基于DSP的电能在线计量与分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电力电子技术的快速发展,电力系统的谐波污染日益严重,电能质量问题受到高度重视。一方面,发电厂和变电站的高压电能计量关系到发电、送电、用电三方的利益,这就对电能计量的准确度提出了更高的要求;另一方面,对电网电能质量和使用情况的在线监测对于电网的安全稳定运行和合理收费具有重要意义,可以根据监测结果进行相关分析,减少大量现场校验工作。
     本文以TMS320F2812 DSP为核心处理器,结合FIR数字滤波和FFT算法,并应用以太网通信技术,设计并实现了电能在线计量与分析系统。
     本文的主要工作有:
     首先介绍了目前国内外电能计量分析算法的研究现状,详细分析了本系统的性能指标,提出了以FIR数字抗混叠滤波和FFT相结合的算法。
     在硬件电路设计上,根据算法的要求选择TI的TMS320F2812 DSP并设计其外围电路。信号调理电路将高压互感器二次侧输出的三相电压电流信号转换为0~5V的信号。应用硬件锁相环技术实现对信号的频率跟踪和同步采样控制。A/D采样电路应用ADS8364对电压电流信号进行同时采样。通信电路采用外扩以太网控制芯片RTL8019AS的形式,实现现场数据的实时远程上报和管理。充分考虑器件选型、信号采样方式、PCB布线、现场屏蔽和接地等相关技术对系统精度的影响,为信号采样和计量分析精度提供了保证。
     在软件算法上,采用基于DSP捕捉锁相环倍频信号和算术平均滤波算法实现对频率的精确测量;根据锁相环的倍频信号控制ADS8364对信号进行同步采样。采用零点实时校准方法跟踪地通道的纹波,改善采样参数的计量精度。采样后的数字信号通过FIR数字抗混叠滤波器滤除其中含有的高次谐波(32阶以上)分量,再运用FFT算法进行谐波含量和各种电能参数的分析计算;为提高定点DSP浮点运算的速度和精度,采用IQmath函数进行基于Q格式定标的数学运算。对完整的TCP/IP协议进行裁剪,实现其中的ARP协议、IP协议、ICMP中的ping回送应答协议和UDP协议,成功实现与上位机的实时通信。
     本文所设计的电能在线计量与分析系统在山东电力研究院计量中心测试运行期间工作可靠稳定。本系统能够实现对电能的高精度计量和分析,其中对电压、电流的有效值和有功功率的计量精度达到了0.05级,对谐波含量的分析结果比较精确。
With the fast development of power electronics technology, harmonic pollution of power system becomes serious day by day and power quality is attached more importance. On the one hand, it puts forward a higher request to the accuracy of high-voltage power measurement, which relates the interests of power plants, power supply departments and power consumers; on the other hand, online monitor of power quality and using condition, which can reduce a great deal of field check work using the monitored results, has a great significance to power girds' safely running and reasonable charging.
     Using TMS320F2812 DSP as its core processor as well as combining FIR digital anti-aliasing filter algorithm, FFT algorithm and Ethernet communication technology, this paper designs and implementes a system which is online power metering and analysing.
     The main work of this paper as follows:
     First of all, it introduces the research status of power metering and analysing algorithm, analyzes the technical indicators of this system in detail, and then proposes the FIR digital anti-aliasing filter and FFT algorithm applied in this paper.
     On design of hardware, TI's TMS320F2812 DSP is chosen and its peripheral circuits are designed according to requirements of algorithm. Processing circuit converts three phases voltage and current on the second side of high-voltage transformers to 0-5V signals. This paper uses PLL technology to track signal frequency and control synchronous sampling, samples the converted voltage and current synchronously by use of ADS8364. As for communication circuit, it uses Ethernet control chip RTL8019AS to complete real-time field datas report and remote management. What's more, this system takes fully account of the influence from device selection, sampling methods, PCB routing technology, scene shielding&grounding, and other relating technology to the system's accuracy, which provides a guarantee to the sampling and metering accuracy.
     On design of software, this paper achieves accurate measurement of frequency based on DSP capturing multiplied signal of PLL and arithmetic average filter; The multiplied signal of PLL is responsible for controlling the action of ADS8364. This paper puts forward a real-time zero calibration method to track the ripple of ground and improve the accuracy of sample results effectively. FIR DF filter out high harmonics of digital signals after A/D converting, then FFT algorithm analyses the harmonic content of the power grid and waveform's distortion rate. This paper adopts Q format calibration to improve fixed-point DSP's floating-point calculation speed and accuracy by use of IQmath functions. At last, this paper cuts the integrated TCP/IP protocol and realizes ARP, IP, ping function of ICMP and UDP protocol, and finally completes real-time communication with PC.
     Online power metering and analyzing system runs stably during test operation in Shandong Elctric Power Research Institute. This system can achieve high accuracy of power metering and analyzing, it can promise a 0.05 grade metering accuracy of voltage RMS, current RMS and active power, as well as accurate results of harmonic analysis.
引文
[1]国家质量监督检验检疫总局.GB12325-1990电能质量 供电电压允许偏差[S].1990.
    [2]国家质量监督检验检疫总局.GB12326-2000电能质量 电压波动和闪变[S].2000.
    [3]国家质量监督检验检疫总局.GB/T 14549-1993电能质量 公用电网谐波[S].1993.
    [4]国家质量监督检验检疫总局.GB/T 15543-1995电能质量 三相电压允许不平衡度[S].1995.
    [5]国家质量监督检验检疫总局.GB/T 18481-2001电能质量 暂时过电压和瞬态过电压[S].1995.
    [6]黄伟.电能计量技术[M].北京:中国电力出版社,2004.
    [7]路秋生.功率因数校正技术与应用[M].北京:机械工业出版社,2006.
    [8]同向前,余健明,薛钧义.电网谐波电能损耗的计量方法[J].西安理工大学学报,2002,18(2):181-184.
    [9]A.E.Emanuel.On the assessment of harmonic pollution[of power systems][J].IEEE Transactions on Power Delivery,1995,10(3):1693-1698.
    [10]E.J.Davis,A.E.Emanuel,D.J.Pileggi.Evaluation of single-point measurements method for harmonic pollution cost allocation[J].IEEE Transactions on Power Delivery,2000,15(1):14-18.
    [11]高云鹏,腾召胜.电能质量监测技术现状与发展方向[J].仪器仪表用户,2004,11(4):1-3.
    [12]Fluke.便携式电能质量监测仪[EB/OL].http://www.fluke.com.cn.
    [13]Electro Industries/GaugeTech.Nexus1252电力监测和电能质量监测仪表[EB/OL].http://www.electroind.com.cn.
    [14]吴杰康.高精度多功能电能表数字测量方法的理论与应用研究[D].杭州:浙江大学,2004.
    [15]罗鹏飞等译.Digital Signal Processing A Practical Approach,Second Edition[M].北京:电子工业出版社,2004.
    [16]周俊,王小海,祈才君.基于Blackman窗函数的插值FFT在电网谐波信号分析中的应用[J].浙江大学学报(理学版),2006,33(6):650-653.
    [17]J.Schoukens,R.Pintelon,H.Van Hamme.The interpolated fast Fourier transform:a comparative study[J].IEEE Transactions On Instrumentation And Measurement,1992,41:226-232.
    [18]G.T.Heydt,P.S.Fjeld,C.C.Liu,et al.Applications of the windowed FFT to electric power quality assessment[J].IEEE Transactions On Power Delivery,1999,14(4):1411-1416.
    [19]Fusheng Zhang,Zhongxing Geng,Wei Yuan.The algorithm of interpolating windowed FFT for harmonic analysis of electric power system[J].IEEE Transactions On Power Delivery,2001,16(2):160-164.
    [20]R.M.Hidalgo,J.G.Fernandez,R.R.Rivera,et al.A Simple Adjustable Window Algorithm to Improve FFT Measurements[J].IEEE Transactions On Instrumentation And Measurement,2002,51(1):31-36.
    [21]庞浩,李东霞,俎云宵,王赞基.应用FFT进行电力系统谐波分析的改进算法[J].中国电机工程学报,2003,23(6):50-54.
    [22]易立强,邝继顺.一种基于FFT的实时谐波分析算法[J].电力系统及其自动化学报,2007,19(2):98-102.
    [23]林志一,陈希武,周秀英,周兆经.采用小波变换的功率测量方法[J].计量学报,2003,24(1):52-55.
    [24]陈国炎,卓菡.非正弦状态下有功功率和功率因数测试[J].电测与仪表,2006,43(492):7-10,47.
    [25]杜天军,陈光(礻禹),雷勇.基于混叠补偿小波变换的电力系统谐波检测方法[J].中国电机工程学报,2005,25(3):54-59,134.
    [26]Zhijian Hu,Jianquang Guo,Mei Yu,Zhiwei Du,Chao Wang.The Studies on Power System Harmonic Analysis based on Extended Prony Method[J].International Conference on Power System Technology.2006:1-8.
    [27]周林,张凤,栗秋华,徐明,王伟.无锁相坏i_p-i_q检测任意次谐波电72 流的新方法[J].高电压技术,2007,33(7):129-132.
    [28]亓学广,刘惠萍,张勇,陶鑫,术守喜.一种基于i_p-i_q法的三相4线制系统谐波检测改进方法[J].电气传动,2007,37(7):54-57.
    [29]梅雪,吴为麟.基于小波和ANN的电能质量分类方法[J].浙江大学学报(工学版),2004,38(10):1383-1386.
    [30]康静,郑建勇,曾伟,袁涛.FBD法在三相四线制系统电流实时检测中应用[J].电力自动化设备,2006,26(8):36-39.
    [31]陈峻岭,姜新建,孙卓,朱东起.基于FBD法的三相电力系统电流检测方法的应用[J].电力系统自动化,2004,28(24):23-27.
    [32]罗光富,梅红伟,纪延超.电力系统频率测量的一种新方法[J].电力系统及其自动化学报,2005,17(2):5-8.
    [33]徐科军.基于小波变换的涡街流量计信号处理方法[J].仪器仪表学报,2001,22(6):636-639.
    [34]郭彦东,张占江.一种新的电力系统频率实时测量方法[J].自动化技术与应用,2006,25(12):62-64.
    [35]吴竞昌等.电力系统谐波[M].北京:水利电力出版社,1988.
    [36]J.W.Cooley,J.W.Tukey.An algorithm for the machine calculation of complex Fourier series[J].Math.Computat.1965,19:297-301.
    [37]H.Sorensen,D.Jones,M.Heideman,et al.Real-valued fast Fourier transform algorithms[J].IEEE Transactions on Acoustics,Speech,and Signal Processing,1987,35(6):849-863.
    [38]鹿凯华,曲效武,张国静.3000系列多功能电表三相三线功率测量误差分析[J].山东电力技术,1999(1):70-73.
    [39]王兆安,杨军,刘进军,王跃.谐波抑制和无功功率补偿[M].北京:机械工业出版社,2006.
    [40]IEEE.IEEE Trial-Use Standard Definitions for the Measurement of Electric Power Quantities Under Sinusoidal,Nonsinusoidal,Balanced,or Unbalanced Conditions[S].2000.
    [41]Texas Instruments.TMS320F2810,TMS320F2812 Digital Signal Processors[EB/OL].http://www.ti.com,2003.
    [42]Analog Devices.Low Cost Low Power Instrumentation Amplifier AD620[EB/OL].http://www.analog.com,2004.
    [43]Analog Devices.A Designer's Guide to Instrumentation Amplifiers [EB/OL].http://www.analog.com/inamps,2006.
    [44]李正军.计算机测控系统设计与应用[M].北京:机械工业出版社,2004.
    [45]王金亮.配电网馈线自动化终端装置核心的研制[D].济南:山东大学,2005.
    [46]裘云,王建,秦霆镐.两种改进的软件同步采样实现的分析[J].电测与仪表,2000,37(417):5-7.
    [47]沈国峰.交流电量参数及谐波采样测量算法研究[D].哈尔滨:哈尔滨工业大学,2004.
    [48]胡虔生,马宏忠.非正弦周期信号测量同步误差研究[J].中国电机工程学报,2000,20(9):35-40.
    [49]Xianzhong Dai,R.Gretsch.Quasi-Synchronous Sampling Algorithm and Its Applications[J].IEEE Transactions on Instrumentation and Measurement,1994,43(2):204-209.
    [50]贺毅.高精度数字化测量算法在电力系统交流电参量测量中的应用[D].成都:西南交通大学,2006.
    [51]戴先中.准同步采样及其在非正弦功率测量中的应用[J].仪器仪表学报,1984,5(4):392-396.
    [52]刘威.基于DSP的高精度复费率电能表的设计[D].哈尔滨:东北农业大学,2006.
    [53]Texas Instruments.CMOS Micropower Phase-Locked Loop CD4046B Types[EB/OL].http://www.ti.com,2003.
    [54]Texas Instruments.250kSPS,16-Bit,6-Channel Simultaneous Sampling ADC—ADS8364[EB/OL].http://www.ti.com,2006.
    [55]Maxim-ic.MAX6325[EB/OL].http://www.maxim-ic.com,2001.
    [56]Texas Instruments.Advanced LinCMOS Precision Chopper-Stabilized Operational Amplifiers[EB/OL].http://www.ti.com,2005.
    [57]Analog Device.ADG704 CMOS,Low Voltage 2.5Ω 4-Channel Multiplexer[EB/OL].http://www.analog.com,1999.
    [58]卢东风,董立敬,奚磊.脉冲电度表输出电路的设计[J].电测与仪表,1999,36(397):28-29,33.
    [59]Realtek Semi.RTL8019AS[EB/OL].http://www.realtek.com,2001.
    [60]孟传良.工控系统的屏蔽和接地抗干扰技术[J].贵州工业大学学报,1999,28(1):70-74.
    [61]美国福禄克公司.校准—理论与实践[M].北京:中国计量出版社,2000.
    [62]王潞钢等.DSP C2000程序员高手进阶[M].北京:机械工业出版社,2004.
    [63]Texas Instruments.IQmath Library A Virtual Floating Point Engine [EB/OL].http://www.ti.com,2002.
    [64]Texas Instruments.TMS320F28x Event Manager(EV)Reference Guide [EB/OL].http://www.ti.com,2003.
    [65]谢希仁译.TCP/IP协议族[M].北京:清华大学出版社,2003.
    [66]戴志涛,郑岩译.以太网[M].北京:人民邮电出版社,1999.
    [67]薛永端,徐丙垠,冯祖仁.基于Hilbert变换的非正弦电路无功及瞬时无功功率的定义[J].电力系统自动化,2004,28(12):35-38.
    [68]Pang Hao,Wang Zanji,Chen Jianye.A Measuring Method of the Single-Phase AC Frequency,Phase,and Reactive Power Based on the Hilbert Filtering[J].IEEE Transaction on Instrumentation And Measurement,2007,56(3):918-923.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700