108: 1495-1506
    Alvarez-Gago T, Bullon MM, Rivera F, Velasco A and Mayo A. Intermediate filament aggregates in mitoses of primary cutaneous neuroendocrine (Merrkel cell) carcinoma. Histopathol 1996; 28: 349-355
    Bessis M. Living blood cells and their ultrastructure. Springer, Berlin 1973
    Bondurant MC. Contrrol to globin gene transcription by erythropoietin in erythroblast from friend virus-infected mice. Mol Cell Biol 1985; 5:625-631
    Chin SS and Liem Rk. Transfected rat high-molecular-weight neurofilament(NF-H) coassembles with vimentin in a predominantly nonphosphorylated form. J Neurosci 1990; 10: 3714-3726
    Colucci-Guyon E, Pottier MM, Dunis I, Paulin D, Pounin S and Babinet C. Mice lacking vimentin develop and reproduce without an obvious phenotypc. Cell 1994; 79: 679-694
    Dellage KD, Vaincheaker W, Vinci G, Paulin D and Brouet JC. Alteraation of vimentin intermediate filament expression during differentiation of human hematopoietic cells. EMBO J 1983; 2: 1509-1514
    Dong MQ, Chen LS, Zhang NS, Xue SP, Jiao RJ, Cai S and Zhai ZH. Intermediate filament-lamina-nuclear matrix system in chicken and mouse nucleated erythroblasts. Acta Anatomica Sin 1990; 21(4): 399-403
    Eusebi V, Capella C, Cossu A and Rosai J. Neuroendocrine carcinoma within lymph nodes in the absence of a primary tumor, with special reference to Merkel cell carcinoma. Am J Surg Pathol 1992; 16: 658-666
    Fliegner KH, KaplanMP, Wood TL, Pintar JE and Liem RK. Expression of the gene for tthe neuronal intermediate filament protein alpha-internexin coincides with the onset of neronal differentiation in the developing rat nervous system. J Comp Neurol 1994; 342: 161-173
    Gomi H, Yokoyama T, Fujimoto K, Ikeda T, Katoh A, Itoh T and Itohara S. Mice devoid of the glial fibrillary acidic protein develop normaly and are suscetible to scrapie prions. Neuron 1995; 14:??29-41
    Holfer H, Rauch H-J, Kerl H and Denk H. New immunocytochemical observations with diagnostic significence in cutaneous neuroendocrine carrcinoma. Am J Derrmatopathol 1984; 6: 525-530
    Inagaki M, Nishi Y, Nishizawa K, Matsuyama M and Sato C. Site-specific phosphorylation induces disassembly of vimentin filaments in vitro. Nature 1987; 328: 649-652
    Ishikawa H, Bischoff R and Holtzer H. Mitosis and intermediate-sized filaments in developing skeletal muscle. J Cell Biol 1968; 38: 538-555
    Kachinsky AM, Dominov JA and Miller JB. Myogenosis and the intermediate filament protein, nestin. Dev Biol 1994; 165:216-228
    Kaplan MP, Chin SS, Fliegner KH and Liem RK. Alpha-internexin, a novel neuronal intermediate filament protein, precedes the low molecular weight neurofilament protein(NF-L) in the developing rat brain. J Neurosci 1990; 10: 2735-2748
    Koury MJ, Sawer ST and Bondurant MC. Splenic erythroblasts in anemia-inducing Frined disease: a source of cells for studies of erythropoietin-mediated differentiation. J Cell Physiol 1984; 121: 526-532
    Koury MJ, Bondurant MC and Mueller TJ. The role of erythropoietin in the production of principal erythrocyte proteins other than hemoglobin during terminal erythroid differentiation. J of Cell Physiol 1986; 126: 259-265
    Koury ST, Koury MJ and Bondurant MC. Morphological changes in erythroblast during erythropoietin-induced terrminal differentiation in vitro. Exp Hematol 1988; 16:758-763
    Koury ST, Koury MJ and Bondurant MC. Cytoskeletal distribution and function during the maturation and enucleation of mammalian erythroblasts. J Cell Biol 1989; 105(6): 3005-3013
    Liu YH and Xue SP. Electron microscopic observation of the process of natural denucleation during mammalian erythroblast maturation. J Chinese Electron Microscopy Society 1989; 8(2): 14-18
    Ma WL and Xue SP. Nuclear matrix-intermediate filament scaffold of cybrid cells crossed between rabbit reticulocytes and K562 cells. Acta Biol Exp Sin 1993; 26(4): 377-382
    Ma WL and Xue SP. The relationship between erythroblast denucleation and the nuclear matrix-intermediates. Chinese Medical Sciences Journal 1995a; 10: 1-5Ma WL and Xue SP. Effect of erythroid cytoplasmic factor (EDDF) on the differentiation and the changes of matrix-intermediate filament system of K562 erythroleukemia cells(in chinese). Science in China(series B) 1995b; 5(4): 387-392
    McLean WH and Lane EB. Intermediate filaments in disease. Curr Opin Cell Biol 1995; 7: 118-125
    Ngai J, Capetanaki YG and Lazarides E. Differentiation of murine erythroleukemia cells results in the rapid repression of viementin gene expression. J Cell Biol 1984; 99: 306-314
    Okabe S, Miyasaka H and Hirokawa N. Dynamics of the neuronal intermediatefilaments. J Cell Biol 1993; 121: 375-386
    Parysek LM, McReynolds MA, Goldman RD and Ley CA. Some neural intermediate filaments contain both peripherin and the neurofilament proteins. J Neurosci Res 1991; 30: 80-91
    Patel VP and Lodish HF. A fibronectin matrix is required for differentiation of murine erythroleukemia cells into reticulocytes. J Cell Biol 1987; 105: 3105-3118
    Pekny M, Leveen P, Pekna M, Eliasson C, Berthold CH, Westermark B and Betsholtz C. Mice lacking glial fibrillary acidic protein display astrocytes devoid of intermediate filaments by develop and reproduce normallly. EMBO J 1995; 14: 1590-1598
    Sarria AJ, Nordeen SK and Evans RM. Regulated expression of vimentin cDNA in cells in the presence and absence of a preexisting vimentin filament network. J Cell Biol 1990; 111: 553-565
    Sawyer ST, Koury MJ and Bandurrant MC. Large-scale production of erythropoietin-responsive erythroid cells: Assay for biological activity of erythropoietin. Methods Enzymol 1987; 147:340-352
    ShibukiK, Gomi H, Chen L, Bao S, Kim JJ, Wakatsuki H, Fujisaki T, Fujimoto K, Katoh A, Ikeda T, Chen C, Thompson R and Itohara S. Deficient cerebellar long-term depression, impaired eyeblink conditioning and normal motor coordination in GFAP mutant mice. Neuron 1996; 16: 587-599
    Simpson CF and Kling JM. The mechanism of denucleation in circulating erythroblasts. J Cell Biol 1967; 35: 237-247
    Skutelsky E and Danon D. An electron microscopic study of nuclear elimination from the late erythroblast. J Cell Biol 1967; 33: 625-635
    Skutelsky E and Danon D. Comparative study of nuclear expulsion from late erythroblast and??cytokinesis. Exp Cell Res 1970; 60: 427-436
    Tavassoli M. Red cell delivery and the function of marrow blood barrier: A review. Exp Hemat 1978; 6: 257-262
    Xue SP. Studies on the regulatory effect of mammalian erythroid differentiation-denucleation factor (EDDF) on the malignancy of myeloma cells (in Chinese). Acta Anat Sin 1991; 22(3): 225-234
    Xue SP, Fei RR, Ma WL, Zhang JB, Chen KQ, Zhang SF, Wang X and Liu P. Identification of mammalian erythroid differentiation-denucleation factor (EDDF) and its regulatory effects on the gene expression relating to terminal differentiation and NM-IF system of erythroleukemia cells. Proceedings of the Chinese Medical Sciences Year Book (in Chinese) 1994; PP.68-75
    Zhang QY, Tien Y and Xue SP. Morphological observation of erythroid progenitor cell differentiation in vitro. Acta Acad Med Sin 1989; 11(3): 210-214
    Zhang SF and Xue SP. Identification of erythroid differentiation denucleation factor (EDDF)in different developmental stages of erythropoietic cells of mice (in chinese). Acta Acad Sin 1994; 25(2): 156-160
    Zhang SF. Identification of EDDF in different developmental stages of erythropoietic cells and the immuno-screening of monoclonal antibodies to EDDF. Thesis for Master Degree, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and PUMC 1995
    Zhou G-P. Investigation into the material basis for the naturally occurring denucleation during mammalian red blood cell development. Thesis for Master Degree, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and PUMC 1987薛社普,费仁仁,马文丽等.红细胞终末分化调节因子的鉴定及其在自然排核和珠蛋白基因表达中的调控作用.中国医学科学院科学年会学术论文集 1994
    薛社普.哺乳类红细胞分化调节因子对骨髓瘤细胞恶性调控的研究.解剖学报 1991;22:225
    刘友华,薛社普.胞质因子对人早幼粒白血病细胞恶性表型和基因表达的调控作用.中国科学B辑 1987;8:853
    刘友华,薛社普.哺乳类红细胞成熟过程中自然排核现象的电镜观察.电子显微镜学报 1989;8:14
    张庆一,田毅、薛社普.小鼠骨髓红系祖细胞体外培养细胞分化的形态学观察.中国医学科学院院报 1989;11:210
    董茂庆,陈联松,张宁生.鸡和小鼠具核红细胞的中间纤维-核纤层-核骨架体系.解剖学报 1990;21:399
    楼方定,常青.胎肝造血细胞实验研究和临床应用现状.国外医学输血及血液学分册 1992;15:14
    孟祥文等.构建消减文库的方法与策略.国外医学 遗传学分册 1994;17:131-134
    Adams MD, Kelley JM, Gocayne JD, Dubnick M, Polymeropoulos MH, Xiao H, Merril CR, Wu A, Olde B, Moreno RF, et al. Complementary DNA sequencing expressed sequence tags and human genome project. Science 1991; 252: 1651-1656
    Altschul SF, Bogushi MS, Gish W and Woetton JC. Issue in searching molecular sequence database. Nature Genet 1994; 6: 119-129
    Barber DL and D'Andrea AD. The erythropoietin receptor and the molecular basis of signal transduction. Semin hematol 1992; 29: 293-304
    Boguski MS, Tolstoshew CM and Bessett DE. Gene discovery in dbEST, Science 1994; 3: 1509-1517
    Boguski MS. The turning point in genome research. TIBS 1994; 265: 1993-1994
    Brody LC, Abel KL, Castilla LH, Couch FJ, Mckinley DR, Yin G, Ho PP, Merajver S, Chandrasekharappa SC, Xu J, et al. Construction of a transcription map surrounding the BRCA1 locus of human chromosome 17. Genomics 1995; 25: 238-247
    Christenson RD. Hematopoiesis in the fetus and neonate. Pediatr Res 1989; 26: 531-535
    Colins F and Galas D. A new five-year plan for the U.S. Human Genome Project. Science 1993; 262: 43-46
    Diatcherko L, et al. Supression subtractive hybridization: A method for generating differential regulated or tissue-specific cDNA probes and library. Proc Natl Acad Sci USA 1996; 93: 6025-6030Duguid JR and Dinauer MC. Library subtraction of in vitro cDNA libraries to identify differentially expressed gene in scrapie infection. Nucleic Acid Res 1990; 18: 2781-2792
    Forster AC, McInnes JL and Skingle DC. Non-ratioactive hybridization probe prepared by the chemical labelling of DNA and RNA with a novel reagent, Photobiotin. 1985; 13: 745-761
    Gregory CJ and Eaves AC. Human marrow cells capable of erythropoietic differentiation in vitro: defineting if three erythroid colony responses. Blood 1977; 49: 855-864
    Gregory CJ and Eaves AC. Three stages of erythropoietic progenitor cell differentiation distinguished by a number of physical and biological properties. Blood 1978; 51: 527-537
    Ihle JW, Quelle FW and Miura O. Signal transduction through the receptor for erythropoietin. Semin Immunol 1993; 5: 375-389
    Kelemen E, Janossa M, Calvo W, et al. What kind of morphologically recognizable haemopoietic cells do we inject when doing fetal liver infusiion in man. Thymus 1987; 10: 33
    Koury MJ, Sawyer ST and Bondurant MC. Splenic erythroblasts in anemia-inducing Friend diseases: a source of cells for studies of erythropoietin mediated differentiation. J Cell Physiol 1984; 121: 526-532
    Krantz SB. Erythropoietin. Blood 1991; 77: 419-434
    Lee CC, Wu XW, Gibbs RA, Cook RG, Muzny DM and Caskey CT. Generation of cDNA probes directed by amino acid sequence: cloning of urate oridase, Science 1988; 239: 1288
    Liang P, et al. Differential display and cloning of messenger RNAs from human breast cancer versus mammary epithelial cells. Cancer research 1992; 52: 6366-6962
    Liang P, et al. Differentiao display of ealcaryptic messenger RNA by the polymerase chain reaction. Science 1992; 257: 967-970
    Lisitsyn N et al, Cloning the difference between two complex genomes, Science, 1993; 259(509): 946-951
    Lisitsyn N, Representative difference analysis: finding the difference between genomes, Trends in Genetics 1995; 11(8): 303-307
    Maddex PH, and Jenkins D. Techniqual methods: 3-aminopropyl-triethoxysilane(APES); a new advance in section adhension. J clin pathol 1987; 40(10): 1256
    Olson M, Hood L, Cantor C and Botstein D. A common language for physical mapping of human genome. Science 1989; 245: 1434-1435
    Papadopoulos N, Nicolaides NC, Wei YF, Ruben SM, Carter KC, Rosen CA, Haseltine WA, Fleischmann KD, Fraser CM, Adams MD, et al. Mutation of a muth homolog in herediitary colon??cancer. Science 1994; 263: 1625-1629
    Sawyer ST, Koury MJ and Bondurant MC. Large-scale procurement of erythropoietin responsive erythroid cells: assay for biologic activity of erythropoietin. Methods Enzymol 1987; 147: 340-352
    Sive HL and John ST. A simple subtractive hybridiztion technique employing photoactivable biotin and phenol extraction. Proc Natl Acad Sci USA 1988; 175: 1024
    Steptenson JR, Axelrad AA and Meleod DL. Induction of colonies of hemoglobin-synthesizing cells by erythropoietic in vitro. Proc Natl Acad Sci USA 1971; 68: 1542-1546
    Tugendreich S, Bogusid MS, Seldin MS and Hieter P. Gene conserved in huamn yeast and human. Proc Natl Acad sci USA 1993; 90: 10031-10035
    Tugenderich S, Boguski MS, Seldin MS, Hieter P. Linking yeast genetics to mammalian genomes: identification and mapping of the human homolog of CDC27 via the expressed sequence tag(EST) database. Hum Mol Genet 1994; 3: 1509-1517
    Wang Z and Brown DD. A gene expression screen. Proc Natl Acad Sci USA 1991; 88: 11505-11509
    Wieland I, Bolger G and Asoulin G. A method for difference cloning: gene amplification following subtractive hybridization. Proc Natl Acad Sci USA 1990, 187: 2720-2724Abel T and Maniatis T (1994) Mechanism of eukaryotic gene regulation. In The Molecular Basis of Blood Diseases(Ed. Stamattoannopoulos G., Nienhuis A.W., Majerus P.W. and Varmus H.), 2nd edition, pp. 33-70. W.B. Saunders, Philadelphia P.A.
    Aladjem MI, Groudine M, Brody LL, Dieken ES, Fournier REK,Wahl GM and Epner EM. Participation of the human β-globin locus control region in initiation of DNA replication. Science 1995; 270: 815-819
    Andrews NC, Kotkow KJ, Ney PA, Erdjumcnt-Bromage H, Tempst P and Orkin SH. The ubiquitous subunit of erythroid transcription factor NF-E2 is a small basic-leucinc zipper protein related to the v-maf oncogcne. Proc.Natl.Acad.Sci. USA 1993; 90: 11488-11492
    Aplan PD, Nakahara K, Orkin SH and Kirsch IR. The SCL gene product: a positive regulator of erythroid differentiation. EMBO J 1992; 11: 4073-4081
    Attardi LD and Tjian R. Drosophila tissue-specific transcription factor NTF-1 contains a novel is leucine-rich activation motif. Genes Dev 1993; 7: 1341-1353
    Bacolla A, Ulrich MJ, Larson JE, Ley TJ and Wells RD. An intramolecular triplex in the human β-globin 5'-flanking region is aitered by point mutations associated with hereditary persistence of fetal hemoglobin. J Biol Chem 1995; 270: 24556-24563
    Barton MC, Madani N and Emerson BM. The erythroid protcinc GATA-1 functions with a stage-specific factor to activate transcription of chromatin-assembled β-globin genes. Genes Dev 1993; 7: 1796-1809
    Begley CG, Aplan PD, Denning SM, Haynes BF, Waldmann TA andKirsch IR. The gene SCL is expressed during early hematopoiesis and encodes a differentiation-related DNA-binding motif. Proc Natl Acad Sci USA 1989; 86: 10128-10132
    Bieker JJ and Southwood CM. The erythroid Kruppel-like factor transactivation domain is a critical component for cell-specific inducibility of a-globin promoter. Mol Cell Biol 1995; 15: 852-860
    Blobel GA, Simon MC and Orkin SH. Rescus of GATA-1 deficient embryonic stem cells by heterologous GATA-binding proteins. Mol Cell Biol 1995; 15: 626-633
    Blom van Assendelft GB, Hanscombe O, Grrosveld F and Greaves DR. The β-globin dominant control region activates homologous and heterologous promotors in a tissue-specific manner. Cell 1989; 56: 969-977
    Boehm T, Lavenir I, Forster A, Wadey RB, Cowell JK, Harbott J, Lampertt F, Walters J, Sherrington P, Couillin P, Azoulay M, Junien C, van Heyningen V, Porteous DJ, Hastie ND and Rabbitts TH.??The T-ALL specific t(11;14)(p13;q11) translocation breakpoint cluster region is located near to the Wilm's tumour predisposition locus. Oncogene 1988; 3: 691-695
    Cairns LA, Crotta S, Minuzzo M, Moroni E, Granucci F, Nicolis S, Shiro R, Pozzi L, Giglioni B, Ricciardi-Castag-noli R And Ottlolenghi S. Immortalization of multipotent growth-factor dependent hemopoietic progenitors fron mice transgnnic for GATA-1 driven SV40 tsA58 genes. EMBO J 1994; 13: 4577-4586
    Cateerina JJ, Donze D, Sun CW, Ciavatta DJ and Townes TM. Cloning and functional characterization of LCR-F1: a bZIP transcription factor that activates erythroid-specific, human globin gene expression. Nucleic Acids Res 1994; 22: 2383-2391
    Chada K, Magram J, Raphael K, Radice G, Lacy E and Costantini F. Specific expression of a foreign β-globin gene in erythroid cells of transgenic mice. Nature 1985; 314: 377-380
    Chan JY, Han XL and Kan YW (1993) Cloning of Nrf1, an NF-E2 related transcription factor. Proc Natl Acad Sci USA 1993; 90: 11371-11375
    Chen Q, Cheng J-T, Tsai L-H, Schneider N, Buchanan G, Carroll A, Crist W, Ozanne B, Siciliano MJ and Baer R. The tal gent undergoes chromosome translocation in T cell leukemia and potentially encodes a helix-loop-helix protein. EMBO J 1990; 9: 415-424
    Choi QRB and Engel JD. Developmental regulation of β-globin gene switching. Cell 1988; 55: 17-26
    Chang JH, Whiteley M and Felsenfeld G. A 5' element of the chicken beta-giobin domain serves as an insulator in human erythroid cells and protects against position effect in Drosophila. Cell 1993; 74: 505-514
    Collis P, Antoniou M and Grosvels F. Definition of the minimal requirements within the human β-globin gene and the dominant control region for high level expression. EMBO J 1990; 9(1): 233-240
    Cowie A and Myers RM. DNA sequences involved in transcriptional regulation of the mouse-globin promoter in murine erythroleukemia cells. Mol. Cell Biol 1988; 8: 3122-3128
    Crossley M and Orkin SH. Phosphorylation of the erythroid transcription factor GATA-1. J Biol Chem 1994; 269: 16589-16596
    Crossley M, Tsang AP, Bieker JJ and Orkin SH. Regulation of the erythroid Kruppel-like factor(EKLF) gene promoter by the erythroid transcription factor GATA-1. J Biol Chem 1994; 269: 15440-15444
    Crossley M, Merika M and Orkin SH. Self-association of the erythroid transcription factor GATA-1 mediated by its zinc-finger domains, Mol Cell Biol 1995; 15: 2448-2456
    Dillon N and Grosveld F. Human γ-globin genes silenced independently of other genes in the beta-globin locus. Nature 1991; 350: 25-254Dillon N, Stouboulis J and Grosveld F (1995) The regulation of human β-globin gene expression: Polarity of transcriptional competition in the human β-globin locus. In Molecular Biology of Hemoglobin Switching.(Ed. Stamatoyannopoulos G.). pp. 23-28. Intercept. Andover
    Donze D, townes TM and Bicker JJ. Role of erythroid Kruppel-like factor in human γ to β globin gene switching. J Biol Chem 1995; 270: 1955-1959
    Dynlacht BD, Attardi LD, Admom A, Freeman M and Tjian R. Function anslysis of NTF-1, a developmentally regulated Drosophila transcription factor that binds neuronal cis elements. Genes Dev 1989; 3:1677-1688
    Ellis J, Talboy D, Dillon N and Grosveld F. Synthetic humanbeta-globin 5'HS2 constructs function as locus control regions only in multicopy transgene concatamers. EMBO J 1993; 12: 127-134
    Enver T, Raich N Ebens AJ, Papayannopoulou T, Costanttini F and Stamatpuammppips G. Developmental regulation of human fetal-to-adult giobin gene switching in transgenic mice. Nature 1990; 344: 309-313
    Evans T, Reitman M and Felsenfeld G. An erythrocyte-specificDNA-binding factor recognizes a regulatory sequence common to all chicken globin genes. Proc Natl A cad Sci USA 1988; 85: 5976-5980
    Evans T and Felsenfeld G. The erythroid-specific transcription factor eryf1: a new finger protein. Cell 1989; 58: 877-885
    Evans T and Felsenfeld G. (1991) Trans-activation of a globin promoter in non-erythroid cell. Mol Cell Biol 1991; 11: 843-853
    Feng WC, SouthwoodCM and Bicker JJ. Analuses of β-thalassemia mutant DNA interactions with the erthroid Kruppel-like factor(EKLF), an erythroid cell-specific transcription factor. J Biol Chem 1994; 269: 1493-1500
    Fiering S, Epner E, Robinson K, Zhuang Y, Telling A, Hu M, Martin DIK, Enver T, Ley TT and Groudine M. Targeted deletion of 5'HS2 of the murine-globin LCR reveals that it is not essential for the roer regulation of the β-globin locus. Genes Dev 1995; 9: 2203-2213
    Fong TC and Emerson BM. The erythroid specific protein cGATA-1 mediates distal enhancer activity through a specialized-globin TATA box. Genes & Dev 1992; 6:521-532
    Forrest WC, Takegawa S, Papayannopoulou T, Stamatoyannopoulos G and Groudine M. Evidence for a locus activation region: transformation of developmentally stable hypersensitive sites in globin-expressing hybrids. Nucleic Acids Res 1987; 15:10159-10177
    Forrester WC, Epner E, Driscoll MC, Enver T, Brice M, Papayannopoulou T and Groudine M. A deletion of the human β-globin locus activation region causes a major alteration in chromatin structure and replication across the entire β-globin locus. Genes Dev 1990; 4:1637-1649
    Fraser P, Pruzina S, Antoniou M and Grosveld F. Each hypersensitive site of the human beta-globin??locus control region confers a different developmental pattern of expression on the globin genes. Genes Dev 1993; 7:106-113
    Gaensler KLM, Kitanura M and Kan YW. Germ-line transmission and developmental regulation of a 150 kb yeast artificial chromosome containing the human β globin locus in transgenic mice. Proc Natl Acad Sci USA 1993; 90: 11381-11385
    Grosveld F, Van Assendelft GB, Greaves DR and Kolloas G. Position-independent, high-level expression of the human -globin gene in transgenic mice. Cell 1987; 51: 975-985
    Gunucio DL, Blanchard-Mcquate KL, Heilstedt-Williamson H, Tagle DA, Gray TA, Tarle SA, Gragowski K, Goodman M, Slightom JL and Collins FS. (1991) γ-globin gene regulation: evolutionary approaches. In The regulation of hemoglobin switching. Proceedings of the seventh conference on hemoglobin switching(Eds. Stamatoyannopoulos G, andNienhuis AW), pp. 277-289. The Johns Hopkins University Press. Baltimore, MD.
    Gumucio DL, Heilstedt-Williamson H, Gray TA, Tarle SA, Shelton DA, Tagle DA, Slightom JL, Goodman M and Collins FS. Phylogenetic footprinting reveals a nuclear protein which binds to silencer sequences in the human γ-and ε-globin gene. Mol Cell Biol 1992; 13: 3272-3281
    Gunucio DL, Rood KL, Gray TA, Riordan MF, Bartor CI andCollins FS. Nuclear proteins that bind the human γ-globin gene promoter: alternations in binding produced by point mutations associated with hereditary persistence of fetal hemoglobin. Mol Cell Biol 1988; 8: 5310-5322
    Gumucio DL, Shelton DA, Bailey WJ, Slightom JL and Goodman M. Phylogenetic footprinting reveals unexpected complexity in transfactor binding upstream from the ε-globin gene. Proc Natl Acad Sci USA 1993; 90: 6018-1022
    Hanscombe O, Whyatt D, Fraser P, Yannoutsos N, Greaves D, Dillon N and Grosveld F. Important of globin gene order for correct developmental expression. Genes Dev 1991; 5: 1387-1394
    Hartzog GA and Myers RM. Discrimination among potential activators of the β-globin CACCC element by correlation of binding and transcriptional properties. Mol Cell Biol 1993; 13: 44-56
    Hatton CSR., Wilkie AOM, Drysdale HC, Wood WG, Vickers MA., Sharpe J, Ayyub H, Pretonus IM, Buckle VJ and Higgs DG. β-Thalassemia caused by a large(62kb) deletion upstream of the human β-globin gene cluster. Blood 1990; 76: 221-227
    Higga DR, Wood WG, Jarman AP, Sharpe J, Lida J, Pretoris IM and Ayyub H. A major positive regulatory region is located far upstream of the human-globin gene locus. Gene & Dev 1990; 4; 1588-1601
    Igarashi K, Kataoka K, Itoh K, ayashi N, Nishizawa M and Yamamoto M. Regulation of transcription by dimerization of erythroid factor NF-E2 p45 with small Maf proteins. Nature 1993; 367: 568-572Ito E, Toki T, Ishihara H, Ohtani H, Gu L, Yokoyama M, Engel JD and Yamamoto M. Erythroid transcription factor GATA-1 is abundantly transcribed in mouse testis. Nature 1993; 362: 466-468
    Jane SM, Gumucio DL, Ney PA, Cunnungham JM and Nienhuis AW. Methylation enhanced binding of Sp1 to the stage selector element of the human tau-globin gene promoter may regulate developmental specificity of expression. Mol Cell Biol 1993; 13: 3272-3281
    Jane SM, Ney PA, Vanin EF, Gunucio DL and Nienhuis AW. Identification of a stage selector element in the human γ-globin gene promoter that fosters preferential interaction with the 5'HS enhancer when in competition with the β-promoter. EMBO J 1992; 11: 2961-2969
    Jane SM, Niehuis AW and Cunningham JM. Hemoglobin switching in man and chicken is mediated by a heteromeric complex between the ubiquitous transcription factor CP2 and a developmentally specific protein. EMBO J 1995; 14: 97-105
    Kataoka K, Igarashi K, Ito K, Fujiwara KT, Noda M, Yamamoto M and Nishizawa M. Small maf proteins heterodimerize with fos and may act as competitive repressors of the NF-E2 transcription factor. Mol Cell Biol 1995; 15: 2180-2190
    Knezetic JA and Felsenfeld G. Mechanism of developmental regulation of the α P, the chicken embryonic α-globin gene. Mol Cell Biol 1993; 13: 4632-4639
    Ko L and Engel J. DNA-bindmg specificities of GATA-1 family transcription factors family. Mol Cell Biol 1993; 13: 4011-4022
    Kotkow K and Orkin SH. Dependence of globin gene expression mouse erythroleukemia cells on the NF-E2 heterodimer. Mol Cell Biol 1995; 15: 4640-4647
    Li Q and Stamatoyannopoulos G. Hypersensitive site of the human b locus control region functions as a chromatin insulator. Blood 1994; 84: 1399-1401
    Liebhaber SA, Griese E-U, Weiss I, Cash FE, Ayyub H, Higgs DR and Horst J. Inactivation of human α-globin gene expression by a de novo deletion location upstream of the α-globin gene cluster. Proc Natl Acad Sci USA 1990; 87: 9431-9435
    Lowrey CH, Bodine DM and Nienhuis AW. Mechanism of DNase Ⅰ hypersensitive site formation within the human globin locus control region. Proc Natl Acad Sci USA 1992; 89: 1143-1147
    Lu S-J, Rowan S, Bani MR and Ben-David Y. Retroviral integration within the Fli-2 locus results in inactivation of the erythroid transcription factor NF-E2 is Friend erythroleukemia evidence that NF-E2 is essential for globin expression. Proc Natl Acad Sci USA 1994; 91: 8139
    Magram J, Niederreither K and Costantini F. β-globin enhancers target expression of a heterologous gene to erythroid tissue of transgenic mice. Mol Cell Biol 1989; 9: 4581-4584
    Martin DIK and Orkin SH. Transcriptional activation & DNA-binding by the erythroid factor GF-1/NF-E1/Eryf 1. Genes & Dev 1990; 4: 1886-1898
    Martin DIK, Zon LI, Mutter G and Orkin SH. Expression of an erythroid transcription factor in??megakaryocytic and mast cell lineages. Nature 1990; 344: 444-446
    McDonagh KT, Kin HJ, Lowrey CH, Bodine DM and Nienhuis AW. The upstream region of the human γ-globin gene promoter. J Biol Chem 1991; 266: 11965-11974
    Merika M and Orkin SH. DNA-binding specificities of GATA-1family transcription factors. Mol.Cell.Biol 1993; 13: 3999-4010
    Merika M and Orkin SH. Functional synergy and physical interactions of the erythroid transcription factor GATA-1 with the Kruppel family proteins Sp1 and EKLF. Mol Cell Biol 1995; 15: 2437
    Mignotte V, Wall L, deBoer E, Grosveld F and Romeo P-H. Two tissue-specific factors bind the erythroid promoter of the human porphobolonogen deaminase gene, Nucleic Acids Res 1989; 17: 37-45
    Miller IJ and Bicker JJ. A novel, erythroid cell specific marine transcription factor that binds to the CACCC element and is related to the Kruppel family of nuclear proteins. Mol Cell Biol 1993; 13: 2776-2786
    Minic ME, Kimura T and Felsenfeld G. The developmental switch in embryonic-globin expression is correlated with erythroid lineage-specific differences in transcription levels. Development 1992; 115: 1149-1164
    Moi P, Chan K, Asunis I, Cao A and Kan YW. Isolation of NF-E2 related factor2(Nrf2), a NF-E2-like basic leucinc zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the β-globin locus control region. Proc Natl Acad Sci USA 1994; 91: 9926-9930
    Myers RM, Tilly K and Maniatis T. Fine structure genetic analysis of a β-globin promoter. Science 1986; 232: 613-618
    Myers RM, Cowie A, Stuve L, Harrtzog G and Gaensler K. Genetic and biochemical analysis of the mouse β-major globin promoter. Progr Clin Biol Res 1989; 316: 117-127
    Natesan S amd Gilman MZ. DNA bending and orientation-dependent function of YY1 in the c-fos promoter. Genes Dev 1993; 7:2497-2509
    Nuez B, Michalovich D, Bygrave A, Tloemacher R and Gros-veld F. Defective haematopoiesis in fetal liverr resulting from inactivation of the EKLF gene. Nature 1995; 375: 316-318
    Ney PA, Sorrentino BP, McDonagh KT and Nienjuis AW. Inducibility of the HS Ⅱ enhancer depends on binding of an erythroid specific nuclear protein. Nucl Acids Res 1990a; 18: 6011-6017
    Ney PA, Sorrentino BP, McDonagh LT and Nienhuis AW. Tandem AP-1-binding sites within the human β-globin dominant control region function as an inducible enhancer in erythroid cells. Genes & Dev 1990; 4: 993-1006
    Orkin SH, Antonarakis SE and Kazazian HH Jr. Base substitution at position-88 in a β-thalassemia globin gene. Further evidence for the role of distal promoter element ACACCC. J Biol Chem 1984; 259: 8679-8681Osada H, Grutz G, Axelson H, Forster A and Rabbitts TH. Association of eryth-oid transcription factors: complexes involving the LIM protein RBTN2 and the zinc-finger protein GATA-1. Proc Natl Acad Sci USA 1995; 92: 9585-9589
    Perkins AC, Sharpe AH and Orkin SH. Lethal β-thalassemia in mice lacking the erythroid CACCC-transcription factor, Nature 1995; 375:318-322
    Peterson KR and Stamatoyannopoulos G. Role of gone order in developmental control of human gamma and beta-globin expression. Mol Cell Biol 1993; 13: 4836-4843
    Pevny L, Simon MC, Robertson E, Klein WH, Tsai S-F, D'Agati V,Orkinsh V. and Costantini F. Erythroid differentiation in chimeric mice blocked by a targeted mutation in the gene for transcription factor GATA-1. Nature 1991; 349: 257-260
    Pevny L, Lin C-S, D'Agati V, Simon MC, Orkin SH and Costantini F. Development of hematopoietic cells lacking transcription factor GATA-1. Development 1995; 121: 163-172
    Philipsen S, Talbot D, Fraser P and Grosveld F. The -globin dominant control region: hypersensitive site 2. EMBO J 1990; 9: 2159-2167
    Poncz M, Henthorn P, Stoeckert C And Surrey S. (1989) Globin gone expression in hereditary persistence of fetal haemoglobin and β-thalassemia. In Oxford Surveys of Eukaryotic. Genes (Ed. McLean N.) pp. 163-203. Oxford University Press, Oxford
    Pondel MD, Proudfoot NJ, Whitelaw C and Whitelaw E. The developmental regulation of the human zeta-globin gene in transgenic mice employing beta-galactosidase as a reporter gone. Nucleic Acids Res 1992; 20:5655-5660
    Raich N, Clegg CH, Grofti J, Romeo PH and Stamatoyannopoulos G. GATA-1 and YY1 are developmental repressors of the human ε-globin gene. EMBO J 1995; 14: 801-809
    Raich N, Papayannopoulou T, Stamatoyannopoulos G And Enver T. Demonstration of a human-globin gene silencer with studies in transgenic mice. Blood 1992; 79: 861-864
    Robb L, Lyons I, Li R, Hartley L, Kontgen F, Harvey RP, Metcalf D and Beg;ey CG.Absence of yolk sac hematopoiesis from mice with a targeted disruption of the SCJ gene. Proc Natl Acad Sci USA 1995; 92: 7075-7079
    Romeo P-H, Prandini M-H, Joulin V, Migntte V, Prenant M, Vainchenker W, Marguerie G and Uzan G. Megakaryocytic and erythrocytic lineages share specific transcription factors. Nature 1990; 344: 447-449
    Ronchi A, Nicolis S, Santoro C And Ottolenghi S. Increased Sp1 binding mediates erythroid-specific overexpression of a mutated(HPFH) γ-globin promotor. Nucl Acids Res 1989; 17: 10231-10241
    Ronchi A, Bottardi S, Mazzuchelli C Ottolenghi S and Santoro C. Differential binding of the NF-E3 and CP1/NFY transcription gactors to the human γ-and ε-globin CCAAT boxes. J Biol Chem 1995; 270: 21934-21941Shih DM, Wall RJ and Shapiro SG. Developmentally regulated erythroid-specific expression of the human embryonic-globin gene in transgenic mice. Nucleic Acids Res 1990; 18: 5465-5472
    Shivdasani R, Mayer E and Orkin SH. Absence of blood formation in mice lacking the T-cell leukemia omco protein tal-1/SCL. Nature 1995; 373: 432-434
    Shivdasani RA and Orkin SH. Erythropoiesis and globin gene expression in mice lacking the transcription factor NF-E2. Proc Natl Acad Sci USA 1995; 92: 8690-8694
    Sposi NM, Zon LI, Care A, Valtieri M, Testa U, Gabbia-nelli M, Mariani G, Bottero L, Mather C, Orkin SH and Peschle C. Cycle-dependent initiation and lineage-dependent abrogation of GATA-1 expression in pure differentiating hematopoietic progenitors. Proc Natl Acad Sci USA 1992; 89: 6353-6357
    Stamatoyannopoulos JA, Goodwin A, Joyce T And Lowrey CH. NF-E2 and GATA binding motifs are required for the formation of DNase Ⅰ hypersensitivity site 4 of the human β-globin locus control region. EMBO J 1995; 14: 106-116
    Stuve LL and Myers RM. A directly repeated sequence in the β-globin promoter regulates transcription in murine crythroleukemia cells. Mol Cell Biol 1990; 10: 972-981
    Talbot D, Philipsen S, Fraser P and Jrosveid F. Detailed analysis of the site 3 region of the human β-globin dominant control region. EMBO J 1990; 9: 2169-2178
    Trepicchio WL, Dyer MA and Baron MH. A novel developmental regulatory motif required for stage-specific activation of the ε-globin gene and nuclear factor binding in embryonic erythroid cells. Mol Cell Biol 1994; 14: 3763-3771
    Trudel M And Costantini F. A 3'enhancer contributes to the stage-specific expression of the human β-globin gene. Genes Dev 1987; 1: 954-961
    Tsai SF, Martiin DI, Zon LI, D'Andrea AD, Wong GG and Orkin SH. Clonning of cDNA for the major DNA-binding protein of the erythroid lineage through expression in mammalian cells. Nature 1989; 339: 446-451
    Tuan D, Solomon W, Li Q And London IM. The β-like-globin gene domain in human erythroid cells. Proc Natl Acad Sci USA 1985; 82: 6384-6388
    Tuan D, Soloman WB, London IM and Lee PD. An erythroid-specific, developmental-stage-independent enhancer far upstream of the human beta-like globin genes. Proc Natl Acad Sci USA 1989; 86: 2554-2558
    Uv AE, Thompson CRL and Bray SJ. The Drosophila tissue-specific factor grainyhead contains novel DNA-binding and dimerization domains that are conserved in the human protein CP2. Mol Cell Biol 1994; 14: 4020-4031
    Valge-Archer VE, Osada H, Warren AJ, Forster A, Li J, Baer R and Rabbitts TH. The LIM protein RBTN2 & the basic helix-loop-helix protein TAL1 are resent in a complex in erythroid cells. Proc??Natl Acad Sci USA 1994; 91: 8617-8621
    Visvader J, Begley CG and Adams JM. Differentialexpression of the Ly1, SCL, & E2a helix-loop-helix genes within the hematopoietic system. Oncogene 1991; 6: 187-194
    Visvader JE, Elefanty AG, Strasser A and Adams JM. GATA-1 but not SCL induces megakarocytic differentiation in an early myeloidline. EMBO J 1992; 11: 4557-4564
    Visvader J and Adams JM. Megakaryocytic differentiation induced in 416B myeloid cells by GATA-2and GATA-3 transgenes or 5-azacytidine is tightly coupled to GATA-1 expression. Blood 1993; 82: 1493-1501
    Visvader JE, Crossley M, Hill J, Orkin SH and Adams JM. The C-terminal zinc finger of GATA-1 or GATA-2 is sufficient to induce megakaryocytic differentiation of an early myeloid cell line. Mol Cell Biol 1995; 15: 634-641
    Wadman I, Li J, Bash RO, Forster A, Osada H, Rabbitts TH and Baer R. Specific in vivo association between the bHLH and HLH proteins implicated in human T cell leukemia. EMBO J 1994; 13: 4831-4839
    Warren AJ, Colledge WH, Carlton MBL, Evans MJ, Smith AJH and Rabbitts TH. The oncogene cysteine-rich LIM domain proteinRbtn2 is essential for erythroid development. Cell 1994; 78: 45-57
    Weiss MJ, Keller G and Orkin SH. Novel insights into erythroid development revealed through in vitro differentiation of GATA-1 emronic stem cells. Genes & Dev 1994; 8: 1184-1197
    Wijgerde M, Grosveld F And Fraser P. Transcription complex stability and chromatin dynamics in vivo. Nature 1995; 377: 209-213
    Xue Shepu,et al.The role of cytoskeletal elements in the two-phase denucleation process of mammalian erythroblasts in vitro observed by laser confocal scanning microscope. Cell, Mol.Biol. 1997, 43(6):851-860
    Yant SR, Zhu W, Millinoff D, Slightom JL, Goodman M and Gumucio DL. High affinity YY1 binding motifs: identification of two core types (ACAT and CCAT) and distribution of potential binding sites within the human β-globin cluster. Nucl Acids Res 1995; 23:4353-4436
    Yomagida K, Ohtani H, Harigae H, Ito E, Nishimune Y, Engel JD and Yamamoto M. Development stage and spermatogenic cycle-specific expresion of transcription factor GATA-1 in moise Serttoli cells. Development 1994; 120: 1759-1766
    Yamamoto M, Ko LJ, Leonard MW, Beug H, Orkin SH and Engel JD. Activity and tissur-specific expression of the transcription factor NF-El multigene family. Genes & Dev 1990; 4: 1650-1662
    Zon LI, Mather C, Burgess S, Bolce ME, Harland RM and Orkin SH. Expression of GATA-binding proteins during embryonic development in Xenopus laevis. Proc Natl Acad Sci USA 1991;??88:10642-10646
    Zon LI, Yamaguchi Y, Yee K, Albee EA, Kimura A, Ben-nett JC, Orkin SH and Ackerman SJ. Expression of mRNA for the GATA-binding proteins in human eosinophils and basophils: potential role in gene transcription. Blood 1993; 81: 3234-3241
    李宝莲,薛社普等.胞质因子对肿瘤细胞恶性的调控研究-小鼠骨髓瘤与网织红细胞胞质体的胞质杂交.实验解剖学报,1984,15:49
    刘友华,等.哺乳类红细胞成熟过程中自然排核现象的观察.电子显微镜学报,1989,8:14
    张庆一,等.小鼠骨髓红系祖细胞体外培养细胞的形态学观察.中国医学科学院学报,1989,11:210
    董茂庆,等.鸡和小鼠具核红细胞的中间纤维-核纤层-核骨架体系.解剖学报,1990,21:399
    周国平.胞质因子对人早幼粒白血病细胞恶性表型和基因表达的调控作用.中国医学科学院基础医学研究所硕士毕业生论文,1987
    刘友华,薛社普.胞质因子对人早幼粒白血病细胞恶性表型和基因表达的调控.中国科学B辑,1987,8:853;Studies on regulatory effect of malignant phenotypeand gene expression in human promyelocytic leukemia cell mutant (HL-60-AR).Sci Sin (Series B), 1988,31:1095.
    薛社普,章静波,等.兔网织红细胞胞质因子对小鼠骨髓瘤细胞恶性调控的研究.中国医学科学院学报,1986,8:339;Studies on regulatory effect of reticulocyte cytoplasmic factors on malignancy of mouse myeloma cells. Proc CAMS PUMC, 1988,5:191
    费仁仁,等.哺乳类(兔)红细胞分化因子纯化及特性分析.生物化学杂志,1992,8(1):121-128
    薛社普.哺乳类红细胞分化调节因子对骨髓瘤细胞恶性调控的研究.解剖学报,1991,22(3):225-234
    张世馥,薛社普,等.不同阶段红系血细胞中红细胞分化因子的检测.解剖学报,1994,25(2):156-160
    刘丕旭.红细胞去核分化因子(EDDF)的分离,纯化及其cDNA克隆.中国医学科学院博士论文,1995
    章正琰,刘世广,章静渡,薛社普.小鼠红细胞分化相关基因cDNA全序列的克隆和结构特征分析(未发表资料) 中国医学科学院学报,1989,11:210

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700