颞叶癫痫相关突触后致密物蛋白的筛选研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景和目的:
     颞叶癫痫(temporal lobe epilepsy,TLE)是难治性癫痫的常见类型。目前认为颞叶癫痫难治的重要原因是神经环路重建以及兴奋性异常的神经网络形成,但其机制欠清楚。因此,探索神经网络兴奋性异常的原因具有重要意义。业已证实,癫痫发病与兴奋性谷氨酸能突触传递效能增高密切相关,其机制涉及突触前神经递质的释放增加、突触间隙谷氨酸盐代谢障碍、突触后受体的敏感性增加3个方面。以往的研究多侧重于突触前和突触间隙调节机制,而对突触后调节机制研究不多。突触后致密物(postsynaptic density,PSD)作为兴奋性突触后膜的超级信号复合体,可调节突触后受体的敏感性,改变神经信号传递的下游效应,势必最终决定兴奋性突触的传递效能,这可能是癫痫神经网络兴奋性异常形成的核心所在,亟待深入探讨。但PSD与癫痫的关系国内外研究甚少,只见于数量有限的几种PSD蛋白质表达变化,迫需全面深入探讨PSD蛋白与TLE发病的关系。
     为更快、更深入、更全面地探讨PSD蛋白质在颞叶癫痫形成中的作用机制,本研究采用高通量、高敏感的蛋白质组学技术,构建颞叶癫痫大鼠全脑组织PSD蛋白质的双向凝胶电泳图谱,首次对颞叶癫痫相关PSD蛋白进行筛选和鉴定,为深入研究PSD蛋白与癫痫的关系提供线索,为寻找TLE防治新靶点提供依据。
     研究方法:
     建立氯化锂—匹罗卡品大鼠颞叶癫痫模型。实验分为三组,即TLE自发组(spontaneous recurrent seizure,SRS)、TLE无自发组(non-spontaneous recurrent seizure,NSRS)、正常对照组(Norm组)。采用蔗糖密度梯度离心联合膜顺序提取法分别提取三组大鼠全脑组织的PSD蛋白成分。利用蛋白质组学技术对提取的PSD蛋白进行比较筛选,鉴定出TLE发作相关蛋白,并采用western免疫印迹法进一步验证部分TLE相关PSD蛋白的表达情况。
     研究结果:
     1、氯化锂—匹罗卡品大鼠颞叶癫痫模型:致痫成功率为91.4%,模型成功率为71.4%,死亡率为20%。
     2、PSD纯度的检验:检测发现突触后标志分子NR1和PSD-95在P2成分、突触体和PSD蛋白三组成分中均呈免疫印迹阳性,而突触前标志分子SynPhy在PSD成分中呈阴性。
     3、PSD蛋白质的双向凝胶电泳:通过PDQuest软件进行比较分析,结果显示:One-PSD图谱约有286±25个蛋白质点,Two-PSD图谱有720±17个蛋白质点,两组比较有显著差异性(P<0.01)。与对照组相比较,TLE自发组(SRS)表达上调的有12个,表达下调的有58个;TLE无自发组(NSRS)表达上调的有15个,表达下调的有38个。与TLE无自发组比较,TLE自发组表达上调的蛋白点有15个,表达下调的有25个。其中发现仅在TLE自发组特异表达的有4个。
     4、部分差异PSD蛋白点的质谱分析:鉴定的26个差异蛋白质点根据功能可分为6类:①细胞骨架蛋白:微管蛋白tubulin alpha和tubulin beta,internexin-alpha,actin;②运输蛋白:Sorting Nexin 3(SNX3);③能量代谢相关酶蛋白:肌酸激酶(creatine kinase,CK),果糖二磷酸醛缩酶(fructose-bisphosphate aldolase A,FBA),甘油醛三磷酸脱氢酶(glyceraldehydes-3-phosphate dehydrogenase,GAPDH),琥珀酸辅酶A连接酶(Succinate-coenzyme A ligase,SCOL),乌头酸水合酶(Aconitate hydratase,ACO);④分子伴侣:热休克蛋白-27(heat shockprotein-27,HSP-27);肽酰脯胺酸顺反异构酶(peptidyl-prolyl cis-transisomerase A,PPIase);⑤信号转导分子:甲状腺素受体相互作用蛋白6(Thyroid receptor-interacting protein 6,TRIP6);⑥其它:髓鞘碱性蛋白S(myelin basic protein S,MBP),LIM结构域(LIM domain)。
     5、Western验证结果与蛋白质组学分析和鉴定基本一致,HSP27、SNX3、tubulin-alpha三种蛋白质均在PSD中呈免疫阳性,且它们在SRS、NSRS和Norm三组中的表达强度呈现出递增或递减现象,即HSP27:SRS>NSRS>Norm;tubulin-alpha:SRS<NSRS<Norm;SNX3:SRS<NSRS<Norm。
     研究结论:
     1、采用蔗糖梯度离心联合膜顺序提取法可获得高纯度和高溶解性的PSD蛋白,为深入研究PSD蛋白提供了技术基础。
     2、构建出大鼠脑组织PSD蛋白的2-D图谱,为PSD蛋白与相关疾病的研究奠定了基础。
     3、本研究筛选和鉴定出的TLE相关PSD蛋白,可能是促/抗TLE发病的重要候选蛋白分子。
Background and Objective:
     Temporal lobe epilepsy(TLE) is a common type of refractory epilepsy. At present, studys show that the important reason of refractory epilepsy is reconstruction of neural circuit loop and abnormal excitability of neural network. But its concrete pathogenic mechanisms are still poorly understood up to now.Therefore, exploration of neural network abnormal excitability is of great significance. As we know,excitatory glutamatergic neurotransmission has been considered to be related with the pathogenesis of epilepsy, including that dilivery of presynaptic neurotransmitter; dysmetabolism of glutamate in synaptic cleft; sensitivity of postsynaptic receptor. In the past, study of postsynaptic regulatory mechanism is rare. Postsynaptic density(PSD) is considered to be a tightly packed protein complex.As the important material foundation of postsynaptic regulatory mechanism, PSD can change downstream effects of neural signal transmission by regulating sensitivity of postsynaptic receptor. So this may be a core of abnormal excitability of neural network,which need to be elucidated. At present, research reports about PSD and epilepsy are not often seen.
     To explore the mechnism of PSD in TLE, we will first construct 2D electrophoregram of PSD fractions by use of high-throughput and high-sensitive proteomic techniques.Subsequently, PSD proteins related with temporal lobe epilepsy will be screened out and identified,which can provide new cue for further studying the relationship of PSD and TLE,and find new target for preventing and treating TLE.
     Methods:
     In this study,the Sprague-Dawley rats were randomly enrolled in SRS group、NSRS group、Normal group.The lithium-pilocarpine model of epilepsy was established. PSD fractions were gradually obtained by using sucrose gradient centrifugation and membrane sequence abstraction. we respectively isolated PSD proteins of SD rats from three groups by using two-dimensional gel electrophoresis.Then we analyzed some differential protein spots in three groups,and identified 26 proteins using MALDI-TOF-MS. In addition, the expression of three identified PSD proteins was detected in the PSD fractions by western blotting.
     Results:
     1. The lithium-pilocarpine modle of TLE: Status epilepticus were induced at the achievement ratio of 91.4%.The achivement ratio of the TLE animal model is 71.4%.The mortality rate is 20%.
     2. The analysis of PSD purity: Two postsynaptic mark molecules NMDA receptorl and PSD-95 were expressed in P2,synaptosome and PSD fractions,but synaptophysin(presynaptic mark) was not expressed in PSD.
     3. Two-dimensional gel electrophoresis of PSD: We analyze these 2-DE images by PDQuest software.A total of 720±17 protein spots were detected in the two-PSD fraction,and a total of 286±25 protein spots were detected in the one-PSD.There is a significant difference between the two fractions(P<0.01). Compared with normal group, the expressive levels of 12 proteins were upregulated and 58 proteins were downregulated in SRS; the expression levels of 15 proteins were upregulated and 38 proteins were downregulated in NSRS.In addition,we found that there were 4 proteins only in SRS group.Compared with NSRS,the expressive levels of 15 proteins were upregulated and 25 proteins were downregulated in SRS.
     4. The mass spectrographic analysis of serveral differential PSD proteins: The 26 differential protein spots were identified by MALDI-TOF-MS. And these proteins consisted of members of proteins with diverse functions, including proteins related to cytoskeletal、transport、signal transduction、chaperone、energy metabolism.
     5. Three identified proteins (HSP27、SNX3、tubulin-alpha) were detected in PSD fractions by western blotting. The results were consistent with that of proteomic analysis and identify. The expressive levels of three proteins in three groups showed as follows, HSP27 : SRS>NSRS>Norm ; tubulin-alpha : SRS     Conclusions:
     1. The method of sucrose gradient centrifugation plus membrane sequence abstraction could guarantee the purity of PSD and improve the dissolubility of PSD fractions,which might serve as an important technique for studying PSD proteins.
     2. The construction of 2-D electrophoregram of PSD proteins in rat brains might provide foundation for further studying PSD proteins related with disease.
     3. The identified PSD proteins might be important candidate molecules,which might promote or inhibit development of TLE.
引文
[1]Kapur J.Role of neuronal loss in the pathogenesis of recurrent spontaneous seizure.Epilepsy Curr.2003,3(5):166-167
    [2].Zhang X,Cui SS,Wallace AE,et al.Relations between brain pathology and temporal lobe epilepsy.J Neurosci.2002,22(14):6052-6061
    [3]Feng L,Molnor P,Nadler JV.Short-term frequency-dependent plasticity at recurrent mossy fiber synapses of the epileptic brain.J Neurosci.2003,23(12):5381-5390
    [4]Williams PA,Wuarin JP,Dou P,et al.Reassessment of the effects of cycloheximide on mossy fiber sprouting and epileptogenesis in the Pilocarpine model of temporal lobe epilepsy.J Neurophy.2002,88(4)pp:2075-2087
    [5]Morimoto K,Fahnestock M,Racine RJ.Kindling and status epilepticus models of epilepsy:rewiring the brain.Prog Neurobiol,2004,73(1):1-60
    [6]Jutila L,Immonen A,Partanen K,et al.Neurobiology of epileptogenesis in the temporal lobe.Adv Tech Stand Neurosurg,2002,27:5-22
    [7].章子贵,杜红燕,陆汉新等.小鼠的记忆与脑内突触结构参数变化的相关性.心理学报,1995,27(3):317
    [8]章子贵,申秀英,许晓路.硒对氟致小鼠学习记忆损伤的改善作用.卫生研究,2001,30(3):144
    [9]Jordan BA,Fernholz BD,Boussac M,et al.Identification and verification of novel rodent postsynaptic density proteins.Mol Cell proteomics,2004,3(9):857-871
    [10]Yoshimura Y,Yamauchi Y,Shinkawa T,et al.Molecular constituents of the postsynaptic density fraction revealed by proteomic analysis using multidimensional liquid chromataography -tandem mass spectrometry.J Neurochem,2004,88(3):759-768
    [11]Steward O,Schuman EM.Compartmentalized synthesis and degradation of proteins in neurons.Neuron,2003,40(2):347-359
    [12]Hegde AN,Diantonio A,Ubiquitin and the synapse.Nat Rev Neurosci.2002,3(11):854-861
    [13]Ehlers MD.Activity level controls postsynaptic composition and signaling via the ubiquitin-proteasome system.Nat Neurosci,2003,6(3):231-242
    [14] Sheng M,Kim MJ.Postsynaptic signaling and plasticity mechanisms. Science. 2002, 298 (5594):776-780
    [15] Kennedy MB.Signaling-processing machines at the postsynaptic density.Science. 2000,290(5492) :750-754
    [16] Kneussel M, Loebrich S. Trafficking and synaptic anchoring of ionotropic inhibitory neurotransmitter receptors. Biol Cell. 2007 Jun;99(6):297-309.
    [17] Beresewicz M. Scaffold proteins (MAGUK, Shank and Homer) in postsynaptic density in the central nervous system. Postepy Biochem. 2007;53(2): 188-97.
    [18] Be(?)que JC, Lin DT, Kang MG, Aizawa H, Takamiya K, Huganir RL.Synapse-specific regulation of AMPA receptor function by PSD-95. Proc Natl Acad Sci U S A. 2006 Dec 19; 103(51): 19535-40.
    
    [19] Boeckers TM. The postsynaptic density. Cell Tissue Res. 2006 Nov;326(2):409-22.
    [20] Blitzer RD, Iyengar R, Landau EM. Postsynaptic signaling networks: cellular cogwheels underlying long-term plasticity. Biol Psychiatry. 2005 Jan 15;57(2): 113-9.
    [21] Goffin K,Nissinen J,Van Laere K.Cyclicity of spontaneous recurrent seizures in pilocarpine model of temporal love epilesy in rat.Experimental Neurology. 2007,205:501-505
    [22] Niimura M,Moussa R,Bissoon N,et al.Changes in phosphorylation of the NMDA receptor in the rat hippocampus induced by status epilepticus.J Neurochem.2005,92:1377-1385
    [23] Hou XY,Zhang GY,Yan JZ,et al.Activation of NMDA receptors and L-type voltage-gated calcium channels mediates enhanced formation of Fyn-PSD95-NR2A complex afrer transient brain ischemia.Brain Res.2002, 955: 123-132
    [24] Hou XY,Zhang GY,Zong YYl. Suppression of postsynaptic density protein 95 expression attenuates increased tyrosine phosphorylation of NR2A subunits of N-methyl-D-aspartate receptors and interactions of Ser and Fyn with NR2A after transient brain ischemia in rat hippocampus.Neurosci Lett.2003,343:125-128
    [25]Barnes GN,Slevin JT.Ionotropic glutamate receptor biology:effect on synaptic connectivity and function in neurological disease.Curr Med Chem.2003,10(20):2059-2072
    [26]Wilkins MR,Sanchez JC,Gooley AA,et al.Progress with proteome projects:why all proteins expressed by a genome should be identified and how to do it.Biotechnol Genet Eng Rev,1996,13:19-50
    [27]Goffin K,Nissinen J,Van Laere K,et al.Cyclicity of spontaneous recurrent seizures in pilocarpine model of temporal lobe epilepsy in rat.Experimental Neurology,207,205:501-505
    [28]Erakovic V,Zupan G,Varljen J,et al.Lithium plus pilocarpine induced status epilepticus-biochemica changes.Neurosci Res.2000,36(2):157-166
    [29]Cavalheiro EA,Santos NF,Priel MR,et al.The pilocarpine model of epilepsy in mice.Epilepsia.1996,37(10):1015-1019
    [30]Racine RJ.Modification of seizure activity by electrical stimulation Ⅱmotorseizure.Electroencophaograllin.Neurophysiol.1972,32:781-794
    [31]Carlin RK,Grab DJ,Cohen RS,et al.Isolation and characterization of postsynaptic densities from various brain regions:enrichment of different types of postsynaptic densities.1980,86:831-843
    [32]Yoshimura Y,Yamauchi Y,Shinkawa T,et al.Molecular constituents of the postsynaptic density fraction revealed by proteomic analysis using multidimensional liquid chromatography-tandem mass spectrometry.J Neurochem,2004,88(3):759-768
    [33]Li KW,Homshaw MP,Van der Schors RC,et al.Proteomics analysis of rat brain postsynaptic density.The Journal of Biological chemistry,2004,279(2):987-1002
    [34]陈主初,肖志强主编.疾病蛋白质组学.化学工业出版社.2006
    [35]Berkelman T,Stenstedt T.2-DE electrophoresis principles and methods.Handbooks from Amersham Biosciences,1998
    [36]Candiano G,Bruschi M,Musante L,et al.Blue silver:a very sensitive colloidal Coomassie G-250 staining for proteome analysis.Electrophoresis,2004,25(9):1327-1333
    [37] Rabilloud T, Adessi C, Giraudel A, et al. Improvement of the solubilization of proteins in two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis, 1997, 18(3-4):307-316.
    [38] Walikonis RS, Jensen OH,Mann M.Identification of proteins in the postsynaptic density fraction by mass spectrometry.] Neurosci.2000,11:4069-4080
    [39] Kaech S,Parmar H,Roelandse M,et al. Cytoskeletal microdifferentiation: a mechanism for organizing morphological plasticity in dendrites.Proc Natl Acad Sci.U.S.A.2001,98:7086-7092
    [40] Matus A. Actin-based plasticity in dendritic spines.Science.2000,290(5492):754- 758
    [41] Star EN,Kwiatkowski DJ,Murthy VN. Rapid turnover of actin in dendritic spinesand its regulation by activity.Nat Neurosci.2002,5(3):239-246
    [42] Brady S,CoIman DR,Brophy P.Subcellar organization of the nervous system: organelles and their functions.Academic Press.2003,pp:79-114
    [43] Baces PW.Neuronal polarity:microtubules strike back.Nat Cell Biol.2002, 4:194-195
    [44] Hadfield JA,Duck S,Hirst N.Tubulin and microtubules as targets for anticancer drugs.Prog Cell Cycle Res.2003,5:309-325
    
    [45] Eitzen GActin remodeling to facilitate membrane fusion.Biochem Biophys Acta.2003,1641:175-181
    
    
    [46] Brown ME,Bridgman PC.Myosin function in nervous and sensory systems.J Neurobiol.2004,58:118-130
    
    [47] Remcdios CG,Chhabra D,Kekic M,et al.Actin binding proteins:regulation of cytoskeletal microfilament. Physiol Rev.2003,83:433-473
    [48] Engidawork E,Lubec GMolecular changes in fetal down syndrome brain.J Neurochem.2003,84:895-904
    [49] Yang JW,Gech T,Felizardo M.Aberrant expression of cytoskeleton proteins in hippocampus from patients with mesial temporal lobe epilepsy.Amino Acids.2006,30:477-493
    [50] Suzuki T,Mitake S,Okumura-Noji K,et al.Exitable membranes and synaptic transmission: postysynaptic mechanisms.Localization of α -internexin in postsynaptic density of the rat brain.Brain Research, 1997,765:74-80
    [51] Haft CR,Sierra ML, Barr VA,et al.Identification of a Family of Sorting Nexin Molecules and Characterization of Their Association with Receptors. Mol Cell Biol. 1998, 18(12):7278-7287
    
    
    
    [52] Xu Y, Hortsman H, Seet L, et al. SNX3 regulates endosomal function through its PX-domain-mediated interaction with Ptdlns(3)P. Nature Cell Biol.2001,3:658-667
    [53] Cheever ML,Sato TK,DeBeer T,et al.Phoxdomain interaction with PtdIns(3)P targets the vam7 to SNARE to vaeuole membranes.Nat Cell Biol.2001, 3(7):613-618
    [54] Ellson CD,Gobert-Gosse S,Anderson KE,et al.PtdIns(3)P regulates the neutrophil Oxidase complex by binding to the PX domain of p40(phox).Nat Cell Biol,2002,3(70:679-682
    [55] Kanai F,Liu H,Field SJ,et al.The PX domain of p47phox and p40phox bind to lipid products of PI(3)K.Nature Cell Biol.2001,3(7): 1675-1678
    [56] Correra S,D'Aorrigo A,Stonmark H.Phosphoinositides in membrane traffic.Curr Opin Cell Biol. 1999,11:460-465
    [57] Wurmser A,Gary JD,Eurr SD.Phosphoinositides 3-kinase and their FYVE domain containing effectors as regulators of vacuolar/lysosomal membrane trafficking pathways.J Biol Chem.1999,274:9129-9132
    [58] Rameho LE, Cawtley LC.The role of phosphoinositides 3-kinase lipid products in cell function.J Biol Chem. 1999,274:8347-8350
    [59] Charette SJ,Lavoie JN,Lambert H,et al.Inhibition of Daxx mediated apoptosis by heat shock protein 27.Mol Cell Biol.2000,20:7602-7612
    [60] Brai BK,Stephanon A,Wasstaff MJ,et al.Heat shock proteins delivered with a virus vector can protect cardiac cells against apoptosis as well as against thermal or hypoxic stress.J Mol Cell Cardiol. 1999,31:135-146
    [61] Lavoie JN,Hickey E,Weber LA,et al.Modulation of actin microfilament dynamics and fluid phase pinosytosis by phosphorylation of heat shock protein 27.J Biol Chem.1993,268:24210-24214
    [62]Kalwy SA,Akbar MT,Coffin KS,et al.Heat shock protein 27 delivered via a herpes simplex virus vector can protect neurons of the hippocampus against kainic-acid-induced cell loss.Brain Res Mol Brain Res.2003,111(1-2):91-103
    [63]Mohammed T,Anna MC,Ke Liu,et al.The neuroprotective effects of heat shock protein 27 overexpression transgenic animals against kainite-induced seizures and hippocampal cell death.J Biol Chem.2003,278(22):19956-19965
    [64]Jang M,Ma Y,Cheng H,et al.Molecular cloning and characterization of a novel human gene(HSPBAP1)from human fetal brain cytogenet cell.Genet.2001,95:48-51
    [65]Lin C,Gilmont RR,Benndorf R,et al.Identification and characterization of a novel protein from sertoli cells,PASSl,that associates with mammalian small stress protein hsp27.J Biol Chem.2000,275:18724-18731
    [66]张纪军,关立峰,王学峰等.耐药性癫痫患者脑组织中热休克蛋白27相关蛋白1的表达.中华神经科杂志.2006,39(8):552-555
    [67]Lopez-Picon F,Puustimen N,Kukko-Lukjanov TK,et al.Resistance of neurofilaments to degradation and lack of neuronal death and mossy fiber sprouting after kainic acid-induced status epilepticus in the developing rat hippocampus.Neurobiol Dis.2004,17:425-426
    [68]Lavoie SB,Albert AL,Vincent M.Unexpected roles of the peptidyl-prolyl cis/trans isomerase Pin1.Med Sci.2003 Dec;19(12):1251-1258
    [69]Cavus I,Kasoff WS,Cassaday MP,et al.Extracellular metabolites in the cortex and hippocampus of epileptic patients.Ann Neurol.2005,57(2):226-235
    [70]Wyss M & Kaddurah-Daouk R.Creatine and creatine metabolism.Physiol Rev.2000,80:1107-1213
    [71]Zandt HJA,Klomp DWJ,Oerlemans F,et al.Proton MR spectroscopy of wildtype effects and postmortem changes.Magn Res Med.2000,43:517-524
    [72]Holtzman D,Togliatti A,Khait I,et al.Creatine increases survival and suppresses seizures in the hypoxic immature rat.Pediatr Res.1998,44:410-414
    [73]Jost CR,Van der Zee CEE,in't Zandt HJA,et al.Creatine kinase B-driven energy transfer in the brain is important for habituation and spatial learning behaviour,mossy fibre field size and determination of seizure susceptibility.Eur J Neurosci.2002,15pp:1692-1706
    [74]Buono P,D'Armiento F,Terzi G,et al.Differential distribution of aldolase A and C in the human central nercosis systems.J Neurocytol.2001,30(12):957-965
    [75]Cenete-Soler R,Reddy KS,Tolan DR,et al.Aldolases A and C are ribonucleocytic components of a neuronal complex that regulates the stability of the light-neurofilament mRNA.J Neurosci.2005,25(7):4353-4364
    [76]Shiokawa K,Kajlta E,Hara H,et al.A developmental biological study of aldolase gene expression in xenopus.Laevis Cell Res.2004,12:85-96
    [77]Kao AW,Noda Y,Johnson JH,et al.Aldolase mediates the association of F-actin with the insulin responsive glucose transporter GLUT.J Biol Chem.1999,274:17742-17747
    [78]Jewet TJ,Sibley D.Aldolase forms a bridge between cell surface adhesions and the actin cytoskeleton in a complexan parasites.Mol Cell.2003,11:885-894
    [79]李洁,谢文光,沈倍奋,邵宁生.GAPDH功能多样性研究进展.军事医学科学院院刊.2006,5:45-48
    [80]Dawson TM,Dawson VL.Molecular pathways of neurodegeneration in parkinson's disease.Science.2003,302(5646):819-822
    [81]Fariss MW,Chan CB,Patel M,et al.Role of mitochondria in toxic oxidative stress.Mol Interv.2005,5(2):94-111
    [82]Kin SY,Mavekov L,Bubber P,et al.Mitochondrial aconitase is a transglutaninase 2substrate transglutamination is a probable mechanism contributing to high molecular weight aggregates of aconitase and loaa of aconitase activity in Huntington disease brain.Neurochem Res.2005,30(10):1245-1255
    [83]Pandolfo M.Frataxin deficiency and mitochondrial dysfunction.Mitochondrion.2002,2(22):87-93
    [84]Liang LP,Pate IM.Iron-sulfurenzyme mediated mitochondrial superoxide toxicity in experimental parkinson's disease.J Neurochem.2004,90(5):1076-1084
    [85]Li QY,Pedersen L,Day BJ,et al.Dependence of excitotoxic neurodegeneration on mitochondrial aconitase inactivation.J Neurochem.2001,78(4):746-755
    [86]宫萍,常明,胡林森.实验性帕金森病中线粒体顺乌头酸酶表达的研究.中国老年学杂志.2007,27:849-850
    [87]Bulteau AL,Ikeda-Saito M,Szweda LI.Redox-dependent modulation of aconitase activity in intact mitochondria.Biochemistry.2003,42(50):14846-14855
    [88]Tabuchi A,Funaji R,Nakatsubo J,et al.Inactivation of aconitase during the apoptosis of mouse cerebellar granule neurons induced by a deprivation of membrane depolarization.J Neurosci Res.2003,71(4):504-515
    [89]Kadmas JL,Beckerle MC.The LIM domain:from the cytoskeleton to the nuleus.Nat Rev Mol Cell Biol.2004,5(1):920-937
    [90]Ostendorff HRPeirano RI,Pcters MA,et al.Ubiquitination dependent cofactor exchange on LIM homeodomain transcription factors.Nature.2002,416:99-103
    [91]Han M,Wan JK,Zheng B.Roles of LIM proteins in cardiac hypertrophy future cardiol.2005,1(3):319-329
    [92]Zheng B,Wen JK,Han M.Factors involve in the cardiac hypertrophy.Biochemistry.2003,68(6):650-657
    [93]Zheng B,Wen JK,Han M.hhLIM is involved in cardionyogenesi of embryonix stem cells.Biochemistry.2006,71(1):s71-s76
    [94]郑斌,温进坤,韩梅.细胞肥大过程中hhLIM的亚细胞定位变化及其对细胞骨架的影响.中国生物化学与分子生物学报.2005,21(4):255-261
    [95]Zheng B,Wen JK,Han M,et al.hhLIM is involved in cardiac hypertrophy.Biophys Biochem Acta.2004,1690(1):1-10
    [96]郑斌,温进坤,韩梅等.hhLIM与actin相互作用信赖其C端LIM结构域.生物化学与生物物理进展.2007,34(4):395-400
    [97]Cuppen E,Han M,Wansink DG,et al.The zyin-related protein TRIP6 interacts with PDZ motifs in the adaptor protein RIL and the protein tyrosine phosphatase PTP-BL.Eut J Cell Biol.2000,79:283-293
    [98]Xu J,Lai YJ,Lin WC,et al.TRIP6 enhances lysophosphatidic acid-induced cell migration by interacting with the lysophosphatidic acid receptor.J Biol Chem.2004,279(11):10459-10468
    [99]汤继宏,胡斯明,顾琴等.颞叶癫痫大鼠痫性发作后神经元特异性烯醇化酶、髓鞘碱性蛋白的变化及其意义.临床神经病学杂志.2007,20(1):64-65
    [100]Bartolomeis A,FioraG.Postsynaptic density scaffolding proteins at excitatory synape and disorders of synaptic plasticity:implications for human behavior pathologies.Int Rev Neurobiol.2004,59:221-254
    [101]Baron MK,Boeckers TM,Vaida B,et al.An architectural framework that may lie at the core of the postsynaptic density.Science.2006,311:531-535
    [102]Santos Jr JG,Longo BM,Blanco MM,et al.Behavioral changes resulting from the administration of cycloheximide in the pilocarpine model of epilepsy.Brain research.2005,1066:37-48
    [103]Mello LE,Cavalheiro TL,Babb WR,et al.Circuit mechanisms of seizures in the pilocarpine model of chronic epilepsy:cell loss and mossy fiber aprouting.Epilesia.1993,34:985-995
    [104]Chum SB,Kochan LD,Delorenzo RJ,et al.Chronic inhibition of Ca~(2+)/calmodulin kinase Ⅱ activity in the pilocarpine model of epilepsy.Brain research.2000,875:66-77
    [1]章子贵,杜红燕,陆汉新等.小鼠的记忆与脑内突触结构参数变化的相关性.心理学报,1995,27(3):317
    [2]章子贵,申秀英,许晓路.硒对氟致小鼠学习记忆损伤的改善作用.卫生研充2001,30(3):144
    [3]章子贵,徐晓虹,吴馥梅.突触穿孔现象及其生理意义。四川解剖杂志.1995,3(3):169
    [4]Peters A,Kaiserman Abramof IR.The small pyramidal neuron of the rat cerebral cortex.The synapses upon dendritic spines.Z Zellforsch.1969,100:487
    [5]Matus A,Ackemann M,Pchling G.Regularity and differentiation within the structure of brain postsynaptic densities.J Neurocytol,1981,10:889
    [6]Surehev L,Simple and complex synapses shown by freeze-etehing of rat contical synaptosomes.Acta Anal.1988,131:132
    [7]Jordan BA,Fernholz BD,Boussac M,et al.Identification and verification of novel rodent postsynaptic density proteins.Mol Cell proteomics,2004,3(9):857-871
    [8]Li KW,Hornshaw MRVan der Schors RC,et al.Proteomics analysis of rat brain postsynaptic density.The Journal of Biological.chemistry,2004,279(2):987-1002
    [9]HusiH,Ward MA,Choudhary JS,et al.Proteomic analysis of NMDA receptoradhedion protein signaling complexes.Nat Neurosci.2000,3(7):661-669
    [10]Silva AI,Stevens CF,Tonegawa S,et al.Deficient hippocampal long-term potentiation in a a-cacium-camclulin kinase Ⅱ muntant mice.Science.1992,257:201-206
    [11]Silva AI,Paylor R,Wchner JM,et al.Impairment of spatial learning in a a-caciumcalmudulin kinase Ⅱ muntant mice.Science.1992,257:206
    [12]Bach MA,Hawking RD,Osman M,et al.Impairment of spatial but not contextual memory in CaMK mutant mice with a selective loss of hippocampal LTP in the range of frequency.Cell.1995,81:905
    [13]Rees S,Guldner FH,Aitken L.Activity dependent plasticity of postsynaptic density structure in the ventral eoeblcar nucleus in the rats.Brain Res.1985,325:370
    [14]Guldner FH.Plasticity in synaptic apposition of optic nerve afferents under different lighting conditions.Neurosci Latt.1979,14:235
    [15]Wenzel HJ,Wolley CS,Robbins CA,et al.Kainic acid-induced mossy fibers sprouting and synapse formation in the dentate gyrus of rats.Hippocampus,2000,10:244
    [16]Suzuki F,Junier MP,Guilhem D,et al.Morphogenetic effect of kainite on adult hippocampal neurons associate with a prolonged expression of brain-derived neurotrophic factor.Neuroscience,1995,64:665
    [17]吴伟,迟兆富,王慧煜等。海藻氨酸致痫大鼠中海马谷氨酸转运体功能的研究。临床神经病学杂志,2005,18:28。
    [18]牛廷献,罗晓红,史智勇等,癫痫大鼠血清、海马组织中神经元特异性烯醇化酶和S-100β蛋白的变化及其临床意义。临床神经病学杂志,2006,19:287
    [19]Spigelman I,Yan XX,Obenaus A,et al.Dentate granule cells form novel basal dendrites in a rrat model of temporal lobe epilepsy.Neuroscience,1998,86:109
    [20]Buckmaster PS,Dudek FE.In vivo intracellular analysis of granule cell axon reorganization in epileptic sclerosis.J Comp Neurol,1999,414:437
    [21]Sanchez C,Arellano JI,Rodriguez SP,et al.Microtubule associated protein 2phosphotylation is decreased in the human epileptic temporal lobe cortex.Neuroscience,2001,107:25
    [22]Shibley H,Sith BN.Pilocarpine induced status epilepticus result in mossy fiber sprouting and spontaneous seizures in C57BC/6 and CD-1 mice.Epilepsy Res,2002,49:109
    [23]Steward O,Schuman EM.Compartmentalized synthesis and degradating of proteins in neurons.Neuron,2003,40(2):347-359
    [24]Hegde AN,Diantonnio A.Ubiquitin and the synapse.Nat Rev Neurosci,2002,3(11):854-861
    [25]Ehlers MD.Activity level controls postsynaptic composition and signaling via the ubiquitin-proteasome system.Nat Neurosci,2003,6(3):231-242
    [26]Sheng M,Kim MJ.Postsynaptic signaling and plasticity mechanisms.Science, 2002,298(5594):776-780
    [27]Kennedy MB.Signal-processing machines at the postsynaptic density.Science.2000,290(5492):750-754
    [28]Ali AB,Ressier J,Staiger JF,et al.Kainate receptor regulate unitary IPSCs elicited in pyramidal cells by fast-spiking intemenrms in the neurocortex.J Neurosci.2001,21(9):2992-2999
    [29]Bortolotto ZA,Clarke VRJ,Delany CM,et al.Kainate receptors are involved in synaptic plasticity.Nature.1999,402:297-301
    [30]Kennedy MB.Signal-processing machines at the postsynaptic density.Science.2000,290:750-754
    [31]Craven SE,Bredt DS.PDZ proteins organize synaptic signaling pathways.Cell.1998,93:495-498
    [32]Craven SE,Bredt DS.PDZ proteins organize synaptic signaling pathways.Cell.1998,93:495-498
    [33]Conti F,Weinberg RJ.Shaping excitation at glutamateric synapses.Trends Neurosci.1999,22:451-458
    [34]Wyneken U,Smalla KH,Marengo JJ,et al.Kainate-induced seizures alter protein composition and N-methyl-D-aspartate receptor function of rat forebrain postsynaptic densities.Neurosicence.2001,102:65-74
    [35]Wyneken U,Marengo JJ,Villanueva S,et al.Epilepsy-induced changes in signaling systems of human and rat postsynaptic densities.Epilepsia.2003,44:243-246
    [36]李玲,肖波,唐铁钰等.颞叶癫痫大鼠海马区NR2B/PSD-95的动态变化.中国临床神经科学.2006,14(2):134-138
    [37]Hou XY,Zhang GY,Yan JZ,et al.Activation of NMDA receptors and L-type voltage-gated calcium channels mediates enhanced formation of Fyn-PSD95-NR2A complex after transient brain ischemia.Brain Res.2002,955:123-132
    [38]Hou XY,Zhang GY,Zong YY.Suppression of postsynaptic density protein95expression attenuates increased tyrosine phosphorylation of NR2A subunits of N-methyl-D-aspartate receptors and interactions of Src and Fyn with NR2A after transient brain ischemia in rat hippocampus.Neurosci Lett.2003,343:125-128
    [39]Jiang W,Xiao L,Wang JC,et al.Effects of nitric oxide on dentate gyrus cell proliferation after seizures induced by pentylenetrazol in the adult rat brain.Neurosci Lett.2004,367:344-348
    
    [40]Conn PJ,Pin JP.Pharmacology and functions of metabotropic glutamate receptors.Annu Rev Pharmacol Toxicol. 1997,37:205-237
    [41]Lee I,Kesner RP. Differential contribution of NMDA receptors in hippocampal subregions to spatial working memory.Nature Neurosci.2002,5:162-168
    [42]Jiang YW,Shan WS,Wu XR.Down regulation of NMDA receptor subunits NR2A and NR2B mRNA expression after and iogenci seizure in epilepsy-Prone rat brain.Journal of Peking university:Health sciences.2001,33:266-269
    [43]Henley JM.Proteins interactions implicated in AMPA receptor trafficking clear destination and an improving route map.Neurosci Res.2003,45:243-254
    [44]Palmer CL,Cotton L,Henley JM.The molecular pharmacology and cell biology of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors. Pharmacol Rev. 2005,57(2):253-277
    [45]Jourdi H,Iwakura Y,Narsawa-Saito M,et al.Brain-derived neurotrophic factor signal enhances and maintains the expression of AMPA receptor-associated PDZ proteins in developing cortical neurons.Dev Biol.2003,263:216-230
    [46]DeSouza S,Fu J,States BA,et al.Differential palmitoylation directs the AMPA receptor-binding protein ABP to spines or to intracellular clusters.J Neurosci. 2002,22:3493-3503
    [47]Osten P,Khatri L,Perez JL,et al.Mutagenesis reveals a role for ABP/GRIP binding to GluR2 in synaptic surface accumulation of the AMPA receptor.Neuron.2000, 27:313-325
    [48]Liao D,Scannevin RH,Huganir R.Activation fo silent synapses by rapid activity-dependent synaptic recruitment of AMPA receptors.J Neurosci.2001,21: 6008-6017
    [49]Schneiderman JH.The role of long-term potentiation in persistent epileptiform burst-induced hyperexcitablity following GABA receptor blockade.Neurosci. 1997,81:1111
    [50]Hollmann M,Heinemann S.Cloned glutamate receptors.Ann Rev Neurosci. 1994,17:31-108
    [51]Basn S,Volk B,Wisden W.Kainate receptor gene expression in the developing rat brain.J Neurosci. 1994,14:5525-5547
    [52]Cui C,Mayer MI.Heteromeric kainite receptors formed by the coassembly of GluR5,GluR6 and GluR7.J Neurosci.1999,19:8281-8291
    [53]Bureau I, Bischoff S, Heinemann SF,et al. Kainate receptor-mediated responses in the CA1 field of wild-type and GluR6-deficient mice. J Neurosci .1999,19: 653-663.
    [54]Contractor A, Swanson GT & Heinemann SF. Kainate receptors are involved in short- and long-term plasticity at mossy fiber synapses in the hippocampus. Neuron.2001,29:209-216.
    [55]Lerma J. Roles and rules of kainate receptors in synaptic transmission. Nat Rev Neurosci.2003,4:481-495.
    [56]Lerma J,Morales M,Vicenle MA,et al.Glutamate receptors of the kainite type and synaptic transmission.Neurosci. 1997,20:9-12
    [57]Vignes M,Collingridge GL.The synaptic activation of kainite receptors.Nature. 1997,388:179-182
    [58]Vignes M,Bleakman D,Collingridge GL.The synaptic activation of the GluR5 subtype of kainite receptor in area CA3 of the rat hippocampus. Neuropharma- cology. 1997,36:1477-1481
    [59]Mulle C, Sailer A, Perez-Otano I,et al. Altered synaptic physiology and reduced susceptibility to kainate-induced seizures in GluR6-deficient mice. Nature. 1998, 392:601-605.
    [60]Khalilov I, Hirsch J, Cossart R,et al. Paradoxical anti-epileptic effects of a GluR5 agonist of kainate receptors. J Neurophysiol,2002,88:523-527
    [61]Mathern GW, Pretorius JK, Kornblum HI,et al. Altered hippocampal kainate- receptor mRNA levels in temporal lobe epilepsy patients. Neurobiol Dis.1998, 5:151-176.
    [62]Fagni L, Chavis P, Ango F,et al. Complex interactions between mGluRs, intracellular Ca2+ stores and ion channels in neurons. Trends Neurosci. 2000, 23(2):80-88
    [63]Merlin LR,Group I mGluR mediated silent induction of long-lasting epileptiform discharges. J Neurophysiol. 1999,82(2): 1078-1081
    [64]Gasparini F,Bruno V,Battaglia G,et al.(R,S)-4-phosphonophenylglycine,a potent and selective group III metabotropic glutamate receptor agonist,is anticonvulsive and neuroprotective in vivo.J Pharmacol Exp Ther.1999,290(1):1678-1687
    [65]Chapman AG,Nanan K,Yip P,et al.Anticonvulsant activity of a metabotropic glutamate receptor 8 preferetial agonist,(R,S)-4-phosphonophenylglycine.Eur J Pharmacol.1999,383(1):23-37
    [66]Nature Neurosci.2003,6:217-218
    [67]Jourdain P,Fukunaga K,Muller D.Calcium/calmodulin-dependent protein kinase II contributes to activity-dependent filopodia growth and spine formation..J Neurosce.2003,23(33):10645-10649
    [68]Song I,Huganir RL.Regulation of AMPA receptors during synaptic plasticity. Trends Neurosci.2002,25(11):578-588
    [69]Poncer JC,Esteban JA,Malinow R.Mutiple mechanisms for the potentiation of AMPA receptor-mediated transmission by alpha-Ca2+/calmodulin-dependent protein kinase EJ Neurosci,2002,22(11):4406-4411
    [70]Randall SW,Oguni A,Eugenia MK,et al.Ca2+/Calmodulin-dependent protein kinase II and a-actin.J Neurosci.2001,21(2):423-433
    [71]Shen L,Liang F,Walensky LD,et al.Regulation of AMPA receptor gluR1 subunit surface expression by a 4.1N-linked actin cytoskeletal association.J Neurosci. 2000,20(21):7932-7940
    [72]Pak DT,Yang S,Rudolph-Correia S,et al.Regulation of synaptic strength by protein phosphatasel.Neuron.2001,32(6):1133-1148
    [73]Penzes P, Johnson RC,Sattler R,et al.The neuronal Rho-GEF Kalirin-7 interacts with PDZ domain-containing proteins and regulates dendritic morphogenesis. Neuron.2001,29(1):229-242
    
    [74]Baccs PW. Neuronal polarity:microtubules strike back.Nat Cell Biol.2002,4: 194-195
    
    [75]Hadfield JA,Duck S,Hirst N.Tubulin and microtubules as targets for anticancer drugs.Prog Cell Cycle Res.2003,5:309-325
    [76]Eitzen GActin remodeling to facilitate membrane fusion.Biochem Biophys Acta.2003,1641:175-181
    [77]Brown ME,Bridgeman PC.Myosin function in nervous and sensory systems.J Neurobiol.2004,58:118-130
    [78]Remcdios CG,Chhabra D,Kekic M,et al.Actin binding proteins:regulation of cytodkeletal microfilament.Physiol Rev.2003,83:433-473
    [79]Engidawork E,Labec GMolecular changes in fetal Down syndrome brain.J Neurochem. 2003,84:895-904
    [80]Brady S,Colman DR,Brophy P.Subcellular organization of the nervous system:organelles and their functions. Acad Pre.2003,pp79-114
    [81] Yang JW,Gech T,Felizardo M.Aberrant expression of cytoskeleton proteins in hippocampus from patients with mesial temporal lobe epilepsy.Amino Acids.2006,30:477-493
    [82]Jang YS,Lee MY,Choi SH,et al.Expression of B/K protein in the hippocampus of kainite-induced rat seizure model.Brain Res.2004,999:203-11
    [83]Mohammed T,Anna MC,Ke L,et al.The neuroprotective effects of heat shock protein 27 overexpression in transgenic animals against kainite-induced seizures and hippocampal cell death.J Biol Chem,2003,278(22): 19956-19965
    [84]Jiang M,Ma Y,Cheng H,et al.Molecular cloning and characterization of a novel human gene(HSPBAPl) from human fetal brain.Cytogenet Cell Genet.2001, 95:48-51
    [85]Lin C,Gilmont RR,Benndorf R,et al.Identification and characterization of a novel protein from sertol cells,PASSI,that associates with mammalian small stress protein hsp27.J Biol Chem.2000,275:18724-18731
    [86]Lopez-Picon F, Puustinen N, Kukko-Lykjanov TK, et al.Resistance of neuro- filaments to degradation and lack of neuronal death and mossy fiber sprouting after kainic acid-induced status epilepticus in the developing rat hippocampus.Neurobiol Dis.2004,17:415-426
    [1]Aebersold R,Mann M,Mass-spectrometry-based proteomics.Nature.2003,422:198-207
    [2]Alia QE,Gerard C.Large-scale functional analysis using peptide or protein array.Nature Biotech.2000,18:393-397
    [3]Blackstock WP,Weir MP.Proteomics:quantitative and physical mapping of cellular proteins.Trends Biotechnol.1999,17:121-127
    [4]Wilkins MR,Williams KL,Hohstrasser DF,et al.Proteome research:new frontiers in functional Geonomics.New York:Springer,1997
    [5]Matsumura H,Terauchi R.Large-scale gene expression analysis of plant-pathogen interactions using SAGE.Tanpakushitsu Kakusan Koso.2007,52(6 Suppl):660-6.
    [6]Fernandes R,Skiena S.MultiPrimer:a system for microarray PCR primer design.Methods Mol Biol.2007,402:305-14.
    [7]Ideker T,Thorsson V,Ranish JA,et al.Integrated genomic and proteomic analyses of a systematically perturbed metabolic network.Science.2001,292:929-934
    [8]Anderson N.Proteomic and proteomics:new technologies,new concepts,and new words.Electrophoresis.1998,19:1853-1861
    [9]Forler D,Kocher T,Rode M,et al.An efficient protein complex purification method for functional proteomics in higher eukaryotes.Nature Biotechnology.2003,21(1):89-92
    [10]Gidivac-Zimmermann J,Soskic V,Poznanovic S,et al.Functional proteomics of signal transduction by membrane receptors.Electrophoresis.1999,20:952-961
    [11]Imam-Sghiouar N,Laude-lemaire I,Labas V,et al.Subproteomics analysis of phosphorylated proteins:Application to the study of B-lymphoblasts from a patient with Scott syndrome.Proteomics.2002,2:828-838
    [12]Bartel PL,Fields S.Ananlyzing protein-protein interactions using two-hybrid system.Methods Enzymol.1995,254:241-263
    [13]Chien CT,Bartel PL.Sternglanz R,et al.The two-hydrid system:a method to identify and clone genes for proteins that interact with a protein of interest.Pro Natl Acad Sci USA.1991,88(21):9578-9582
    [14] Bai C,Elledge SJ.Gene identification using the yeast two-hydrid system.Methods Enzymol. 1997,283:141-156
    [15] Mirnics K, Middleton FA, Lewis DA,et al.Analysis of complex brain disorders with gene expression microarrays: schizophrenia as a disease of the synapse. Trends Neurosci. 2001,24:479-486
    [16] Jaeger S, Eriani G, Martin F. Results and prospects of the yeast three-hybrid system. FEBS Lett. 2004,2;556(1-3):7-12.
    [17]Davies H,Winter Glsolation of a peptide antagonist to the thrombinreceptor using phage display.J Mol Biol. 1994,244(4):361-369
    [18]Gardsvoll H,Zonneveld A,Holm A,et al.Selection of peptides that bind to plaminogen activator inhibitor. 1(PAI-1) using random peptide phage-display libraries.FEBS Lett. 1998,431 (2): 170-174
    [19]Lowman HB.Bacteriophage display and discovery of peptide leads for drug development. Annu Rev Biophys Biomol Struct.1997,26:401-424
    [20]Goodson RJ,Doyle MV,Kaufman SE,et al.High-affinity urokinase receptor antagonists identified with bacteriophage peptide display.Proc Natl Acad Sci USA.1994,91 (15): 7129-7133
    [21]Figeys D,McBroom LD,Moran MF.Mass spectrometry for the study of protein-protein interactions.Methods.2001,24:230-239
    [22]Bauer A,Kuster B.Affinity purification-mass spectrometry:powerful tools for the characterization of protein complexes.Eur J Biochem.2003,270:570-578
    [23]Fouillit M,Poirier F,Monostori E,et al. Analysis of galectin 1-mediated cell signaling by combined precipitation and electrophoresis techniques. Electropho- resis.2000,21:275-280
    [24]Kikuchi J,Furukawa Y,Hayashi N.Identification of novel p53-binding proteins by biomolecular interaction analysis combined with tandem mass spectrometry. Molecular Biotechnology.2003,23:203-212
    [25]Puig O,Caspary F,Rigaut G,et al.The tandem affinity purification(TAP) method:A general procedure of protein complex purification.Methods.2001,24:218-229
    
    [26]Zhu H,Bilgin M,Bangham R,et al.Global analysis of protein activities using proteome chips.Science.2000,293:2101-2105
    [27] Nelson RW,Nedelkov D,Tubbs KA.Biosensor chip mass spectrometry: a chip-based proteomics approach.Electrophoresis.2000,21:1155-1163
    [28]Davies H,Lomas L,Austen B.Profiling of amyloid beta peptide variants using SELDI protein chip arrays.Biotechniques. 1999,27:1258-1261
    [29]Borrebaeck CA,Ekatrom S,Hager AC,et al.Protein chips based on recombinant antibody fragments: a highly sensitive approach as detected by mass spectrometry. Biotecchniques. 2001,30(5): 1126-1132
    [30]Zhang B, Firet F, Karger BL. High-throughput microfabricated CE/ESI-MS: automated sampling from a microwell plate.Ann Chem.2001,73: 2675-2681
    [31]Figeys D,Adapting array and lab-on-a-chip technology for proteomics.Proteomics. 2002,2:373-382
    [32]Figeys D,Pinto D.Proteomics on a chip:promising developments.Electrophoresis. 2001,22: 208-216
    [33]Gronborg M,Kristiansen TZ,Stensballe A,et al.A mass spectrometry-based Proteomic approach for identification of serine/threonine-osphorylated proteins by enrichment with phosphospecific antibodies: identification of a novel protein,frigg,as a protein kinase A subustrate.Mol Cell Proteomics. 2002, 1: 517-527
    [34]Kovarova H,Hajduch M, Livingstone M,et al. Analysis of state-specific phosphorylation of proteins by two-dimensional gel electrophoresis approach.J Chromatography B.2003, 787:53-56
    [35]Husi H, Ward MA, Choudhary JS,et al.Proteomic analysis of NMDA receptor-adhesion protein signaling complexes. Nat Neurosci .2000,3:661-669
    
    [36]Schwikowski B, Uetz P, Fields S.A network of protein-protein interactions in yeast. Nat Biotechnol.2000,18:1257-1261
    [37] Perez M, Cuadros R, Benitez MJ, et al. Interaction of Alzheimer's disease amyloid beta peptide fragment 25-35 with tau protein, and with a tau peptide containing the microtubule binding domain.J Alzheimers Dis.2004,6(5):461-7.
    [38]Tsuji A,Schiozaki R,Kohno,et al.Proteomic profiling and neurodegeneration in Alzheimer's disease.Neurochemical Research.2002,2:1245-1253
    [39]Jin J,Meredith GE,Chen L,et al.Quantitative proteomic analysis of mitochondrial proteins:relevance to Lewy body formation and parkinson's disease.Brain Res Mol Res.2005,134:119-138
    [40]Zhou Y,Gu G,Goodlett DR,et al.Analysis of alpha-synuclein-associated proteins by quantitative proteomics.J Biol Chem.2004,279:39115-39164
    [41]Lin F,Wu J,Wang Y,et al.Huntingtin cleavage induced by thrombin in vitro.Acta Biochim Biophys Sin(Shanghai).2007 Jan;39(1):15-8.
    [42]Kalchman MA,Koide HB,McCutcheon K,et al.HIP1,a human homologue of S.cerevisiae Sla2p,interacts with membrane-associated huntingtin in the brain.Nat Genet,1997,16(1):44-53.
    [43]Boutetl JM,Wood JD,Harper PS,et al.Huntingtin interacts with cystathionine beta-synthase.Hum Mol Genet.1998,7(3):371-8.
    [44]Okazawa H,Sudol M,Rich T.PQBP-1(Np/PQ):a polyglutamine tract-binding and nuclear inclusion-forming protein.Brain Res Bull.2001 Oct-Nov 1;56(3-4):273-80.
    [45]Allen S,Heath PR,Kirby J,et al.Analysis of the cytosolic proteome in a cell culture model of familial amyotrophic lateral sclerosis reveals alterations to the proteasome,antioxidant defenses,and nitric oxide synthetic pathways.J Biol Chem.2003,21,278(8):6371-83.
    [46]Perluigi M,Fai PH,Hensley K,et al.Proteomic analysis of 4-hydroxy-2-nonenalmodified proteins in G93A-SOD1 transgenic mice-A model of familial amyotrophic lateral sclerosis.Free Radic Biol Med.2005,38:960-968

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700