频域OCT高速成像若干关键技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光学相干层析成像技术(Optical Coherence Tomography,简称OCT)作为一种全新的光学断层成像技术,以其无辐射、非侵入、高分辨率及高探测灵敏度等特点,在临床医学领域具有巨大的发展潜力。频域OCT(Spectral Domain OCT,简称SDOCT)无需样品深度扫描,就能实现高速实时成像的特点,引起了许多研究者的关注。
     使频域OCT成为一种快速、实时成像的医疗诊断系统,其关键是提高系统的轴向分辨率和信噪比。因此,本文主要针对这两个方面,进行了频域OCT高速成像若干关键技术的研究。
     本文完成的主要工作为:
     1.为了分析频域OCT成像机理及图像结构,还有找出对信噪比与轴向分辨率影响的因子,根据一阶Born近似傅里叶衍射定理,构建了频域OCT系统的数学模型,推出了频域OCT图像函数。频域OCT图像函数中g函数决定样品每层析面的真实图像及寄生图像的位置与其轴向分辨率,它的系数决定图像的灰度。
     2.干涉光谱的傅里叶逆变换得到了样品所有层析面的深度信息,为了标定深度方向上的图像坐标,提出了一种频域OCT图像的深度坐标标定方法。
     3.为了解决CCD对不同波长的响应不一样,并且图像重建进行的傅里叶逆变换所需要的数据与CCD检测的数据所依赖的变量不同的问题,提出了CCD响应度补偿法和波长数据-波数数据转换线性补偿法,该方法将信噪比约提高了30%,改善了OCT图像质量。
     4.为了解决样品每层析面的图像灰度随深度递减的问题,根据频域OCT图像函数,提出了图像灰度补偿法。该方法通过补偿样品每层析面的入射光功率与背向功率散射率,来得到样品每层析面图像的真实灰度,提高了OCT图像质量。
     5.为了消除频域OCT图像中的寄生图像信息,提出了一种频域OCT光学相移器标定方法——差分光谱法。该方法是一种直接相位测量法,标定精度提高约6%。实验结果表明该方法能够将频域OCT图像的信噪比提高约10%。
     6.为了提高频域OCT系统的轴向分辨率和信噪比,根据频域OCT图像函数,提出了光源的相干长度及频域OCT图像的轴向分辨率测量方法,此基础上,建立了一种基于子光谱分析的白光频域OCT系统。该系统通过选择所需的白光光源及其接收频段,既能保证最大探测深度和高轴向分辨率,又能提高信噪比。
     以上工作为频域OCT系统的高速实时成像和实用化应用奠定了一定的基础。工作中的主要创新之处为:
     1.提出了频域OCT图像函数。利用该函数分析了频域OCT成像机理及图像结构,找出了对信噪比与图像轴向分辨率影响的因子,提出了图像灰度补偿法与频域OCT图像的轴向分辨率测量方法。
     2.提出了CCD响应补偿法和波长数据-波数据转换线性补偿法。该方法能够将OCT图像的信噪比提高约30%,明显改善了图像质量。
     3.提出了图像灰度补偿法。该方法解决了样品每层析面的图像灰度随深度递减的问题,提高了频域OCT的图像质量。
     4.提出了一种频域OCT光学相移器标定法——差分光谱法。该方法将标定精度提高约6%,将OCT图像的信噪比提高约10%。
     5.提出了光源的相干长度和频域OCT图像的轴向分辨率测量方法,此基础上,建立了一种基于子光谱分析的白光频域OCT系统。该系统通过选择所需的白光光源及其接收频段,既能保证最大探测深度和高轴向分辨率,又能提高信噪比。
Optical coherence tomography (OCT) is a novel optical tomography technique which has many advantages, such as non-contact and non-invasion detection, high resolution, high sensitivity for the imaging of living biological tissue. It has been possessed of great development potential application in clinical medicine. Many researchers focus their attention on Spectral Domain OCT(SDOCT),which has the advantage that no moving parts are required to obtain axial scans, and gives the potential to high speed imaging.
     In order to make SDOCT become a kind of high-speed imaging, practical medical diagnosis system, the key techniques are enhancing longitudinal resolution and SNR. The study of high-speed imaging of SDOCT system is carried out on both these sides.
     The mainly completed work is:
     1. In order to make a detailed analysis of the imaging-mechanism of SDOCT and find out the influential factors on SNR and longitudinal resolution, the mathematical model of SDOCT system is constructed based on first order Born approximation. Then the imaging function (IF) is deduced. The depth position and the longitudinal resolution of true images and parasitic images of each layer along the depth of the sample depend on the function g in IF, and the image grey levels are governed by its coefficients.
     2. The inverse Fourier Transformation of interference spectrum at one time reaches the depth information of each layer of the sample. Then a method of depth-coordinate calibration of SDOCT image is introduced.
     3. In order to solve the problem of wavelength-depended response of CCD, and the difference between data used in inverse Fourier Transformation and those sampled by CCD, methods of CCD response compensation and an algorithm of linear interpolation are suggested. Results show that SNR is increased by 30%, the OCT image quality is greatly improved.
     4. In order to solve the problem of attenuating image gray level along along depth direction,according to the IF of SDOCT, the method for image gray level compensation is suggested. Through compensating the incident power and scattering coefficient of back-scattered light in each layer of the samlpe, the real gray level of the image is obtained by then. The experimental results show that OCT image quality is greatly improved.
     5. In order to remove the parasitic part of SDOCT image, a calibration method for SDOCT optical phase shifter--difference spectrum method is developed. It is a direct phase measurement with precision increase of 6%. The experimental results show that SNR is increased by 10%.
     6. In order to enhance the longitudinal resolution and SNR of SDOCT, a method of measuring coherence length of light source and longitudinal resolution is practiced here. A white-light source SDOCT based on partial spectrum analysis is developed and introduced. Proper white light source and band width have been selected. It ensures to acquire high maximum detecting depth, axial resolution and SNR.
     The main innovative point can be summarized as follows:
     1. IF of SDOCT is conducted for the first time. Make a detailed analysis of the imaging-mechanism of SDOCT, find out the influential factors of SNR and axial resolution and bring out the method of gray level compensation and the measurement method of axial resolution of SDOCT image.
     2. A noble method of CCD response compensation and algorithm of linear interpolation are put forward in this thesis. SNR is increased by 30%, the OCT image quality is greatly improved.
     3. A method for image gray level compensation is proposed for the first time in this thesis. The method solves the problem of attenuating image gray level along axial coordiate, and greatly improves OCT image quality.
     4. A calibration method for for SDOCT optical phase shifter--difference spectrum method is brought forward for the first time in this thesis. The precision of calibration is increased by 6%, and SNR is increased by10%.
     5. A method of measuring coherence length of light source and axial resolution is realized for the first time in this thesis. A white-light source SDOCT based on partial spectrum analysis is developed and introduced. Proper white light source and band width have been selected. It ensures to acquire high maximum detecting depth, axial resolution and SNR.
引文
[1] Huang D, Swanson E. A. et al., Optical coherence tomography, Science.1991, Nov 22,254(5035): 1178-1181
    [2] R. C.Youngquist, S. Carr, D. E. N. Davies, Optical Coherence-Domain Reflectometry - a New Optical Evaluation Technique, Optics Letters, 1987,12(3):158-160
    [3] K. Takada, I. Yokohama, K. Chida, J. Noda, New Measurement System for Fault Location in Optical Wave-Guide Devices Based on an Interferometric-Technique, Applied Optics, 1987, 26(9):1603-1606
    [4] B. L. Danielson, C. D. Whittenberg, Guided-Wave Reflectometry with Micrometer Resolution, Applied Optics, 1987, 26(14):2836-2842
    [5] C. K. Hitzenberger, Measurement of Corneal Thickness by Low-Coherence Interferometry, Applied Optics, 1992, 31(31):6637-6642
    [6] D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, Optical Coherence Tomography, Science, 1991, 254(5035):1178-1181
    [7] 石顺祥,张海兴 等,物理光学与应用光学,西安电子科技大学出版社,1999,pp.398.
    [8] Bracewell R.,The Fourier Transform and Its Applications, 3rd ed. New York: McGraw-Hill, 1999, pp.244.
    [9] I. Hartl, X D. Li, C. Chudoba, et al., Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber, Optics Letters, 2001, 26(9):608-610
    [10] P. H. Tomlins, R. K.Wang, Theory, developments and applications of optical coherence tomography, Journal of Physics D: Applied Physics, 2005, 38(15): 2519-2535
    [11] M. Wojtkowski, R. Leitgeb, et al., In vivo human retinal imaging by Fourier domain optical coherence tomography, J. Biomed. Opt. 2002, 7: 457-463.
    [12] P. Targowski, M. Wojtkowski, Complex spectral OCT in human eye imaging in vivo, Proceedings of the SPIE, 2003, Vol.5140: 28-32.
    [13] K. Iwamoto, I. Hino, S. Matsumoto, K. Inoue, Room temperature CW operated superluminescent diodes for optical pumping of Nd:YAG laser, 1976, 15(11):2191-2194
    [14] I. P. Kaminow, G. Eisenstein, L. W. Stulz, A. G. Dentai, Lateral Confinement Ingaasp Superluminescent Diode at 1.3 Mu-M, IEEE Journal of Quantum Electronics, 1983, 19(1):78-82
    [15] C. B. Morrison, L. M. Zinkiewicz, J. Niesen, L. Figueroa, High-Power Superluminescent Diode with Reduced Coherence Length, Electronics Letters, 1985, 21(19):840-841
    [16] A. C. Kak, M. Slaney, Principles of Computerized Tomographic Imaging, IEEE Press, 1988,New York
    [17] A. F. Fercher, C. K. Hitzenberger, G. Kamp, S. Y. El-Zaiat, Measurement of intraocular distances by backscattering spectral interferometry, Optics Communications, 1995, 117(1-2):43-48
    [18] R. Leitgeb, M. Wojtkowski, A. Kowalczyk, C. K. Hitzenberger, M. Sticker, A.F. Fercher, Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography, Optics Letters, 2000, 25(11):820-822
    [19] M. Wojtkowski, A. Kowalczyk, R. Leitgeb, A. F. Fercher, Full range complex spectral optical coherence tomography technique in eye imaging, Optics Letters, 2002, 27(16):1415-1417
    [20] M. Bashkansky, M. D. Duncan, L. Goldberg, J. P. Koplow, J. Reintjes, Characteristics of a Yb-doped superfluorescent fiber source for use in optical coherence tomography, Optics Express, 1998, 3(8):305-310
    [21] Michael H. Frosz, Michael Juhl and Morten H. Lang, Optical Coherence Tomography: System Design and Noise Analysis, National Laboratory, Roskilde, Denmark July 2001
    [22] M. A. Choma, M. V. Sarunic, C. H.Yang, J. A. Izatt, Sensitivity advantage of swept source and Fourier domain optical coherence tomography, Optics Express, 2003, 11(18):2183-2189
    [23] F.Lexer, C.K.Hitzenberger, A.F.Fercher, M.Kulhavy, Wavelength-tuning interferometry of intraocular distances, Applied Optics,1997, 36(25):6548-6553
    [24] L. F.Yu, M. K. Kim, Wavelength-scanning digital interference holography for tomographic three-dimensional imaging by use of the angular spectrum method, Optics Letters, 2005, 30(16):2092-2094
    [25] P. Andretzky, M. W. Lindner, J. M. Herrmann, A. Schultz, M. Konzog, F. Kiesewetter, and G. Hausler, Optical coherence tomography by spectral radar: dynamic range estimation and in vivo measurements of skin, Proc. SPIE 3567, 1998: 78-87
    [26] J. F. Boer, B. Cense, B. H. Park, M. C. Pierce, et al. Signal to noise gain of spectral domain over time domain optical coherence tomography, Opt. Lett. 28(2003):2067-2069.
    [27] M. Bail, G. H¨ausler, J. Herrmann, R. Ringler, M. Lindner, Optical coherence tomography with the Spectral Radar. Fast optical analysis in volume scatterers by short coherence interferometry, Proc. of the European Biomedical Optics Week, Vienna, 7-10 September, SPIE 2925,298-303(1996).
    [28] S.Yun, G.Tearney, B.Bouma, B.Park and J.deBoer. High-speed spectral-domain optical coherence tomography at 1.3 μm wavelength, Opt. Express, 2003, 11: 3598 -3604.
    [29] T. Ko, D. Adler, J. Fujimoto, D. Mamedov, V. Prokhorov, V. Shidlovski and S. Yakubovich. Ultrahigh resolution optical coherence tomography imaging with a broadband superluminescent diode light source, Opt. Express,2004,12: 2112-2119.
    [30] B. Cense, N. Nassif, T. Chen, M. Pierce, S. Yun, B. Park, B. Bouma, G. Tearney and J.deBoer. Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography, Opt. Express, 2004, 12: 2435-2447
    [31] G. Yao, L.V. Wang, Monte Carlo simulation of an optical coherence tomography signal in homogeneous turbid media, Physics in Medicine and Biology, 1999, 44(9):2307-2320
    [32] 徐钟济, 蒙特卡罗方法, 上海科学技术出版社, 1985
    [33] B. C. Wilson, G. Adam, A Monte-Carlo Model for the Absorption and Flux Distributions of Light in Tissue, Medical Physics, 1983, 10(6):824-830
    [34] S. T. Flock, M. S. Patterson, B. C.Wilson, D. R. Wyman, Monte Carlo modeling of light propagation in highly scattering tissues - I: Model predictions and comparison with diffusion theory, IEEE Transactions on Biomedical Engineering, 1989, 36(12):1162-1168
    [35] S.T.Flock, B.C. Wilson, M.S.Patterson, Monte Carlo modeling of light propagation in highly scattering tissues - II: Comparison with measurements in phantoms, IEEE Transactions on Biomedical Engineering, 1989, 36(12):1169-1173
    [36] S. A. Prahl, M. Keijzer, S. L. Jacques, A. J. Welch, A Monte Carlo model of light propagation in tissue, In Dosimetry of Laser Radiation in Medicine and Biology, G. Mueller, D. Sliney, Eds., SPIE Series Vol. IS, 1989, 5:102-111
    [37] W. Lihong, S. L. Jacques, Z. iqiong, MCML-Monte Carlo modeling of light transport in multi-layered tissues, Computer Methods and Programs in Biomedicine, 1995, 47(2):131-46
    [38] S. L. Jacques, L. H. Wang, Monte carlo modeling of light transport in tissue, in Optical Thermal Response of Laser Irradiated Tissue, A. J. Welch and M. J. C. Van Gemert, Eds. New York: Plenum Press, 1995.
    [39] Y.Q.Chen, L.Lin, G.Li, W.Y.Ye, Q.L.Yu, Determination of tissue optical properties from spatially resolved relative diffuse reflectance, Silsoe, United Kingdom, 2004.
    [40] 程佩青,数字信号处理教程,清华大学出版社,2001,pp.485.
    [41] Y. Teramura, M. Suekuni and F. Kannari, Two-dimensional optical coherenc tomography using spectral domain interferometry, J. Opt. A: Pure Appl. Opt. 2000, 2:21-26.
    [42] E. Saff, A. Snider, Fundamentals of Complex Analysis for Mathematics, Upper Saddle River, New Jersey: Science and Engineering, Prentice-Hall International, Inc., 1993
    [43] N. George, C. R. Christensen, J. S. Bennett, B. D. Guenther, Speckle Noise in Displays, Journal of the Optical Society of America, 1976, 66(11):1282-1290
    [44] J. W. Goodman, Some fundamental properties of speckle, Journal of the Optical Society of America, 1976, 66(11):1145-50
    [45] M. Pircher, E. Goetzinger, R. Leitgeb, C. K. Hitzenberger, Transversal phase resolved polarization sensitive optical coherence tomography, Physics in Medicine and Biology, 2004, 49(7):1257-1263
    [46] J. Rogowska, M. E. Brezinski, Evaluation of the adaptive speckle suppression filter for coronary optical coherence tomography imaging, Ieee Transactions on Medical Imaging, 2000, 19(12):1261-1266
    [47] P. Targowski, M. Wojtkowski, Complex spectral OCT in human eye imaging in vivo, Proceedings of the SPIE, 2003, 140(5): 28-32
    [48] J. M.Schmit, Optical Coherence Tomography (OCT):A Review, IEEE Journal of Selected Topics in Quantum Electronics, 5 (4), 1999, 1205-1215
    [49] Erich G?tzinger, Michael Pircher et al, High speed full range complex spectral domain optical coherence tomography, Opt. Express, 2005, 13: 583-594.
    [50] E. Wolf, Three dimensional structure determination of semi transparent objects from holographic data, Opt. Commun., 1969, 1: 153-156.
    [51] Y.Y. Cheng, and J. C. Wyant, Phase shifter calibration in phase-shifting interferometry, Appl. Opt. 1985, 24: 3049-3052
    [52] Y. Surrel, Phase stepping: a new self-calibrating algorithm, Appl. Opt. 1993, 32: 3598-3599
    [53] K.Creath, Phase-measurement interferometry techniques, in Progress in optics. Vol.XXVI: North-Holland, 1988: 349-93.
    [54] P. Carré, Installation et Utilisation du Comparateur Photoelectrique et Interferentiel du Bureau International des Poids de Mesures, Metrologia, 1966, 2:13-23
    [55] H. Takajo, T. Takahashi, Least squares phase estimation from the phase difference, Journal of the Optical Society of America A (Optics and Image Science), 1988, 5(3):416-25
    [56] D.W. Phillion, General methods for generating phase-shifting interferometry algorithms, Applied Optics, 1997, 36(31):8098-8115
    [57] T. Shouhong, Generalized algorithm for phase shifting interferometry, Proceedings of the SPIE - The International Society for Optical Engineering, 1996, 2860:34-44
    [58] N. Ohyama, T. Shimano, J. Tsujiuchi, T. Honda, An Analysis of Systematic Phase Errors Due to Nonlinearity in Fringe Scanning Systems, Optics Communications, 1986, 58(4):223-225
    [59] J. Vanwingerden, H. J. Frankena, C. Smorenburg, Linear-Approximation for Measurement Errors in Phase-Shifting Interferometry, Applied Optics, 1991, 30(19):2718-2729
    [60] Y. Q. Li, Z. Y. Zhu, X. Y. Li, Elimination of reference phase errors in phase-shifting interferometry, Measurement Science & Technology, 2005, 16(6):1335-1340
    [61] 钱克矛,续伯钦,伍小平,光学干涉计量中的位相测量方法,实验力学, 2001, 16(3):239-249
    [62] 侯立周,张锡富,孙晓明,几种任意布距步进相移算法的误差分析与对比光学技术, 1999, 5:7-10
    [63] J. Schwider, R. Burow, K. E. Elssner, J. Grzanna, R. Spolaczyk, K. Merkel, Digital Wave-Front Measuring Interferometry - Some Systematic-Error Sources, Applied Optics, 1983, 22(21):3421-3432
    [64] P. Hariharan, B. F. Oreb, T. Eiju, Digital Phase-Shifting Interferometry - a Simple Error-Compensating Phase Calculation Algorithm, Applied Optics, 1987, 26(13):2504-2506
    [65] G. Stoilov, T. Dragostinov, Phase-stepping interferometry: Five-frame algorithm with an arbitrary step, Optics and Lasers in Engineering, 1997, 28(1):61-69
    [66] Q.Yu and K. Andresen, Fringe-orientation maps and fringe skeleton extraction by the two-dimensional derivative-sign binary-fringe method, Appl. Opt. 1994, 33: 6873-6878
    [67] Q. Yu, X. Liu, and K. Andresen, New spin filters for interferometric fringe patterns and grating patterns, Appl. Opt. ,1994, 33:3705-3709
    [68] H. Canabal, J. A. Quiroga, and E. Bernabeu, Automatic Processing in Moire eflectometry by Local Fringe Direction Calculation , Appl. Opt. 1998, 37: 5894-5901
    [69] M. Wojtkowskil, A. Kowalczykl, et al, Autocorrelation free spectral OCT techniques in eye imaging, Proc.SPIE, 2001, 4431: 46-51
    [70] A. B. Vakhtin, K. A. Peterson, et al, “Differential spatial interferometer: an imaging technique for biomedical applications”, Optics letters, Vol. 28,No.15:1332-1334
    [71] L. N. Kurbatov, A. I. Dirochka, A. D. Britov, A. N. Vlasov, N. N. Mochalkin, N. V. Soroko-Novitskii, Stimulated emission of indium monoselenide subjected to electron bombardment, 1971, 5(3):494-496
    [72] K. Iwamoto, I. Hino, S. Matsumoto, K. Inoue, Room temperature CW operated superluminescent diodes for optical pumping of Nd:YAG laser, 1976, 15(11):2191-2194
    [73] C. B. Morrison, L. M. Zinkiewicz, J. Niesen, L. Figueroa, High-Power Superluminescent Diode with Reduced Coherence Length, Electronics Letters, 1985, 21(19):840-841
    [74] I.P.Kaminow, G.Eisenstein, L.W.Stulz, A.G.Dentai, Lateral Confinement Ingaasp Superluminescent Diode at 1.3 Mu-M, Ieee Journal of Quantum Electronics, 1983, 19(1):78-82
    [75] G. A. Alphonse, D. B. Gilbert, M. G. Harvey, M. Ettenberg, High-power superluminescent diodes, IEEE Journal of Quantum Electronics, 1988, 24(12):2454-2457
    [76] S. L. Jacques, S. A. Prahl, Modeling Optical and thermal distributions in tissue irradiation, Lasers Surg Med., 1987, 6:494-503
    [77] C. F. Bohren, D. R. Huffman, Absorbtion and scattering of light by small particles, New York: John Wiley and Sons, 1998
    [78] J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, J. G. Fujimoto, Optical Coherence Microscopy in Scattering Media, Optics Letters, 1994, 19(8):590-592
    [79] 曾绍群, 骆清铭 等,光学相干层析系统相干传递函数研究,光学学报,1996,16(3), 340-344
    [80] 堪一,薛平,袁韬,激光相干层析成像的光散射模拟计算,光学学报,1999 , 19(4):111-114
    [81] Lei Wang, Ping Xue, Tao Yuan et al, Optical biopsy of artery with OCT, SPIE 1999, Wuhan
    [82] 陈炜, 薛平, 袁韬 等, 新型成像技术的实验系统研究, 光学技术,2002, 26(3):218-221
    [83] 宋桂菊, 王向朝, 张莲英等, 藕断面光学相干层析成像, 中国激光, 2000, 27(1): 83-86
    [84] 薛玲玲,张春平,王新宇 等,OCT 技术在生物组织中的应用,激光杂志, 2000, 21(1):6-9
    [85] 王新宇,张春平,张连顺等,用 Monte Carlo 方法重建 OCT 图像,红外 与毫米波学报,2003, 20(1):68-70
    [86] J. S. Schuman, M. R. Hee, A. V. Arya, T. Pedut-Kloizman, C. A. Puliafito, J. G. Fujimoto, E. A. Swanson, Optical coherence tomography: a new tool for glaucoma diagnosis, Curr Opin Ophthalmol, 1995, 6(2):89-95
    [87] G. F. Schmid, Axial and peripheral eye length measured with optical low coherence reflectometry, Journal of Biomedical Optics, 2003, 8(4):655-662
    [88] A. F. Fercher, K. Mengedoht, W. Werner, Eye-length measurement by interferometry with partially coherent light, Optics Letters, 1988, 13(3):186-188
    [89] B. W. Colston Jr, M. J. Everett, L. B. DaSilva, L. L. Otis, OCT for diagnosis of periodontal disease, Proceedings of SPIE, 1998, 3251:52-58
    [90] J. A. Warren, Jr., G. V. Gelikonov, V. M. Gelikonov, F. J. Feldchtein, N. M. Beach, M. D. Moores, D. H. Reitze, Imaging and characterization of dentalstructure using optical coherence tomography, San Francisco, CA, USA, 1998.
    [91] X. J. Wang, T. E. Milner, J. F. de Boer, Y. Zhang, D. H. Pashley, J. S. Nelson, Characterization of dentin and enamel by use of optical coherence tomography, Applied Optics, 1999, 38(10):2092-2096
    [92] Z. P. Chen, T. E. Milner, S. Srinivas, X. J. Wang, A. Malekafzali, M. J. C. vanGemert, J. S. Nelson, Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography, Optics Letters, 1997, 22(14):1119-1121
    [93] J. A. Izatt, M. D. Kulkami, S. Yazdanfar, J. K. Barton, A. J. Welch, In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomograghy, Optics Letters, 1997, 22(18):1439-1441
    [94] S. Yazdanfer, M. D. Kulkarni, J. A. Izatt, High-resolution of in-vivo cardiac dynamics using color Doppler optical coherence tomography, Opt. Express., 1997, 1(13):424-431
    [95] M. D. Kulkarni, T. G. van Leeuwen, S. Yazdanfar, J. A. Izatt, Velocity-estimation accuracy and frame-rate limitations in color Doppler optical coherence tomography, Optics Letters, 1998, 23(13):1057-1059
    [96] G. Marquez, B. S. L. Wang, L. Shao-Pow, S. L. Jacques, F. K. Tittel, S. L. Thomsen, J. Schwartz, Measurement of absorption and scattering spectra of chicken breast with oblique incidence reflectometry, Proceedings of the SPIE, 1997, 2976:306-311
    [97] G. J. Tearney, M. E. Brezinski, S. A. Boppart, C. Pitris, B. E. Bouma, J. F. Southern, J. G. Fujimoto, High resolution imaging of pathologic gastrointestinal tissues using optical coherence tomography., Gastroenterology, 1997, 112(4):A667-a667
    [98] G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, J. G. Fujimoto, In vivo endoscopic optical biopsy with optical coherence tomography, Science, 1997, 276(5321):2037-2039
    [99] G. J. Tearney, M. E. Brezinski, J. F. Southern, B. E. Bouma, S. A. Boppart, J. G. Fujimoto, Optical biopsy in human gastrointestinal tissue using optical coherence tomography, American Journal of Gastroenterology, 1997, 92(10):1800-1804
    [100] M. E. Brezinski, G. J. Tearney, B. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, J. G. Fujimoto, Optical biopsy with optical coherence tomography, Advances in Optical Biopsy and Optical Mammography, 1998, 838:68-74
    [101] C. Pitris, M. E. Brezinski, B. E. Bouma, G. J. Tearney, J. F. Southern, J. G. Fujimoto, High resolution imaging of the upper respiratory tract with optical coherence tomography - A feasibility study, American Journal of Respiratory and Critical Care Medicine, 1998, 157(5):1640-1644
    [102] J. G. Fujimoto, S. A. Boppart, G. J. Tearney, B. E. Bouma, C. Pitris, M. E. Brezinski, High resolution in vivo intra-arterial imaging with optical coherence tomography, Heart, 1999, 82(2):128-133
    [103] K. Schoenenberger, B. W. Colston, D. J. Maitland, L. B. Da Silva, M. J. Everett, Mapping of birefringence and thermal damage in tissue by use of polarization-sensitive optical coherence tomography, Applied Optics, 1998, 37(25): 6026-6036
    [104] S. A. Boppart, G. J. Tearney, B. E. Bouma, J. F. Southern, M. E. Brezinski, J. G. Fujimoto, Noninvasive assessment of the developing Xenopus cardiovascular system using optical coherence tomography, Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(9):4256-4261
    [105] S. A. Boppart, M. E. Brezinski, B. E. Bouma, G. I. Tearney, I. G. Fujimoto,Investigation of developing embryonic morphology using optical coherence tomography, Dev. Biol., 1996, 177:54-63
    [106] E. A. Swanson, M. R. Hee, G. J. Tearney, J. G. Fujimoto, Application of optical coherence tomography in nondestructive evaluation of material microstructure, Anaheim, CA, USA, 1996.
    [107] M. Bashkansky, M. D. Duncan, J. Reintjes, Rapid, high-resolution optical coherence tomography (OCT) for defect detection in materials, Baltimore, MD, USA, 1997
    [108] M. D. Duncan, M. Bashkansky, J. Reintjes, Subsurface defect detection in materials using optical coherence tomography, Optics Express, 1998, 2(13)
    [109] A. F. Fercher, C.K. Hitzenberger, W .Drexler et al,In vivo optical coherence tomography, Amer. J. Ophthalmol,1993, 116:113-114
    [110] A. Sergeev, V.Gelikonov, and A.Gelikonov, High-spatial-resolution optical coherence tomography of human skin and mucous membranes, presented at the Conf. Lasers and Electro Optics '95, Anaheim, Ca, 1995, May 21-26
    [111] J. M. Schmit, M .Yadlowsky, and R .F.Bonner, Subsurface imaging of living Skin with optical coherence tomography, Dermatal., 1995, 1: 93-98
    [112] J. A.Izat, M.D.Kuikarni, H .Wang et al., Optical coherence tomography and Microscopy in gastrointestinal tissue, IEEE J. Select.Topics Quantun Electron, 1996, 2(4): 1017-1028
    [113] G. J. Tearney, B. E. Bouma, and J. G. Fujimoto, High-speed phase-and group-delay scanning with a grating-based phase control delay line, Opt.Let.,1997, 22(23): 1811-1813
    [114] L.Vabre, A. Dubois and A. C. Boccara, Thermal-light full-field optical coherence tomograpy,Opt. Letter, 2002, 27(7): 530-532
    [115] A.Dubois, L.Vabre, A. C. Boccara et al., High-resolution full-field optical Coherence tomography with a Linnik microscope, Appl. Opt., 2002, 41(4), 805-812,
    [116] B.Bouma, G. J. Tearney, S. A. Boppart, et al, High resolution optical coherence tomographic imaging using a mode-locked Ti:Al2O3 laser source, Opt. Lett,1995, 20: 1486-1488
    [117] R. K.Wang, Resolution improved optical coherence-gated tomography for imaging through biological tissues, J.Modem Optics, 1999, 46(13):1905-1912
    [118] W. Drexler, U. Morgner, F. X. Kartner, et al, In vivo ultrahigh-resolution optical coherence tomography, Opt. Lett. 1999, 24:1221-1223
    [119] M. E. Brezinski, G. J. Teamey, B. E. ouma, J. A. Izatt, M. R. Hee, E. A. Swanson, J. F.Southern, and J.G. Fujimoto, Optical coherence tomography for optical biopsy: Propertiesand demonstration of vascular pathology, Circulation, 1996, 93:1206-1209
    [120] S. A.Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski and J. G. Fujimoto, In vivo subcellular optical coherence tomography imaging in Xenopus laevis: Implications for the early diagnosis of neoplasms, Nature-Medicine, 1998, 4: 861-865,
    [121] J. S. Maier, S. A. Walker, S. Fantini et al,Possible correlation between blood glucose concentration and reduced scattering coefficient of tissues in the near infrared, Opt. Lett., 1994,19: 2062-2064
    [122] M. Cohl, M. Cope, M. Essenpreis et al., Influence of glucose consentration on light scattering in tissue simulating phantoms, Opt. Lett., 1994, 19:2170-2172
    [123] B. Chance, H. Liu, T. Kitai et al., Effects of solutes on optical properties of biological materials: models, cells, and tissues,Anal. Biochem., 1995, 227: 351-362
    [124] V. V. Tuchin, I. L. Maskimova, D. A. Zimnyakov, Light propagation in tissues with controlled optical properties, J. Biomed. Opt. 1997, 2: 401-417
    [125] R. K. Wang, X. Xu, V. V. Tuchin et al., Concurrent enhancement of imaging depth and contrast for optical coherence tomography by hyperosmotic agents, J. Opt. Soc. Am. B, 2001, 18, 948-953
    [126] A. V. Zvyagin, Fourier-domain optical coherence tomography: Optimization of signal-to-noise ratio in full space, Opt. Commun., 2004, 242: 97–108
    [127] B. Cense, N. Nassif, T. Chen. r. Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography, Opt. Express, 2004, 12: 2435-2447.
    [128] P. Andersen, L. Thrane, H. Yura, et al. Advanced modelling of optical coherence tomography, Phys. Med. Biol. 2004, 49:1307-1327.
    [129] 杨旭强, 吴红星, 内置译码器的步进电机微步进 A3977, 微电机, 2002, 35(4):47-50
    [130] A. M. Rollins, J. A. Izatt, SNR analysis of conventional and optimal fiber-optic low-coherence interferometer topologies, Proceedings of SPIE, 2000, 3915:60-67
    [131] F.Grum, R.J.Becherer, Radiometry, New York: Academic Press, 1979
    [132] A.G.Podoleanu, Unbalanced versus balanced operation in an optical coherence tomography system, Applied Optics, 2000, 39(1):173-182
    [133] N. George, C. R. Christensen, J. S. Bennett, B. D. Guenther, Speckle Noise in Displays, Journal of the Optical Society of America, 1976, 66(11):1282-1290
    [134] J. W.Goodman, Some fundamental properties of speckle, Journal of the Optical Society of America, 1976, 66(11):1145-50
    [135] 陈思蓉, 李刚, 相韶华, 光相干层析成像中的散斑, 国外医学生物医学工程分册, 2000, 23(3):165-170
    [136] M. Pircher, E. Goetzinger, R. Leitgeb, C. K. Hitzenberger, Transversal phase resolved polarization sensitive optical coherence tomography, Physics in Medicine and Biology, 2004, 49(7):1257-1263
    [137] J. Rogowska, M. E. Brezinski, Evaluation of the adaptive speckle suppression filter for coronary optical coherence tomography imaging, IEEE Transactions on Medical Imaging, 2000, 19(12):1261-1266
    [138] H. Hodara, Statistics of Thermal and Laser Radiation, Proc. IEEE, 1965, 53:696-704
    [139] J. A. Parrish, New Concepts in Therapeutic Photomedicine - Photochemistry, Optical Targeting and the Therapeutic Window, Journal of Investigative Dermatology, 1981, 77(1):45-50
    [140] J. G. Fujimoto, T. H. Ko, D. C. Adler, D. Mamedov, V. Prokhorov, V. Shidlovski, S. Yakubovich, M. D. Wojtkowski, J. S. Duker, J. S. Schuman, New technology for ultrahigh resolution optical coherence tomography imaging using diode light sources, Investigative Ophthalmology & Visual Science, 2004, 45:U49-U49
    [141] W. Drexler, U. Morgner, F. X. Kartner, R. K. Ghanta, J. S. Schuman, J.G.Fujimoto, Ultrahigh resolution, functional optical coherence tomography using state of the art femtosecond laser technology, Chiba, 2001.
    [142] E. Beaurepaire, A. C. Boccara, M. Lebec, L. Blanchot, H. Saint-Jalmes,Full-field optical coherence microscopy, Optics Letters, 1998, 23(4):244-246
    [143] A. F. Fercher, Ch. K. Hitzenberger and M. Juchen, measurements of intraocular optical distances using partially coherent laser light, J. Mod. Opt. 1991, 38(7):1327-1333

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700