基于偏微分方程的图像修复及放大算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
数字图像处理的方法多种多样,其中基于偏微分方程的方法是它的一个重要分支,其基本思想是利用偏微分方程改变图像,然后求解该方程,方程的解就是处理后的结果。偏微分方程的应用几乎覆盖了整个图像处理领域,本文主要以它在数字图像放大和修复技术中的应用为研究对象。
     图像放大是指提高一幅图像的分辨率,这一问题的研究历史悠久,解决的方法也很多,其中之一便是基于偏微分方程的方法。本文首先对图像放大技术近些年的发展现状做了总结和分析,在此基础上提出了两种图像放大算法——邻域插值平滑算法和基于扩散率函数的放大算法。前者是传统的邻域扩散方法与本文改进的偏微分方程相结合的一种低复杂度、高放大质量的算法。后者则将各向异性扩散模型中的扩散率函数引入到了图像插值中,可直接对图像进行分数倍放大,并在分数倍放大和整数倍放大时均能得到较理想的结果。另外,本文结合星形插值,将基于扩散率函数的图像放大算法应用到了图像修复中,得到了图像修复的自适应插值算法,并对其做了分析。
     图像修复是指对图像中数据完全丢失的区域进行填充,以恢复它的完整性。处理图像修复问题的一类主要方法是建立偏微分方程,把图像修复表述成一个边界值问题,用迭代的方法来求解,其中最具代表性和开创性的算法是BSCB算法。但这类方法往往速度很慢,而且修复的结果边缘模糊。本文在总结了图像修复技术发展现状的基础上,将研究的重点放在了对BSCB模型的改进上,分别针对BSCB模型的两个主要缺点提出了三种算法。其中选择性自适应插值算法是自适应插值算法的改进,它引入了优先值概念,使得运行速度比BSCB模型提高了很多的同时修复的效果也有所改善。而带有预处理的BSCB模型则将选择性自适应插值算法与BSCB模型结合到了一起,在保证提高运算速度的前提下,进一步改善了修复图像的质量。另一方面,在解决修复结果边缘模糊的问题上,本文提出了一个新型的偏微分方程——邻域差值扩散模型。该模型重新定义了图像修复过程中的扩散方向和扩散信息,很大程度上避免了边缘模糊的产生。
The methods for digital image processing are various, among which those based on partial differential equation(PDE) have formed an important branch. The basic idea of them is to inflect an image using a PDE whose solution is the processed image, and then solve it. Although PDEs have been almost applied to the whole field of image processing, this paper is mainly focused on the algorithms of image enlargement and image inpainting.
     Image enlargement aimed at image resolution enhancement has been studied for many years. It can be done in various ways including those based on PDEs. In this paper, the development of image enlargement in recent years are summarized and analyzed firstly. Then, two algorithms named adjacent interpolation smoothing algorithm and image enlargement algorithm based on diffusivity function are proposed respectively. The former, which combines th adjacent diffusion method and an amended PDE , has low complexity and high quality. The latter can zoom an image in a fractional factor directly, and performs better at both integer and fractional zooming ratios by introducing the diffusivity function of the anisotropy diffusion model into image interpolation. Moreover, combined with the star-shaped interpolation method, the second algorithm is further applied to image inpainting, and called as adaptive interpolation algorithm for image inpainting.
     Image inpainting refers to reconstructing the corrupt regions where the data are all destroyed. A primary class of the technique is to build up a partial differential equation, consider it as a boundary problem, and solve it by some iterative method. The most respresentative and creative one of the inpainting algorithms is BSCB model. After summarizes the development of image inpainting technique, this paper points the research at the improvement on BSCB model, and proposes three algorithms to solve the two drawbacks of this model. The first is selective adaptive interpolation which develops the traditional adaptive interpolation algorithm by introducing a priority value. Besides much faster than BSCB model, it can improve the inpainting effects. The second takes selective adaptive interpolation as a preprocessing step, reduces the operation time and improves the inpainting quality further. The last one called neighborhood difference diffusion model is a new PDE proposed by this paper. To avoid the produce of blurry edge, it redefines the diffusion direction and information during the process of image inpainting, and solves the problem to some extent.
引文
[1] Nagao M. Matsuyama T.. Edge preserving smoothing. Computer Graphics and Image Processing, 1979,9:394~407
    [2] Rudin L.I.. Images, Numerical analysis of singularities and shock filters. Ph.D dissertation: California Institute of Technology, 1987
    [3] Koenderink J.J.. The structure of image. Biological Cybernetics, 1984, 50(5): 363~370
    [4] A.P. Witkin. Scale-space filtering. Proceedings of the 8th international Joint Conference on Artificial Intelligence, 1983.1019~1021
    [5] R. A. Hummel. Representations based on zero-crossings in scale-space. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognitions, Miami Beach, 1986. 204~209
    [6] Perona P., Malik J.. Scale-space and edge detection using anisotropic diffusion. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1990, 12(7):629~639
    [7] Francine Catte, Pierre-Louis Lions, Jean-Michel Morel, et al.. Image selective smoothing and edge detection by nonlinear diffusion. SIAM Journal on Numerical Analysis, 1992, 29(1):182~193
    [8] Alvarez L., Lions P. L.,Morel J. M.. Image selective smoothing and edge detection by nonlinear diffusion II. SIAM Journal on Numerical Analysis, 1992, 29(3):845~866
    [9] Rudin L. I., Osher S., Fatemi E.. Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenomena, 1992, 60:259-268
    [10] Rudin L. I., Osher S.. Total variation based image restoration with free local constraints. Proceedings of IEEE International Conference on Image Processing (ICIP’94), 1994. 31~35
    [11] Mumford D., Shah J.. Optional approximations by piecewise smooth functions and associated variational problems. Communications on Pure and Applied Mathematics, 1989, 42(5):577~685
    [12] Marcelo Bertalmio, Guillermo Sapiro, Vicent Caselles, et al.. Image inpainting. Proceedings of the ACM SIGGRAPH Conference on Computer Graphics, 2000. 417~424
    [13] S. Kumar, M. Biswas, S. J. Belongie, et al.. Spatio-temporal texture synthesis and image inpainting for video applications. Proceedings of IEEE International Conference on Image Processing (ICIP’05), 2005. 85~88
    [14] 梁海军,视频通信中图像修复模型及算法研究:[硕士学位论文],南京;南京理工大学,2004
    [15] T. Chan, J. Shen. Mathematical models for local non-texture inpaintings. SIAM Journal on Applied Mathematics, 2001, 62(3):1019~1043
    [16] T. Chan, J. Shen. Non-texture inpainting by curvature-driven diffusions(CDD). Journal of Visual Communication and Image Representation, 2001, 12(4):436~449
    [17] Manuel M. Oliveira, Brian Bowen, Richard Mckenna, et al.. Fast digital image inpainting. Proceedings of International Conference on Visualization, Imaging and Image Processing, 2001. 261~266
    [18] Selim Esedoglu, Jianhong Shen. Digital image inpainting based on the Mumford-Shah-Euler image model. European Journal of Applied Mathematics, 2002, 13(4):353~370
    [19] M. Nitzberg, D. Mumford, T. Shiota. Filtering, segmentation, and depth. Lecture Notes in Computer Science, Berlin: Springer Verlag, 1993, 662:143
    [20] L. Ambrosio, V. M. Tortorelli. Approximation of functionals depending on jumps by elliptic functionals via convergence. Communications on Pure and Applied Mathematics, 1990, 43(9):999~1036
    [21] L. Ambrosio, V. M. Tortorelli. On the approximation of free discontinuity problems. Bollettino Dell Unione Matematica Inaliana, 1992, 7(6-B):105~123
    [22] Huang Feng, Yunmei Chen, George R. Duensing, et al... Application of partial differential equation-based inpainting on sensiticity maps. Magnetic Resonance in Medicine, Published Online: Jan.2005, 53(2):388~397
    [23] Huang Feng, Yunmei Chen, George R. Duensing, et al.. Modified Mumford-Shah model for medical tomography. Presented at:http://www.math.ufl.edu/special03 /workshop1/ , AkoJames.doc. Univ. of Florida Dept. of Mathematics
    [24] Simon Masnou. Disocclusion: a variational approach using level lines. IEEE Trans. On Image Processing, 2002, 11(2):68~76
    [25] 顾建平,韩华,彭思龙,基于水平线插值的图像修复算法,计算机工程,2006,32(9):7~9,12
    [26] Celia A. Zorzo Barcelos, Marcos A. Batista, Adriana M. Martins et.al.. Level lines continuation based digital inpainting. Proceedings of the XVII Brazilian Symposium on Computer Graphics and Image Processing(SIBGRAPI’04), 2004. 50~57
    [27] M. Bertalmio, A. L. Bertozzi, G. Sapiro. Navier-Stokes, fluid dynamics, and image and video inpaiting. Proceedings of the 2001 IEEE Computer Sodiety Conference on Computer Vision and Pattern Recognition, 2001. I355~I362
    [28] Fu Shu-Jun, Ruan Qiu-Qi. A local nontexture image inpainting and denoise based on nonlinear PDEs.. The 7th International Conference on Signal Processing( ICSP’04), 2004, 2:1029~1032
    [29] 邵肖伟,刘政凯,宋璧,一种基于 TV 模型的自适应图像修复方法,电路与系统学报,2004,9(2):113~117
    [30] 丁雯,一类非线性扩散问题及其在图像修复中的应用,上海交通大学学报,2004,38(1):153~1156
    [31] A. Witkin, M. Kass. Reaction-diffusion texture. Proceedings the 18th Annual Conference Computer Graphics and Interactive Techniques(SIGGRAPH’91), 1991. 299~308
    [32] S. P. Worley. A cellular texture basis function. Proceedings of SIGGRAPH 1996, 1996. 291~294
    [33] D. J. Heeger, J. R. Bergen. Pyramid-based texture analysis/synthesis. Proceedings of SIGGRAPH 1995, 1995. 229~233
    [34] J. Portilla, E. P. Simoncelli. A parametric texture model based on joint statistics of complex wavelet coefficients. International Joumal of Computer Vision, 2000, 40(1):49~71
    [35] Antonio Criminisi, Patrick Perez, Kentaro Toyama. Region filling and object removal by exemplar-based image inpainting. IEEE Trans. on Image Processing, 2004, 3(9):1200~1212
    [36] Bianru Li, Yue Qi, Xukun Shen. An image inpainting method. Proceedings of the 9th International Conference on Computer Aided Design and Computer Graphics (CAD-CG’05), 2005. 531~536
    [37] A. A. Efros, T. K. Leung. Texture synthesis by non-parametric sampling. Proceedings of International Conference on Computer Vision, 1999. 1033~1038
    [38] L. Y. Wei, M. Levoy. Fast texture synthesis using tree-structured vector quantization. Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques(SIGGRAPH’00), 2000. 479~488
    [39] M. Ashikhmin. Synthesizing natural textures. Proceedings of 2001 ACM Symposium on Interactive 3D Graphics, 2001. 217~226
    [40] Timothy K. Shih, Rong-Chi Chang, Liang-Chen Lu, et al.. Adaptive digital image inpainting. Proceedings of the 18th International Conference on Advanced Information Networking and Application(AINA’04), 2004. 71~76
    [41] Timothy K. Shih, Rong-Chi Chang. Digital inpainting-survey and multilayer image inpainting algorithms. Proceedings of the 3rd International Conference on Information Technology and Applications(ICITA’05), 2005. 15~24
    [42] Jning-Fa Wang, Han-Jen Hsu, Shang-Chia Liao. A novel framework for object removal from digital photograph. IEEE International Conference on Image Processing(ICIP’05), 2005. 73~76
    [43] Marcelo Bertalmio, Luminita Vese, Guillermo Sapiro, et al.. Simultaneous structure and texture image inpainting. IEEE Trans. On Image Processing, 2003, 12(8):882~889
    [44] L. Vese, S. Osher. Modeling textures with total variation minimization and oscillating patterns in image processing. Journal of Scientific Computing, 2003, 19(11):553~572
    [45] Shantann D. Rane, Guillermo Sapiro, Marcelo Bertalmio. Structure and texture filling-in of missing image blocks in wireless transmission and compression applications. IEEE Trans. on Image Processing, 2003, 12(3):296~303
    [46] Hitoshi Yamauchi, Jorg Haber, Hans-Peter Seidel. Image restoration using multiresolution texture synthesis ans image inpainting. Proceedings of the Computer Graphics International(CGI’03), 2003. 120~125
    [47] Huawei Chen, Ichiro Hagiwara. Image reconstruction based on combination of wavelet decomposition, inpainting and texture synthesis. The 14th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, 2006. 21~22
    [48] Kenneth R. Castleman著,朱志刚,林学訚,石定机等译,数字图像处理,北京:电子工业出版社,2002
    [49] 勒中鑫,数字图像信息处理,北京:国防工业出版社,2003
    [50] 朱秀昌,刘峰,胡栋,数字图像处理与图像通信,北京:北京邮电大学出版社,2002
    [51] Rafael C. Gonzalez, Richard E. Woods 著,阮秋琦,阮宇智译,数字图像处理(第二版),北京:电子工业出版社,2005
    [52] 侯正信,胡泉,扩散滤波器及其在图像放大中的应用,信号处理,1998,14:71~75
    [53] Stefan Thurnhofer, Michael Lightstone, Sanjit K. Mitra. Adaptive interpolation of images with application to interlaced-to-progressive conversion. Proceedings of SPIE, Visual Communications and Image Processing’93, 1993, 2094:614~625
    [54] S. Thurnhofer, S. K. Mitka. Edge-enhanced image zooming. SPIE Proceedings of the European Signal Processing Conference, Grenoble, France, 1996. 1445~1448
    [55] H. C. Ting, H. M. Hang. Spatially adaptive interpolation of digital images using fuzzy inference. Proceedings of the SPIE, 1996, 2727(3):1206~1217
    [56] Nira Shezaf, Hagit Abramov-Segal, Ilan Sutskover, et al.. Adaptive low complexity Algorithm for image zooming at fractional scaling ratio. The 21st IEEE Convention of the Electrical and ELectronic Engineers in Israel, 2000. 253~256
    [57] K. Hong, J. Paik, H. Kim, C. Lee. An edge-preserving image interpolation system for a digital camcorder. IEEE Trans. on Consumer Electronics, 1996, 42(3):279~284
    [58] S. Carrato, G. Ramponi, S. Marsi. A simple edge-sensitive image interpolation filter. Proceedings of the 3rd IEEE International Conference on Image Processing (ICIP’96), 1996. 3:711~714
    [59] J. Allebach, Ping Wah Wong. Edge-directed interpolation. Proceedings of the 3rd IEEE International Conference on Image Processing (ICIP’96), 1996, 3:707~710
    [60] A. Biacardi, L. Lombardi, V. Pacaccio. Improvements to image magnification. Proceedings of the 9th International Conference on Image Analysis and Proceeding (ICIAP ’97), 1997, 2:142~149
    [61] Xin Li, Michael T. Orchard. New edge-directed interpolation. IEEE Trans. on Image Processing, 2001, 10(10):1521~1527
    [62] S. Battiao, G. Gallo, F. Stanco. A locally adaptive zooming algorithm for digital images. Image and Vision Computing Journal, 2002, 20(11):805~812
    [63] Leizza Rodrigues, Dibio Leandro Botges, Luiz Marcos Goncalves. A locally adaptive edge-preserving algorithm for image interpolation. Proceedings of the 15th Brazilian Symposium on Computer Graphics and Image Processing, 2002. 300-305
    [64] Jung Woo Hwang, Hwang Soo Lee. Adaptive image interpolation based on local gradient features. IEEE Signal Processing Letters, 2004, 11(3):359~362
    [65] F. Michaud, C. T. Le Dinh, G. Lachiver. Fuzzy detection of edge-direction for video line doubling. IEEE Trans. on Circuits and Systems for video technology, 1997, 7(3):539~542
    [66] S. Battiato, G. Gallo, F. Stanco. A new edge-adaptive zooming algorithm for digital images. Proceedings of IASTED Signal Processing and Communications, 2000. 144~149
    [67] T. Lehmann, C. Gonner, K. Spitzer. Survey: interpolation methods in medical image processing. IEEE Trans. on Medical Imaging, 1999, 8(11):1049~1075
    [68] 程正兴,小波分析算法与应用,西安:西安交通大学出版社,1998
    [69] 刘式达,自然科学中的混沌和分形,北京,北京大学出版社,2003
    [70] 陈允平,王旭蕊,韩宝亮,人工神经网络原理及其应用,北京:中国电力出版社,2002
    [71] D. Darian Muresan, Thomas W. Parks. Adaptive, optimal-recovery image interpolation. Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing(ICASSP ‘01), 2001, 3(2):1949~1952
    [72] D. Darian Muresan, Thomas W. Parks. Prediction of image detail. Proceedings of 2000 International Conference on Image Processing(ICIP’00), 2000. 323-326
    [73] D. Darian Muresan, Thomas W. Parks. Optimal recovery approach to image interpolation. Proceedings of 2001 International Conference on Image Processing (ICIP’01), 2001. 848-851
    [74] D. D. Muresan, T. W. Parks. New image interpolation techniques. Proceedings of IEEE 2000 Western New York Image Processing Workshop, 2000
    [75] Yu-Len Huang, Ruey-Feng Chang. MLP interpolation for digital Image processing using wavelet transform. Proceedings of 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing(ICASSP’99), 1999, 6:3217~3220
    [76] S. Grace Chang, Zoran Cvetkovic, Martin Vetterli. Resolution enhancement of images using wavelet transform extrema extrapolation. Proceedings of 1995 IEEE International Conference on Acoustics, Speech, and Signal Processing(ICASSP’95), 1995, 4:2379-2382
    [77] W. knox Carey, Daniel B. Chuang, Sheila S. Hemami. Regularity-preserving image interpolation. IEEE Trans. on Image Processing, 1999, 8(9):1293~1297
    [78] Crouse M. S., Nowark R. D., Baraniuk R. G... Wavelet-based statistical signal processing using hidden markov models. IEEE Trans. on Signal Processing, 1998, 46(4):886~902
    [79] Kinebuchi K., Muresan D. D., Parks T. W.. Image interpolation using wavelet-based hidden markov trees. Proceedings of 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing(ICASSP’01), 2001, 3:1957~1960
    [80] Zhao S., Han H., Peng S.. Wavelet-domain HMT-based smage super-resolution. Proceedings of 2003 International Conference on Image Processing(ICIP’03), 2003, 2:II-953-6
    [81] Atsuo Watanabe, Akira Taguchi. Improvement of the image enlargement method based on the laplacian pyramid representation. The 47th Midwest Symposium on Circuits and Systems(MWSCAS '04), 2004, 2:II-585~II-588
    [82] Wei-Pin Lin, Chih-Ming Chen, Yung-Chang Chen. Images compression with interpolation in wavelet-transform domain. IEEE International Symposium on Circuits and Systems(ISCAS’05), 2005, 3:2084~2087
    [83] A. Temizel, T. Vlachos. Wavelet domain image resolution enhancement. IEE Proceedings of Vision, Image and Signal Processing, 2006, 153(1):25~30
    [84] 王炜,何永保,小波分解在图像放大缩小中的应用,计算机工程与应用,2000,25(5):43~45、53
    [85] 倪伟,郭宝龙,一种基于分形和小波变换的图像放大算法,仪器仪表学报,2004,25:351~354
    [86] Pertland A. P.. Fractal-based description of nature scenes. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1984, 6(6):661~674
    [87] M. F. Barsley. Fractals everywhere. NewYork:Academic Press, 1998
    [88] 杨绍国,尹忠科,罗炳伟等,分形插值在图像处理中的应用,电子科学学刊,1997,19(4):562~565
    [89] 尹忠科,杨绍国,分形插值图像放大和压缩编码,信号处理,1998,14(1):86~89
    [90] King-Hong Chung, Yik-Hing Fung, Yuk-Hee Chan. Image enlargement using fractal. Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing(ICASSP’03), 2003, 6:VI-273~ VI-276
    [91] 张宇英,茅忠明,基于小波变换的分形插值图像放大方法,计算机工程与设计,2006,27(18):3428~3430
    [92] 张晓玲,沈兰荪,Lam Kin-Man,一种基于分形码和模型约束的图像放大算法,电子学报,2006,34(3):433~436
    [93] Erol Gelenbe, Hakan Bakircioglu, Taskin Kocak. Image processing with the random neural network(RNN). Proceedings of the 13th International Conference on Digital Signal Processing(DSP’97), 1997, 1:243~248
    [94] Her-Chang Pu, Chin-Teng Lin, Sheng-Fu Liang, et al.. A novel neural–network -based image resolution enhancement. The 12th IEEE International Conference on Fuzzy Systems(FUZZ’03), 2003, 2:1428~1433
    [95] Hao Hu, Holman P. M., De Haan G.. Image interpolation using classification -based neural networks. 2004 IEEE International Symposium on Consumer Electronics, 2004.133~137
    [96] T. Kondo, K. Kawaguchi. Adaptive dynamic hange encoding method and apparatus. US-patent, 5.444.487, August 1995
    [97] N. Plaziac. Image interpolation using neural networks. IEEE Trans. on Image Processing, 1999, 8(11):1647~1651
    [98] J. Go, K. Sohn, C. Lee. Interpolation using neural networks for digital still cameras. IEEE Trans. on Consumer Electronics, 2000, 46(3):610~616
    [99] Ren DeXin, Zhao JiuFen, Zhao JiuLing, et al.. Enlargement of digital images by using neural network. The 6th International Conference on Intelligent Systems Design and Applications(ISDA’06), 2006, 1:68~71
    [100] S. Marsi, S. Carrato. Neural network-based image segmentation for image interpolation. Proceedings of the 1995 IEEE Workshop Neural Networks for Signal Processing V., 1995. 388~397
    [101] Chi-Kin Chow, Hung-tat Tsui. Image enlargement as an edge estimation. Proceedings of 2004 IEEE International Joint Conference on Neural Networks, 2004, 4:2577~2581
    [102] Neil Toronto, Dan Ventura, Bryan S. Morse. Edge inference for image interpolation. Proceedings of 2005 IEEE International Joint Conference on Neural Networks(IJCNN’05), 2005, 3:1782~1787
    [103] Bryan S. Morse, Duane Schwartzwald. Image magnification using level-set reconstruction. Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition(CVPR’01), 2001, 1:I-333~I-340
    [104] Bryan S. Morse, Duane Schwartzwald. Isophote-based interpolation. Proceedings of 1998 International Conference on Image Processing(ICIP’98), 1998, 3:227~231
    [105] Youngioon Cha, Seongjai Kim. Edge-forming methods for color image zooming. IEEE Trans. on Image Processing, 2006, 15(8):2315~2323
    [106] 谢美华,王正明,图像分辨率增强的偏微分方程方法,遥感学报,2005,9(6):673~679
    [107] S. Battiato, G. Gallo, F. Stanco. Smart interpolation by anisotropic diffusion. Proceedings of the 12th International Conference on Image Analysis and Processing, 2003. 72~577
    [108] Morigi S., Sgallari F., Zannoni C.. An anisotropic nonlinear diffusion approach to image interpolation. Proceeding CD International Symposium Mathematic Theory of Networks and Systems, Perpignan, 2000. 1~8
    [109] Gilboa G.., Zeevi Y. Y., Sochen N. A.. Forward and backward diffusion processes for adaptive image enhancement denoising. IEEE Trans. on Image Processing, 2002, 11(7):689~703
    [110] Len J. G... Edge sharpening through ramp width reduction. ELSEVIER Image and Vision Computing, 2000, 18(6):501~514
    [111] Josep Prades-Nebot, Antonio Albiol, Carmen Bachiller. Enhanced B-spline interpolation of image. Proceedings of 1998 International Conference on Image Processing(ICIP’98), 1998, 3:289~293
    [112] 石澄贤,王元全,李朝峰等,基于总变差的图像放大和增强方法,计算机工程与应用,2004,40(2):95~98
    [113] Tsai A., Yezzi A. Jr., Willsky A. S.. Curve evolution implementation of the Mumford-Shah functional for image segmentation, denoising, interpolation, and magnification. IEEE Trans. on Image Processing, 2001, 10(8):1169~1186
    [114] Tsai A., Yezzi A. Jr., Willsky A. S.. A PDE approach to image smoothing and magnification using the Mumford-Shah functional. Conference Record of the 34th Asilomar Conference on Signals, Systems and Computers, 2000, 1:473~477
    [115] Tsai A., Yezzi A. Jr., Willsky A. S.. Curve evolution, boundary-value stochastic processes, the Munford-Shah problem, and missing data applications. IEEE International Conference on Image Processing, 2000, 3:588~591
    [116] Hao Jiang, Cecilia Moloney. A new direction adaptive scheme for image interpolation. Proceedings of 2002 International Conference on Image Processing. 2002, 3:III-369~III-372
    [117] Fu Shu-Jun, Ruan Qiu-Qi. An anisotropic diffusion equation for image magnification and noise removal. Proceedings fo the 7th International Conference on Signal Processing Proceedings(ICSP’04), 2004. 369~372
    [118] 付树军,阮秋琦,王文恰,基于变分的保持特征的有噪图像放大算法,计算机工程与应用,2005,41(14):9~11
    [119] 朱宁,吴静,王忠谦,图像放大的偏微分方程方法,计算机辅助设计与图形学学报,2005,17(9):1941~1945
    [120] 李兰兰,吴东南,基于各向异性或散的图像去噪并放大,信号处理,2005,21(1):106~107
    [121] A. Belahmidi, F. Guichard. A partial differential equation approach to image zoom. Proceedings of 2004 International Conference on Image Processing(ICIP’04), 2004, 1:649~652
    [122] Thorsten Grahs. Nonlinear anisotropic diffusion filters for the numerical approximation of conservation laws. Ph.D dissertation: Mathematische Institute of Technischen University Braunschweig, 2002
    [123] 张亶,陈刚,基于偏微分方程的图像处理,北京:高等教育出版社,2004
    [124] 杨新,李俊,杜啸晓,图像偏微分方程的原理与应用,上海:上海交通大学出版社,2003
    [125] Bing Song. Topics in variational PDE image segmentation, inpainting and denoising. Ph.D dissertation: University of California Los Angeles report, 2003
    [126] Claudia Frohn-Schanf, Stefan Henn, Kristian Witsch. Nonlinear multigrid methods for total variation image denoising. Computing and Visualization in Science, 2004, 7(3-4):199~206
    [127] Marius Lysaker, Xue-Cheng Tai. Iterative image restoration combining total variation minimization and a second-order functional. International Journal of Computer Vision, 2006, 66(1):5~18
    [128] Osher S., Rudin L. I.. Feature-oriented image enhancement using shock filters. SIAM Journal on Numerical Analysis, 1990, 27(4):919~940
    [129] Perona P., Malik J.. A scale space and edge detection using anisotropic diffusion. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1990, 12(7):629~639
    [130] A. Rosenfeld, A. C. Kak. Digital Picture Processing. 2nd ed. New York: Academic Press,1982

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700