生物反应器填埋场系统的仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生活垃圾的处理方法主要有堆肥法、填埋法、焚烧法、蚯蚓床法和热解法等,其中卫生填埋法具有成本低廉(是焚烧法的1/15-1/8,是堆肥处置法的1/5-1/3)、适用范围广、环保效果显著和处置彻底等优点,仍是世界各国一直普遍应用的一种处置方法,即使在发达国家,其填埋处理率也很高。作为发展中国家的中国,在今后相当长一段时间内,卫生填埋法仍然是生活垃圾的主要处理技术。
     但现行的卫生填埋技术存在着①垃圾降解缓慢,填埋场稳定时间长;②渗滤液难处理、成本高;③填埋场爆炸、沼气不回收利用、就地排放污染大气等问题。虽然新型的渗滤液直接回流生物反应器填埋场有利于垃圾的加速降解,但渗滤液回流的产物抑制问题未能充分发挥填埋场加速垃圾降解的效能。本研究以传统的卫生填埋场(R1)及渗滤液直接回流的填埋场(R2)作为对比实验,进行了生物反应器填埋场系统(R3、R4)和接种生物反应器填埋场系统(R5、R6)的研究。
     实验表明,传统的填埋场(R1)垃圾降解缓慢,达到稳定所需时间长,在实验结束时稳定进程仍然在进行之中。渗滤液直接回灌的填埋场(R2)降解速度较R1速度快,但当回灌渗滤液水量多、有机负荷高时,在填埋场内部尤其是初期会产生有机酸的积累,而高的H_2分压,破坏了垃圾降解微生物种群间的互营联合代谢,造成填埋场垃圾降解的停止,未能充分发挥微生物的降解作用。R3、R4、R5及R6系统中由于增加了产甲烷反应器,渗滤液是经过产甲烷反应器的处理后回灌至填埋场,解决了酸积累等产物抑制问题,但R3及R5系统由于是采用渗滤液的部分回流因而垃圾的含水率不到45%,微生物的活性受到抑制。而R4、R6系统中由于渗滤液全量回流,垃圾的含水率在60%左右,垃圾的降解速度明显加快,尤其是R6系统填埋场接种了垃圾高效降解菌剂,在150天时填埋场已基本稳定。
     在对填埋场稳定机理的探讨中,研究了填埋场渗滤液分子量的分布情况以及垃圾中有机质的腐殖化系数。对各填埋场渗滤液分子量分布情况的分析表明,渗
    
    滤液中大分子量的百分比越高,填埋场越稳定,而且大分子量的百分比随填埋时
    间延长呈增大的趋势。通过对填埋场垃圾中有机质的腐殖化分析表明,**几r的
    变化不能完全准确描述有机质的腐殖化过程。本研究采用腐殖化系数表述垃圾中
    有机质的腐殖化进程,研究表明,腐殖化系数越大,填埋场越稳定。运行数据表
    明,R6系统的填埋场腐殖化系数最高,有机物降解得最彻底,R4系统的填埋场
    次之,RZ、R3和 RS系统的填埋场相差不多,RI系统填埋场相比之下,其降解
    效果最差。
     在对填埋场沉降高度的研究中发现,R6系统的填埋场沉降量最大,R4系
    统的填埋场沉降量次之,R3、RS及 RZ填埋场沉降高度相差不多,RI系统填
    埋场沉降量最小。以第60天作为数据处理起点,对垃圾的沉降高度用半对数口
    归,口归结果表明,R6系统的填埋场己基本沉降完毕,而其它填埋场还有沉降
    的趋势。
     对R6系统建立了以平均停留时间为主的简单的有机物降解(以COD。r计)
    动力学模型1及以数学模拟为主模型2。模型的预测值与实测值基本一致,由此
    表明,模型基本上表达了生物反应器填埋场系统的运行情况,可以预测系统的运
    行趋势。
The main disposal methods for municipal solid waste were compost, landfill, incineration, earthworm bed and heat degrading, and so on. With the low cost and no secondary pollution, landfill was a popular disposal methods for municipal solid waste in the world. And it would be used in the near future years in China, a developing country, widely.
    The existing landfilling method had some disadvantages: the municipal solid waste degraded slowly and landfill field needed long time to be stable; the leachate was difficult to be treated and its cost was high; it might be lead to explode, the methane couldn't be reused and led to air -polluted. The novel bio-reactor landfill with leachate recycle was benefit to increase the degrading rate of municipal solid waste, but the leachate direct recycle was led to production restrain, so it couldn't make full use of microorganism degradation for increasing the degrading rate of municipal solid waste. The experiments of the bio-reactor landfill(R3 ^ R4) and the bio-reactor landfill with inoculability (R5, R6) were carried out in this paper. The traditional landfill (Rl) and the landfill with leachate cycled directly (R2) were also carried out as the contrast experiments.
    The municipal solid waste degraded slowly in the traditional landfill (Rl), and it needed long time to be stable; the degraging rate for municipal solid waste in the landfill with direct recycling leachate (R2) was faster than Rl, but organic acid accumulated in the R2 landfill, especially in the initial stage when the flow of recycling leachate was large and the organic load was high, and the high pressure of H2 destoried the combined metabolizability of microorganism for degrading refuse, led to the ensiling . In R3 > R4, R5 and R6, because they all had reactor for producing methane, the leachate was treated in the reactor for producing methane, then circumfluenced to landfill, it solved the problem of organic acid accumulation; but in R3 and R5, the moisture of refuse was less than 45% ,because the leachate was recycled partly, the activity of microorganism restrained. While in R4 and R6, the moisture of refuse was about 60% because the leachate was recycled fully, the
    VI
    
    
    
    degrading rate of refuse increaseing, and the landfill of R6 system was stable when 145d passed because it was inoculated with high effected strain of microorganism.
    In the study of stabilization mechanism of landfill, the distribution of molecular weight of leachate in landfill and the humic coefficient of organic substance in municipal solid waste were discussed. The result showed: the more the percent of high molecular weight of leachate in landfill, the more stabilization of landfill, and with the time passed, the percent of high molecular weight of leachate increase. By the analysis of humic coefficient of organic substance in municipal solid waste, the variation of CODcr couldn't described the humic process, but the humic coefficient. And the stabilization of landfill increased with the humic coefficient up. The experiment indicated : the humic coefficent in R6 landfill was the highest, R4 landfill followed, then of R2> R3 and R5 landfill, Rl landfill was the lowest, and the humic coefficents in R2> R3 , R5 landfill were almost the same.
    The data of sedimentation height of municipal solid waste suggested : the sedimentation height of refuse in R6 landfill is the highest, R4 landfill followed, then ofR2> R3 and R5 landfill, Rl landfill is the lowest, and the sedimentation height of R2^ R3 , R5 landfill were almost the same .And the data from the time 60d passed were dealt with logarithm regression. The regression equation showed : the sedimentation of R6 landfill finished,others were still proceeding.
    It was suggested that the CODcr degrading kinetic model 1 by average hydraulic retention time and the CODcr degrading kinetic model 2 by mathmatics somilation of R6 system. And the forecast data from models was almost the same as measured data. So the model could express the running situation of bio-reactor landfill
引文
1.A. C. Palmisano, B. S. Schwab, D. A. Maruscik. Hydrolytic enzyme activity in landfilled refuse. Appl. Micro. Bactechnol. 1993,38:828-832
    2.Adney WS, Rivard CJ, Grohmann K. et al. Detection of extracellular hydrolytic enzymes in the anaerobic digestion of municipal solid waste. Biotechnol. Appl. Biochem. 1989,11:387-400
    3.Aiken GR. et al. An introduction tohumic substances in soil, sediment, and water. In: Aiken GR. Editors. Humic substances in soil, sediment, and water. New York: Wiley, 1985:1-9
    4.Aitchison E. Methane generation from UK landfill sites and its use as an energy resource. Fuel and Energy Abstracts. 1996,37(4): 283
    5.Aizhong D., Zonghu Z., Jiamo F. et al. Biological control of leachate from municipal landfills. Chemosphere. 2001,44(1): 1-8
    6.A. I. Zouboulis, M. X. Lorkidou, K. Christodoulou. Enzymatic treatment of sanitary landfill leachate. Chemosphere. 2001,44:1103-1108
    7.Albaiges, J. et al. Organic indicators of groundwater pollution by a sanitary landfill. Water Reseach. 1986,20:1153-1159
    8.Allison, F. E. Retention of organic matter in soils. Development in Soil Science. 1973,3
    9.Anders Bjarngard et al. Settlement of municipal solid waste landfills, 13th Annual Madison Waste Conference on Municipal & Industrial Waste. 1990,9:19-20
    10.AI-Yousfi A. B. Modeling of leachate and gas production and composition at sanitary landfills. PhD Dissertation, University of Perrsburgh, Pittsburgh, PA, 1992
    11.A. Nopharatana, W. P. Clarke, P. C. Pullammanappallil. et al. Evaluation of methanogenic activities during anaerobic digestion of municipal solid waste. Bioresource Technology. 1998,64:16-174
    12.Anne-Marie Pourcher, Laurent Sutra, Isabelle He be. Enumeration and characterization of cellulolytic bacteria from refuse of a landfill. FEMS Microbiology Ecology. 2001,34:229-241
    13.Azov Y., Schelef G. Operation of high rate oxidation ponds: theory and experiments. Eat Res. 1982,16:1153-1160
    14.Bagchi A. Design, construction and monitoring of landfill. New York: John Wiley & Sons Inc. 1994
    15.Banks C. J., Wang Z. Development of a two-phase anaerobic digester for the treatment of mixed abattoir wastes. Water Science and Technology. 1999,40(1): 69-76
    16.Barlaz, M. A., Schaefer, D. M., Ham, R. K. Bacterial population development and chemical characteristics of refuse decomposition in a simulated sanitary landfill. Appl. Environ. Microbiol. 1989, 55:55-65
    17.Bartschat MM. et al. Oligoelectrolyte model for cation binding by humic substances. Environ Sci Technol. 1992,26(2):284-294
    18.Bingener, H. G, Crutzen, P. J. The production of methane from solid wastes. Joural of Geophysical Reasearch. 1987, 92:2182-2187
    19.Blakey, N. C. Model prediction of landfill leachate production. Sanitary Landfilling: Process, Technology and Environmental impact. Academic Press, San Diego, CA. 1989:17-34
    20.Bleiker D. E., McBean E., Farquhar G. Refuse sampling and hydraulic conductivity testing at the Brock West and Keele Valley landfills. In Proceedings of the Sixteenth International Madison Waste Conference. 1993,548-567
    21.Bogner J. et al. Landfill CH_4: rates, fates and role in global carbon cycle. Chemosphere. 1993,26(1-4):369-386
    22.Bogner J., Spokas K., Burton E. et al. Landfills as atmospheric methane sources and sinks. Atmospheric Environment. 1996,30(4):4-5
    
    
    23.Borzacconi L, Ottonello G., Castelló E. et al. Denitrification in a Carbon and Nitrogen Removal System for Leachate Treatment: Performance of an Upflow Sludge Blanket (USB) Reactor. Water Science and Technology. 1999,40(8): 145-151
    24.Campbell D. J. V. Landfilll bioreactor design and operation: international perspectives. Seminar Publication: Landfill bioreactor design and operation, Wilmington DE. Washington: US Environmental Protection Agency. 1995:123-136
    25.Calace N., Liberatori A., Petronio B. M. et al. Characteristics of different molecular weight fraction of organic matter in landfill leachate and their role in soil sorption of heavy metals. Environmental Pollution. 2001, 113:331-339
    26.Carson D. A. The municipal solid waste landfill operation as a bioreactor. Seminar Publication: Landfill bioreactor design and operation, Wilmington DE. Washington: US Environmental Protection Agency. 1995
    27.Chan G. Y. S., Chu L. M., Wong M. H. Effects of leachate recircutation on biogas production from landfill co-disposal of municipal solid waste, sewage sludge and marine sediment. Environment Pollution. 2002,118(3): 393-399
    28.Chan G. Y. S., Wong M. H., Whitton B. A. Effects of landfill leachate on growth and nitrogen fixation of two leguminous trees(Acacia confuse, Leucaena leucocephala). Water, Air and Soil Pollution. 1999,113:29-40
    29.Chian E. S., Walle F. B., Hammerberg E. Effect of moisture regime and other factors on municipal waste stabilization. In management of gas and leachate in landfills. Proceedings of the third annual municipal solid waste research symposium, EPA-600/9-77-026, USEPA, Cincinatti, OH. 1977,73-86
    30.China E. S. K. et al. Stability of organic matter in landfill leachates. Water Res. 1997,11(1): 225-232
    31.Chianese, Angelo et al. Treatment of landfill leachate by reverse osmosis. Wat. Res. 1999,(33):3,647-652
    32.Chin. et al. Estimating the effect of dispersed organic polymers on the sorption of contaminants by natural.\solid. Environ Sci Technol. 1989,23(8): 978-984
    33.Chiou CT. et al. Water solubility enhancement of some organic pollutants and pesticides by dissolved humic and fulvic acids. Environ Sci Technol.1986,20(3):502-508
    34.Choi E, Rim J. M. Competition and inhibition of sulphate reducers and methane producers in anaerobic treatment. Wat. Sci. Technol. 1991, 23:1259-1264
    35.Christensen T. H., Cossu R. et al. Sanitary Landfilling: Process, Technology and Environmental Impact, London. UK: Academic Press. 1989:237-328
    36.Christensen T. H., Kjeldsen P., Bjerg P. L., et al. Biogeochemistry of landfill leachate plumes. Applied Geochemistry. 2001,16(7-8): 659-718
    37.Chugh S., Clarke W., Nopharatana A. et al. Degradation of unsorted MSW by sequential batch anaerobic reactor. Fifth International Landfill. 1995, 67-77
    38.Chugh S., Clarke W., Pullammanappallil P. et al. Effect of recirculated leachate volume on MSW degradation. Waste Management & Research. 1998,16:564-573
    39.Chugh S., Chynoweth D. P., Clarke W. et al. Degradation of unsorted municipal solid waste by a leach-bed process. Bioresource Technology. 1999,69(1): 103-115
    40.Chynoweth D. P., Bosch G, Earle J. F. K. et al. A novel process for anaerobic composting of municipal solid waste. Applied Biochemistry and Biotechnology. 1991,28/29:421-432
    41.Chynoweth D. P., Owens J., O'Keefe et al. Sequential batch anaerobic composting of the organic fraction of municipal solid waste. Water Science and Technology. 1992, 25(7): 327-339
    42.Clement B., Persoone G., Janssen C. et al. Estimation of the hazard of landfills through toxicity testing of leachates. I. Determination of leachate toxicity with a battery of acute tests. Geomechanics Abstracts. 1997,19(3): 190-191
    
    
    43.Compbell F. E. et al Factors affecting the accuracy of the carbon-dating method in soil humus studies. Soll. Sci. 1967,104:81-85
    44.Cossu, R. Role of landfilling in solid waste management Sanitary Landfilling: Process, Technology and Environmental Impact. Academic Press, San Diego, CA. 1989:3-9
    45.Crawford J. F., Smith P. G. Landfill technology. England: Butterworths. 1985
    46.Crutcher A. J. et al. Landfill gas collection and utilization. The Canadan Geotechnical Society-Southern Ontario Section Symposium:"Solid Waste Management-Landfill design: from concept to completion", Ontario: The Canadina Geotechnical Society, 1988,30
    47.Cummings, S. P., Stewart, C. S. Newspaper as a substrate for cellulolytic bacteria. J. Appl. Bacteriol.1994,76:196-202
    48.Dean K. Wall. et al. Municipal landfill biodegradation and settlement. Joural of Environmental Engineering. 1996,121(3):214-224
    49.Debra R. Reinhart, A. Basel AI-Yousfi. The impact of leachate recirculation on municipal solid waste landfill operation characteristics. Waste Management & Research. 1996, 14:337-346
    50.De Rome L. Landfill mictobiology restarch in the U. K. Paper presented at The 3rd Microbiology Research and Development Workshop, Solihull, March. 1995
    51.Ding Aizhong, Zhang Zonghu, Fu Jiamo. et al. Biological control of leachate from municipal landfills. Chemosphere. 2001,44(1):1-8
    52.Ehrig H. J. Prediction of gas production from laboratory scale test. In: Sardinia '91 Third International Landfill Symposium. Sardinia: CISA, University of Cagliari. 1991,87-114
    53.Elizabeth RF. Isolation and chacterization of methanogenic bacteria from landfills. Applied and Environmental Microbiology. 1988,54(3):835-836
    54.EI-Fadel M., Bou-Zeid E., Chahine W., et al. Temporal variation of leachate quality from pre-sorted and baled municipal solid waste with high organic and moisture content. Waste Management. 2002,22(3):269-282
    55.Emberton, J. R., Parker, A. The problems associated with building on landfill sites. Waste Management and Research. 1987,5:473-482
    56.Emcon A. Sonoma county solid waste stabilisation study. EPA 530/SW 65d1.1, USEPA, Cincinatti, OH.1975
    57.Eric Senior. Microbiology of Landfill Sites. CRC, Press, Inc, USA. 1990, 25-77
    58.F. Chaiampo et al. Morphological Characterisation of MSW Landfill. J. Res. Conver. and Recycling. 1996,17(2): 37-45
    59.Fielding E. R., Archer D. B. Microbiology of landfill indentification of methanogenic bacteria and their enumeration, In Effluent Treatment and Disposal, European Federation of Chemical Engineers Series, Pergmon Press, Elmsford, New York. 1986,53:331-341
    60.Fredereck G Pohland. Landfill recycle as landfill management operation. Journal of the Environmental Engineering Division. 1980,106(EE6): 1057-1069
    61.Frimmel, F. H. and Weis, M. Ageing effects of high molecular weight organic acids which can be isolated from landfill leachates. Water Science and Technology. 1991,23:419-426
    62.Fukushima M. et al. Photocatalytic reaction by iron-humate complex and its effect on the removal of organic pollutant. Toxicol Chem. 1999,73:103-116
    63.Gau Sue-Huai, Chow Jing-Dong. Landfill leachate characteristics and modeling of municipal solid wastes combined with incinerated residuals. Journal of Hazardous Materials. 1998,58(1-3):249-259
    64.Gendebien, A. et al. Landfill Gas: From Environmental to Energy. Office for Offical Publications of the
    
    European Community. 1992
    65.Gerard Kiely. Environmental engineering, The McGrao-Hill Companies, 1997
    66.George Tchobanoglous, Hilary Theisen, Samuel Vigil. "Chapter Ⅱ. Disposal of Solid Wastes and Residual Matter" in integrated Solid Waste Management, McGraw-Hill, Inc. 1993
    67.Ghanem I.I., Guowei Gu, Jinfu Zhu. Leachate production and disposal of kitchen food solid waste by dry fermentation for biogas generation. Renewable Energy. 2001,23(3-4): 673-684
    68.Ghilarov A. M. Report on eutrophication studies in the USSU. Water Res. 1983,17(6): 607-611
    69.Goossens M. A. Landfill gas power plants. Renewable Energy. 1996, 9(4): 1015-1018
    70.Gorden A. M., Mcbride R. A., Fisken A. J. Effects of landfill leachate irrigation on red maple(Acer rubmm L)and sugar mape (Acer saccharum marsh) seeding growth and on foliar nutrient concentrations. Environment Pollution. 1989,56:327-336
    71.Gourdon, R et al. Fractionation of the organic matter of a landfill leachate before and after aerobic or anaerobic biological treatment. Water Research. 1989,23:167-173
    72.Ham R. K. The role of shredded reuse in landfilling. Waste Age. 1975, 6(1): 22
    73.Harmesen, J. Identification of organic compounds in leachate from a waste tip. Water Research. 1983,6:699-714
    74.H. Belevi, P. Baocini. Long-term Behavior of Municipal Solid waste Landfills. Waste Management & Research. 1989,7:43-56
    75.Hilgern Helene A., Cranford David E., Barlaz Morton A. Methane oxidation and microbial exopolymer production in landfill cover soil. Soil Biology & Biochemistry. 2000,32(4):457-467
    76.Howgrave-Graham A. G, Jones L. A., Terry S. J. et al. Microbial distribution throughout a cellobiose supplemented three-stage laboratory-scale anaerobic digester. J chem. Technol. Biotechnol. 1994,59:127-131
    77.Iglesias J. R., Pelaez L. C., Maison E. M. et al. Biomethanization of municipal solid waste in a pilot plant. Water Researcher. 2000, 34(2): 447-454
    78.Jensen Dorthe L., Christensen Thomas H. Colloidal and dissolved metals in leachates from four Danish landfills. Water Research. 1999,33(9): 2139-2147
    79.Jeten M. S. M. et al. Towards a more sustainable municipal wastewater system. Water Sci. Technol. 1997 35(9): 171-180
    80.Jiunn-Jyi Lay, Yu-You Li, Tatsuya Noike, et. al. Developments of bacterial population and methanogenic activity in a laboratory-scale landfill bioreactor. Wat. Res. 1998, 32(12): 3673-367
    81.Jokela J. P. Y., Kettunen R. H., Sormunen K. M., et al. Biological nitrogen removal from municipal landfill leachate: low-cost nitrification in biofilters and laboratory scale in-situ denitrification. Water Research. 2002,36(16): 4079-4087
    82.Jones K. L., Grainger J. M. European Journal of Applied Microbiology and Biotechnology. 1985,18,181-185
    83.Kang, ki-Hoon, Shin, Hyun Sang, Park Heekyung. Characterization of humic substances present in landfill leachates with different landfill ages and its implications. 2002,36:4023-4032
    84.Kasall G. B. Optimization and control of methanogenesis in refuse fractions. Ph D thesis. University of Strathclyde, Glasgow, U. K. 1986.
    85.Kim Y. K., Huh I. R. Enhancing biological treat ability of landfill leachate by chemical oxidation. Environ. Eng. Sci. 1997,14(1): 73-79
    86.Kim SeogKu, Matsui Saburo, Pareek Sandeep, et al. Biodegradation of recalcitrant organic matter under sulfate reducing and methanogenic conditions in the landfill column reactors. Water Science and Technology. 1997,36(6-7): 91-98
    
    
    87.Kjeldsen P., Christophersen M. Composition of leachate from old landfills in Denmark. Waste Management & Research. 2001,19:246-256
    88.KL, Rees JF, Grainger JM. Methane generation and microbial activity in a domestic refuse landfill sites. Eur J. Appl. Bacterial. 1983,18:242-245
    89.Kouzell-Katsiri A., Bosdogianni A., Christoulas D. Prediction of leachate quality from sanitary landfills. Journal of Environmental Engineering. 1999(10): 950-958
    90.Koerner R. M., Soong T. Y. Leachate in landfills: the stability issues. Geotextiles and Geomembranes.2000,18(5): 293-309
    91.Koteswara R. Gurijala, Ping Sa, Joseph A. Robimson. Statistical modeling of Methane Production from Landfill Samples. Applied and Environmental Microbiology. 1997,63(10): 3797-3803
    92.Laanbroek H. J., Gerards S. Competition for limiting amounts of oxygen between nitro-somanas europaea and nitrobacteria winogradskyi grown in mixed continuous cultures. Arch Microbiology. 1993,159:453-459
    93.Lai T. E., Nopharatana A., Pullammanappallil P. C., et al. Cellulolytic activity in leachate during leach-bed anaerobic digestion of municipal solid waste. Bioresource Technology. 2001,80(3):205-210
    94.Landfill bioreactor design and operation. Seminar Pubication, Washington. 1995
    95.Lagerkvist A. The landfill gas activity of the IEA bioenergy agreement. Biomass & Bioenergy. 1995,9(1-5):399-413
    96.Lay J. J, Li Y. Y., Noike T et al. Analysis of environmental factors affecting methane production from high-solids organic waste. Wat. Sci. Tech. 1997, 36(6-7): 493-500
    97.Lay J. J., Li Y. Y., Noike T. Developments of bacterial population and methanogenic activity in a laboratory-scale landfill bioreactor. Wat. Res. 1998,32(12): 3673-3679
    98.Lay J. J. Mathematical model for methane production from landfill bioreactor. Journal of Environmental Engineering. 1998,124(8): 730-738
    99.Leahy Joseph G, Shreve Gina S. Water Research. The effect of organic carbon on the sequential reductive dehalogenation of tetrachloroethylene in landfill leachates. 2000,34(8): 2390-2396
    100.Leckie J. O., Pacey J. G., Halvadakis. Landfill management with moisture control. Journal of the Environmental Engineering Division. 1979, 105(EE2): 337-355
    101.Lee, J. J. et al. Computer and experimental simulations of the production of methane gas from municipal solid waste. Water Science and Technology. 1993,27:225-234
    102.Lema, J. M. et al. Characteristics of landfill leachates and alternatives for their treatment: a review. Water, Air and Soil Pollution. 1988,40:223-250
    103.Leszkiewicz J. J., Mcaulay P. B. Municipal solid wastes landfill bioreactor technology closure and postclosure issues. Seminar Publication: Landfill bioreactor design and operation, Wilmington DE. Washington: US Environmental Protection Agency. 1995:81-122
    104.Li X. Z., Zhao Q. L. Inhibition of microbial activity of activated sludge by ammonia in leachate. Environment International. 1999,25(8): 961-968
    105.Linde K., Jonsson A., Wimmerstedt R. Treatment of three types of landfill leachate with reverse osmosis. Desalination. 1995,101:21-39
    106.Lin Sheng H., Chang Chih C. Treatment of landfill leachate by combined electro-Fenton oxidation and sequencing batch reactor method. Water Research. 2000,34(17): 4243-4249
    107.Lisk. D. J. Environmental effects of landfills. The Science of the Total Environment. 1991,100:415-467
    108.Lo Irene M. C. Characteristics and treatment of leachates from domestic landfills. Environment International. 1996, 22(4): 433-442
    109.Loizidou M., Papadopoulous A., Kapetanious E. G Application of chemical oxidation for the treatment of
    
    refractory substances in leachates. J. Environ. Sci. Technol. 1993, A28 (2): 385-394
    110.Lovely DR. et al. Humic substances as electron acceptors for microbial respiration. Nature(London). 1996,382:445-448
    111.Ludvigsen L., Albrechtsen H. J., Heron G., et al. Anaerobic microbial redox processes in a landfill leachate contaminated aquifer (Grindsted, Denmark). Journal of Contaminant hydrology. 1998,33(3-4): 273-291
    112.M. A. Barlaz. et al. Gas production parameters in sanitary landfill simulators. Waste Management and Research. 1987,5:27-39
    113.Mata-Alvarez J, Macé S, Liabrés P. Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. Bioresource Technologh. 2000,74(1): 3-16
    114.Martin, A. M. Biological Degradation of Wastes. First Edition. London, England. Elsevier Applied Science. 1991:207-230
    115.Marttinen S. K., Kettunen R. H., Sormunen K. M. et al. Screening of physical-chemical methods for removal of organic material, nitrogen and toxicity from low strength landfill leachates. Chemosphere. 2002,46(6): 851-858
    116.Marty E Tittlebaum. Organic carbon content. Stabilization through landfill leachate recirculation. Journal of Water Pollution Control Federation. 1982,54(5):428-433
    117.MacFarlane et al. Migration of contaminants in groundwater by a landfill: a case study. Journal of Hydrology. 1983,63: 1-29
    118.Mackay, D. M. et al. Transport of organic contaminants in groundwater. Environmental Science and Technology. 1985.19:384-392
    119.Matejka, G. et al. Pollution engendree par un lixiviat de dicharge d'
    120.McCarty P. L. Anaerobic waste treatment fundamentals. Public Works. 1964
    121.McCreanor P. T., Reinhart D. R. Hydrodynamic modeling of leachate recirculation landfills. Water Science and Technology. 1996,34(7/8): 463-470
    122.McCreanor P. T. Landfill leachate recirculation systems: mathematical modeling and validation. PhD Dissertation, University of Central Florida, Orlando, FL. 1998
    123.M. EI-fadel, A. N. Findikakis, J. O. Leckie. Environmental Impacts of Solid Waste Landfilling, Journal of Environmental Management. 1997,50:1-25
    124.M. EI-Fadel; A. N. Findikakis; J. O. Leckie. Numerical modeling of Generation and Transport of Gas and Heat in Landfill. Waste Management & Research. 1996,14:483-504
    125.Meadows M. Estimating landfill methane emissions. Fuel and Energy Abstracts. 1996,37(4): 302
    126.Milich Lenard. The role of methane in global warming: where might mitigation strategies be focused. Global Environmental Change. 1999,9(3): 179-201
    127.Miller W. L. et al. Leachate recycle and the augmentation of biological decomposition at municipal solid waste landfills. 2nd Annual Research Symposium for Solid and Hazardous Waste Management, Tampa Florida USA, 1994
    128.M. M. Kononova. Soil Organic Matter. Pergamon, Oxford, 1966
    129.Mosher B. W. Mitigation of methane emissions at landfill sites in New England, USA. Fuel and Energy Abstracts. 1996,37(4): 305
    130.Muller E. B. et al. Simultaneous NH_3 oxidation and N_2 production at reduced O_2 tensions by sewage sludge sudcultrued with chemilithotropic molerniu. Biodegradation. 1995, 6(10): 339-349
    131.Nachaiyasit S. et al. The effect of loads on the performance of an anaerobic Baffled Reactor (ABR):1. step changes in feed concentration at constant retention time. Water Res. 1997,31(11): 2737-2746
    132.Nachaiyasit S. et al. The effect of loads on the performance of an anaerobic Baffled Reactor (ABR):2. step
    
    and transient hydraulic shock at constant feed strength. Water Res. 1997,31(11): 2747-2754
    133.Nastev Miroslav et al. Gas production and migration in landfills and geological materials. Journal of Contaminant Hydrology. 2001,52(3): 187-211
    134.Nederlof MM. et al. Determination of proton affinity distributions for humic substances. Environ Sci Technol. 1993,27(5):846-856
    135.Nopharatana A., Clarke W. P., Pullammananppallil P. C. et al. Evaluation of methanogenic activities during anaerobic digestion of municipal solid waste. Bioresource Technology. 1998,64:169-174
    136.Nozhevnikova, A. N. et al. Microbiological process occuring in landfills. Proceedings of the International Symposium on Anaerobic Digestion of Solid Waste, Venice, Italy. 1992:303-312
    137.O. Castegnoli. et al. Humic substances and humification rate in amunicipal refuse disposed of in a landfill. Water, Air and Soil Pollution. 1990,53:1-12
    138.O'Keefe D. M. and Chynoweth D. P. Influence of phase separation, leachate recycle and aeration on treatment of municipal solid waste in simulated landfill cells. Bioresource Technology. 2000,72(1): 55-56
    139.O'Leary Bjarngard. et al. Landfill closure and long-term care. Waste Age. 1986,17(10):53-64
    140.Oman C. et al. Identification of organic compounds in municipal landfill leachates. Environ. Pollut. 1993,80(1): 265-271
    141.Onay T. T., Poholand F. G. In situ nitrogen management in controlled bioreactor landfills. War. Res. 1998, 32(5): 1383-1392
    142.Oonk H. Dutch ablogenic emissions of methane and nitrous oxide and options for emission reduction. Fuel and Energy Abstracts. 1996,37(3): 219
    143.Oswald W. J., Gataas H. B., Golueke C. G. et al. Algae in waste treatment. Sewage and Industrial Waste. 1957,29:437-455
    144.Oweis I. S., Smith D. A., Ellwood Rband Greene D. Hydraulic characteristic of municipal refuse. J. Geotech. Eng. 1990, 116(4): 539-553
    145.Palmisano A. C., Mamscik D. A., Schwab B. S. Enumerationof fermentative and hydrolytic microorganisms from three sanitary landfills. J. Gen. Microbiol. 1993, 139:387-391
    146.Paocy J. G. Land Gas Enhancement Management, In: Seminar Publication: Landfill Bioreactor Design and Operation, Wilmington DE, 1995, Washington: US Environmental Protection Agency. 1995:175-183
    147.Papadopoulous A., Fatta D., Loiziou M. Treatment of stabilized landfill leachate by physico-chemical and bio-oxidation processes. J. Environ. Sci. Technol. 1998, A33(1): 651-670
    148.John Wiley, Sons, Chicheter. Parker A: Chapter 7 Behavior of Wastes in Landfill-Methane Generation. in J. R Holmen(ed.): Practical Waste Management, England. 1983; 225-207
    149.Pareek Sandeep, Matsui Saburo, Kim Seog Ku. Et al. Mathematical modeling and simulation of methane gas production in simulated landfill column reactors under sulfdogenic and methanogenic environments. Water Science and Technology. 1999,39(7):235-242
    150.Paris H. C. Environment International. Assessment of leachates from sanitary landfills: impact of age, rainfall, and treatment. 1996,22(2): 225-237
    151.Parker A. Chapter 7. Behaviour of wastes in landfill leachate. Practical Waste Management. England. 1983:205-217
    152.Perry D. L., Philips S. L. Handbook of Inorganic Compounds, USA: CRC Press Inc. 1995
    153.Phaneuf R. J. Landfill bioreactor design and operation: a New York state regulatory perspective. In: Seminar publication: Landfill Bioreactor Design and Operation, Wilmington DE, 1995, Washington: US Environmental Protection Agency. 1995: 185-193
    154.Philip T., Mccreanor, Debrar., et al. Mathematical modeling of leachate routing in a leachate recirculating
    
    lanfill. Wat. Res. 2000, 34(4): 1285-1295
    155.Pier P. A., Kelly J. M. Measured and estimated methane and carbon dioxide emissions from sawdust waste in the tennessee valley under alternative management strategies. Bioresource Technology. 1997,61(3): 213-220
    156.Pirbazari M. et al. Hybrid membrane filtration process for leachate treatment, Water Res. 1996,30(11): 2691-2706
    157.Pirbazari M., Steverns MR., Ravindran V. Activated Carbon Adsorption of PCBs from Hazardons Landfill Leachate. Division of Environmental Chemistry, American Chemical Society, Washington DC. 1988:360-370
    158.Pishtel J. R., Dick W. A., Mccoy E. L. Binding of iron from pyretic mine spoil by water-soluble organic materials extracted from sewage sludge. Soil Science. 1989, 148(1): 140-148
    159.Poggi-Varaldo et al. Inhibition of mesophilic solid-substrate anaerobic digestion by ammonia nitrogen. Appl. Microbiol. Biotechnol. 1997,47(3): 284-291
    160.Pohland F. G. Sanitary landfill stabilization with leachate recycle and residual treatment. U. S. Environmental Protection Agency, Cincinnati, Ohio. 1975, EPA-600/2-75-043
    161.Pohland F. G. Leachate recycle as landfill management option. Journal of Environmental Engineering. 1980(106EE6): 1057-1069
    162.Pohland F. G. Landfill bioreactors: historical perspective, fundamental principle and new horizons in design and operations. Seminar Pubication: Landfill bioreactor design and operation, Wilmington De. 1995
    163.Pohland F. G., Al-Yousfi B. Design and operation of landfill for optimum stabilization and biogas production. Water Science and Technology. 1994, 30(1): 117-124
    164.Pohland F. G., Kim J. C. Microbially mediated attenuation potential of landfill bioreactor systems. Water Science and Technology. 2000,41(3): 247-254
    165.Pohland F. G., Yousfi B. Design and operation of landfills for optimum stabilization and biogas production. Wat. Sci. Tech. 1994
    166.Rajeahwari K. V., Lata K., Pant D. C. et al. A novel process using enhanced acidification and a UASB reactor for biomethanation of vegetable market waste. Waste Management & Research. 2001,19:292-300
    167.Raynal J., Delgenès J. P., Moletta R. Two-phase anaerobic digestion of solid wastes by a municipal liquefaction reactors process. Bioresource Technology. 1998, 65: 97-103
    168.Read Adam D., Hudgins Mark, Harper Sid et al. The successful demonstration of aerobic landfilling: The potential for a more sustainable solid waste management approach. Resources, Conservation and Recycling. 2001,32(2): 115-146
    169.Robert K. Ham. et al. Decomposition of solid waste in test lysimeters. Journal of Environmental Engineering Division. 1982,108(EE6): 1147-1170
    170.Reckhow DA. et al. Chlorination of humic substances: byproduct formation and chemical interpretations. Environ Sci Technol. 1990,24(11): 1655-1664
    171.Rees J. F. The fate of carbon compounds in the landfill disposal of organic matter. Journal of Chemical Technology & Biotechnology. 1980, 30(1): 161-175
    172.Reinhart D. R., Al-Yousfi. The impact of leachate recirculation on municipal Solid waste landfill operating characteristics. Waste Manage. Res. 1996,14(3): 337-346
    173.Reinhart D. R., Townsend T. G. Landfill bioreactor design and operation. CRC Press LLC. 1998
    174.Reinhart D. R., McCreanor P. T., Townsend T. The bioreactor landfill: its status and future. Waste Management & Research. 2002, 20:172-186
    175.Reza M. Khanbilvardi, Shabbir Ahmed, Phillip J. Gleason. Flow Investigation for Landfill Leachate(FILL).Journal of Environmental Engingeering. 1995,121(1): 45-57
    176.Rhew R. D., Barlaz M. A. Effect of lime-stabilized as landfill cover on refuse decomposition. Journal of
    
    Environmental Engineering. 1995,121 (7): 499-506
    177.R.L.Peer, S.A Thorneloe, D,L.Epperson. A Comparison of methods for Estimating Global Methane Emissions from Landfills. Chemosphere. 1993,26(1-4): 387-400
    178.R.M.Koemer, T.Y. Soong. Leachate in landfills:the stability issues. Geotextiles and Geomembranes. 2000,18:293-309
    179.Robert J.Fairweather, Morton A.Barllaz. Hydrogen Sulfide Production during Decomposition of Landfill Inpuls, journal of environmental Engineering. 1996, 124(4): 353-361
    180.Robinson H. D. et al. The treatment of leachate from domestic wastes in landfill-I. Aerobic biological treatment of a medium-strength leachate. Water Res. 1983,17(7): 1537-1548
    181.Roger T. H. The practical handbook of composting engineering. Lewis Publishers, USA. 1993
    182.R. T. Hang. Compost Engineering Principles and Practice. Ann Arbor Science Publishers, Inc. 1980
    183.(?)an I., Onay T. T. Impact of various leachate recirculation regimes on municipal solid degradation. Journal of Hazardous Materials. 2001(BB7): 259-271
    184.Schnoor J. L.,Licht L. A.,McCutcheon S. C. et al. Phytoremediation of organic and nutrient contaminations. Environmental Science & Technology. 1995,29:318-323
    185.Schroeder. P.R., Gibson A. C., Smolen M.D. The Hydrologic Evaluation of Landfill Performance (HELP) Model: Documentation for Version I,EPA/530/Sw-91/010 USA. Environmental Protection Agency, Washington D.C. 1984b: 54-63
    186.Scott, D. et al. Quinone moieties act as electron acceptors in the reduction of humic substances by humics-reducing microorganisms. Environ Sci Technol. 1998,32(19):2984-2989
    187.Sharma Alka, Gupta Mahendra K., Singhal Pradeep K. Toxic effects of leachate of water hyacinth decay on the growth of Scenedesmus obliquus (chlorophyta). Water Research. 1996, 30(10):2281-2286
    188.Shen D. S., He R., Ren G. P. et al. Effect of leachate recycle and inocula- tion on microbial characteristics of municipal refuse in landfill bioreactors. Journal of Environmental Science. 2001, 13(4): 508-513
    189.Shen D. S., He R., Ren G. P. et al. Effect of leachate recycle and inoculation on microbial characteristics of municipal refuse in landfill bioreactors. Journal of Environmental Science. 2002, 14(3): 406-412
    190.Shin HS. et al. Metal binding sites and partial structures of soil fulvic and humic acids compared: aided by EU luminescence spectroscopy and DEPT/QUAT ~(13)C NMR pulse techniques. Org Geochem.1996,24(5):523-529
    191.Shiskowski D.M et al. Biological treatment of a high ammonia leachate. Influence of external carbon during initial startup, Water Res. 1998,32(8): 2533-2541
    192.Shultz B., Kjeldsen P. Screening of organic matter in leachates from sanitary landfills using gas chromarography combined with mass spectrometry. Wat. Res. 1986,20(8): 965-970
    193.Silvcy P., Pullammanappallil P. C., Blackall L. et al. Microbial ecology of the leach bed anaerobic digestion of unsorted municipal solid waste. Water Science and Technology. 2000,41(3): 9-16
    194.Sletten Ronald S., Benjamin Mark M., Horng J. J. et al. Physical-chemical treatment of landfill leachate for metals removal. Water Research. 1995,29(10): 2376-2386
    195.Sorensen A.H., Ahring,B.K. Measruements of the specific methanogenic activity of anaerobic digestor biomass. Appl. Microbiol. Biotechnol, 1993,40:427-431
    196.Spiegel R J., Sederquist R. A., Trocciola John, et al. Landfill gas treatment system. Biotechnology Advances, 1996,14(4): 615
    197.Staniforth J., Kendall K. Cannock landfill gas powering a small tubular solid oxide fuel cell-a case study. Journal of Power Sources. 2000,86(1): 401-403
    198.Tabasaran O. Mean research topics in the department of waste management at the University of Stuggart and
    
    a report on current investigations of practical interest concerning landfill gas. Jonkoping: University of stuggart. 1979
    199.Tanaka Yoshiharu, Hoshikawa Hiroshi. Determination of nitrite nitrogen in water with immobilized microorganisms Jpn. Kokai Tokkyo Koho JP 63165733 [88165733] (IPC G01N-021/33), 9 July 1988, Appl. 86/314815, 26 Dec 1986:5
    200.Thurman EM, Malcolm RL. Preparative isolation of aquatic humic substance. Environ Sci Technol. 1981,15(4):463-466
    201.Todd J. Bookter. et al. Stabilization of solid waste to landfill. Journal of Environmental Engineering Division. 1982,108(EE6): 1089-1100
    202.Towsend T. G., Miller W. L., Lee I. I. et al. Acceleration of landfill stabilization using leachate recycles. Journal of Environmental Engineering. 1996,122(4): 263-268
    203.Trabelsi I. Horibe H., Tanaka N. et al. Origin of low carbon/nitrogen rations in leachate from old municipal solid waste landfills. Waste Management & Research. 2000,18:224-234
    204.Troost John R. Method and system for removing volatile organics from landfill gas. Biotechnology Advances. 1997,15(1): 309
    205.Troost John R. Method and system for removing volatile organics from landfill gas. Fuel and Energy Abstracts. 1997,38(1): 55
    206.Ukrainczyk L., Smith K. Solid state 15N NMR study of pyridine adsorption on clay minerals. Environ. Sci. Technol. 1996,30:3167-3176
    207.United States Environmental Protection Agency. A Guide for Methane Mitigation Projects: Gas-to-Energy at landfills and Open Dumps. EPA 430-b-96-081.1996, 11:34-57
    208.Urase T., Salequzzaman M., Kobayashi S. et al. Effect of high concentration of organic and inorganic matters in landfill leachate on the treatment of heavy metals in very low concentration level. Water Science and Technology. 1997,36(12): 349-356
    209.US Environmental Protection Agency. Municipal and industrial solid waste division, Report No. EPA530-R-97-015. Characterization of Municipal Solid Waste in The United States. 1997
    210.USEPA. Landfill Reclamation. EPA530-F-97-001. July, 1997
    211.Vincent R. K. Remote sensing for solid waste landfills and hazardous waste sites. International Journal of Rock Mechanics and Mining Sciences & Geomechanics. 1995 32(3): 113A
    212.Viswanath P., Sumithradevi S., Nand K. Anaerobic digestion of fruit and vegetable wastes for biogas prodution. Bioresource. Technology. 1992, 40(1): 43-51
    213.Wang P., Lau I. W. C., Fang H. H. P., Zhou D. Landfill leachate treatment with combined USAB and Fenton coagulation. J. Environ. Sci. Technol. 2000, A35(10):1981-1988
    214.Wang Z., Banks C. J. Accelerated hydrolysis and acidification of municipal solid waste (MSW) in a flushing anaerobic bio-reacctor using treated leachate recirculation. Waste Management & Research. 2000,18:15-223
    215.Warith M. A., Zebry W., Gawr N. Effect of leachate recirculation on municipal solid waste biodegradation. Water Quality Research Journal of Canada. 1999,34(2):267-280
    216.Warith M Bioreactor landfills: experimental and field results. Waste Management. 2002, 22:7-17
    217.Watson R. P. Incorporating bioreactor techniques into daily operation of a landfill. Seminar Publication: Landfill bioreactor design and operation, Wilmington DE. Washington: US Environmental Protection Agency. 1995:169-174
    218.Westlake K., Archer, D. B., Boone D. R. Diversity Of cellulolytic bacteria in landfill. J. Appl. Bacteriol. 1995, 79:73-78
    
    
    219. Whalen S. C. et al. Rapid methane oxidation in a landfill cover (?)oil. Applied & Environ. Microbiol. 1990,56:3405-3412
    220. Wu Guangxi, Li Loretta Y. Modeling of heavy metal migration in sand/bentonite and the leachate pH effect. Journal of Contaminant Hydrology. 1998,33(3-4): 313-336
    221. Wu, S. C. et al. Modeling the organic strength of leachate from sanitary landfills. Bulletin of the College of Engineering, N. T. U. 1992,55:149-164
    222. Yazdani R., Augensein D., Pacey J. U. S. EPA project XT: Yolo county's accelerated anaerobic and aerobic composting project. Proceedings of California integrated waste management board symposium on landfill gas assessment and management. LA, CA, U.S.A. 2000
    223. Yedla Sudhakar, Parikh Jyoti K. Development of a purpose built landfill system for the control of methane emissions from municipal solid waste. Waste Management. 2002,22(5): 501-506
    224. Yoon J., Cho S., Cho Y. et al. The characteristics of coagulation of fenton reaction in the removal of landfill leachate organics. Water Science and Technology. 1998, 38(2): 209-214
    225. Young P. J. et al. The identification and possible environmental impact of trace gases and vapours in landfill gas. Waste Man. Res. 1983,1:213-226
    226. Young P. J. et al. An assessment of the odor and toxicity of the trace components of landfill gas. In: Proc. G. R. C. D. A. 8th Int. Landfill Gas Symp. (San Antonio). 1985, 23
    227. Zeiss C., Major W. Moisture flow through municipal waste: patterns and characteristics. J. Environ Systerm. 1993, 22(3): 211-231
    228. Zeiss C., Uguccioni M. Mechanisms and patterns of leachate flow in municipal solid waste landfills. J. Environ Systerm. 1994, 23(3): 247-270
    229. Zhang Y-J. et al. Complexing of metal ions by humic substances. ACS Symposium Series 651 of humic and fulvic acids. Washington, DC: American Chemical Society. 1996:194-206
    230. Zolten N. G. Leachate Treatment in Landfill. Water Environment & Technology. 1991,3(5): 63-66
    231..毕新慧,徐晓白,我国城市垃圾的处理方法及建议.自然辩证法通讯.2000,22(4):43-49
    232.陈丹,李国建.国内外垃圾填埋渗滤液控制的比较与对策.工程与技术.2001,6:16-18
    233.陈世和,张所明,宛玲,嵇蒙.城市生活垃圾堆肥处理的微生物特性研究.上海环境科学.1989,8(8):17-21
    234.城市固体废物管理与处置技术.中国石化出版杜.2000:238,398,404-405
    235.董锁成.城市生活垃圾资源潜力与产业化对策.资源科学.2001,23(2):13-16,25
    236.方程冉,沈东升,何若.进口废电器拆解残余固体进入生活垃圾填埋场后渗滤液的特性研究,浙江大学学报.2002,28(2):203-207
    237.逢辰生.国外城市垃圾卫生填埋技术.中国城市环境卫生协会会刊.1998,(2):23-32
    238.冯广德等.垃圾填埋场内垃圾成分变化的研究.环境卫生工程.2000,8(2):74-75
    239.高光,董雅文,金浩波等.城市垃圾处理与管理对策研究.城市环境与城市生态.2000,13(2):39-41
    240.何若,沈东升,方程冉.生物反应器填埋场系统的特性研究.环境科学学报.2001,21(6):99-102
    241.何若,沈东升.生物反应器填埋场处理渗滤液的试验研究.环境科学.2001,22(6):763-767
    242.胡方荣,候宇光.水文学原理.北京:水利电力出版社.1988
    243.胡敏云,陈云敏.城市生活垃圾填埋场沉降分析与计算,土木工程学报.2001.12,34(6):88-92
    244.黄仁华,赵由才,周海燕.大型垃圾填埋场表面沉降研究.上海环境科学,2000.8,19(8):399-402
    245.焦学军等.城市生活垃圾产气规律研究.上海环境科学.1996,15(9):30-33
    246.孔德坊.生活垃圾生活垃圾卫生填埋及地质环境效应概论.地质灾害与环境保护.1999,10(增卷):1-11
    247.雷志栋,杨诗秀,谢森传.土壤水动力学.北京:清华大学出版社.1988
    248.李华,赵由才.填埋场稳定化垃圾的开采、利用及填埋场土地利用分析.环境卫生工程.2000,8(2):
    
    56-61
    249.李启彬,刘丹,欧阳峰.城市垃圾处理的新动向----生物反应器填埋场技术.城市环境与城市生态.2001,14(1):24-27
    250.李庆奎等.土壤分析法.科学出版社.1958
    251.李秀金.“生物反应器型”垃圾填埋技术特点及应用前景.农业工程学报.2002.1,18(1):111-114
    252.林成谷.土壤学.农业出版社.1981
    253.林振冀等.土壤农化分析法.农业出版社.1961
    254.刘长礼编.垃圾卫生填埋处置的理论方法和工程技术.北京:地质出版社.1999
    255.刘富强,唐薇,聂永丰,城市生活垃圾填埋场气体的产生、控制及利用综述.重庆环境科学.2000(22):72-76
    256.刘建国,聂永丰,王洪涛.填埋场水分运移模拟实验研究.清华大学学报(自然科学版)2001,41(4/5):244-247
    257.刘瑞强,郭淼.垃圾卫生填埋场填埋场气体特征及其回收利用.天津城市建设学院学报.2001,7(4):247-251
    258.刘绍璞.理化检验(化学分册).1974,5:7~10
    259.刘文泉,曲广田,吕平.垃圾渗滤液处理技术应用分析.东北水利水电.2000,18(12):29-31
    260.卢成洪等.回灌法处理城市生活垃圾填埋场渗滤液.上海环境科学.1997,16(1):38~40
    261.陆雍森.环境评价.上海同济大学出版社.1999
    262.孟范平.固体废物填埋场甲烷生成与减少途径.固体废物处理与处置.1996,15(6):34-36
    263.聂永丰.三废处理技术手册——固体废物卷.北京化学工业出版社.2000
    264.全国废弃物处理与管理学术讨论会论文集.北京:中国科学技术出版社.1990,10:26-34
    265.R.E.斯皮思著,李亚新译.工业废水的厌氧生物技术.北京:中国建筑工业出版社.2001
    266.沈耀良,王宝贞.垃圾填埋场渗滤液的水质特征及其变化规律分析.污染防治技术.1999,12(1):10-13
    267.沈英继等,城市垃圾填埋场表面覆盖层的厚度及外观设计.环境科学研究,1998,11(4):58-61
    268.孙铁衍,周启星,李培军主编.污染生态学.北京:科学出版社.2001
    269.孙玥,李国建,王勇.垃圾填埋场渗滤液平衡的水量实验研究.上海环境科学.1999,18(8):371-373
    270.孙玥,李国建.回灌条件下的土壤蒸发处理研究.环境科学研究.2000,13(1):58-61
    271.谭小萍,王国生,汤克敏.光催化法深度处理垃圾渗滤液的影响研究.中国给水排水.1999,15(5):52-54
    272.唐家富,李国建.垃圾填埋场渗滤液回灌处理的影响因素研究.环境卫生工程.1997(1):14-20
    273.汤鸿霄,用水废水化学基础.北京:中国建筑工业出版社.1979
    274.唐翔宇.垃圾卫生填埋场微量气体的产生及环境影响.固体废物防治.1997,19(9):34-36
    275.万波,廖银章,李安明,刘克鑫.城市在机垃圾处理过程中主要生理群的微生物的研究,太阳能学报.1989,10(3):247-253
    276.王家玲,威向莹,石击通.环境微生物学.北京:高等教育出版社.1988:38-52
    277.王建龙等.现代环境生物技术.清华大学出版社.2001
    278.王里奥,李东.垃圾卫生填埋场渗滤液水量计算.重庆大学学报.2000,23(3):112-114
    279.王罗春.垃圾场埋场稳定化进程研究.上海同济大学博士学位论文.1999
    280.王蔚君,刘云.TiO_2光催化氧化有机污染物的研究进展.化学试剂.2002,24(2):80-85
    281.王伟,韩飞,袁光鈺等.垃圾填埋场产气量的预测.中国沼气.2001,19(2):20-24
    282.王宗平,陶涛,袁居新等.垃圾渗滤液预处理——氨吹脱.给水排水.2001,27(6):15-19
    283.吴志超,邵立明,顾国维.生活垃圾填埋场渗滤液的新型处理技术.环境卫生工程.2000,8(2):62-64
    284.奚旦立,孙裕生等编.环境监测.北京:高等教育出版社.1995
    285.夏汉平,敖惠修,刘世忠,何道泉.应用香根草对垃圾场进行植被恢复及净化垃圾污水的研究.广州环境科学,2002,17(1):34-37
    
    环境科学.2002,17(1):34-37
    286.夏荣基等.土壤有机质研究.科学出版社.1982
    287.徐迪民,李国建,于晓华等.垃圾填埋场渗滤水回灌技术的研究Ⅰ.垃圾渗滤水填埋场回灌的影响因素.同济大学学报.1995,23(4):371-375
    288.徐勤,黄仁华.老港处置场终场覆盖技术的研究,环境卫生工程.2001,9(4):163-166
    289.徐亚同编著.废水中氮磷的处理.上海:华东师范大学出版社.1996
    290.徐新华,汪大翚.城市垃圾甲烷气体排放及减排对策.四川环境.1997,16(1):39-42
    291.徐竺,李正山,杨玖贤.上流式厌氧过滤器处理垃圾渗滤液的研究.中国沼气.2002,20(2):12-15,33
    292.严熙世:严伟.水和废水技术研究.北京:中国建筑工业出版社,1992:300-309
    293.杨琦,张亚雷等.垃圾填埋场的厌氧降解作用及其微生物类群.中国沼气.1997,15(3):7
    294.于天仁等.土壤发生中的化学过程.科学出版社.1990
    295.于天仁.土壤化学原理.科学出版社.1987
    296.赵庆亮,李湘中.化学沉淀法去除垃圾渗滤液中的氨氮.环境科学.1999,20(5):90-92
    297.赵由才,郭兴民,朱琳楠.垃圾填埋场稳定化研究.重庆环境科学.1994,16(5)8-11
    298.赵由才,朱青山编.城市生活垃圾卫生填埋场技术与管理手册.北京:化学工业出版社.1999
    299.赵由才,黄仁华等.大型垃圾填埋场垃圾降解规律研究.环境科学学报.2000.11,20(6):736-740
    300.赵勇胜,郑连阁,朱国营.城市垃圾的地质处理.世界地质.1999,18(2):73-82
    301.朱青山,赵由才,徐迪民.垃圾填埋场中垃圾降解与稳定化模拟试验.同济大学学报(自然科学版).1996,24:596-600
    302.朱青山,赵由才,赵爱华等.添加物对填埋场稳定化的影响.城市环境与城市生态.1996,9(2):19-21
    303.郑平,冯孝善等.废物生物处理理论和技术.浙江教育出版社.1997
    304.郑曼英,李丽桃.垃圾渗滤液中有机污染物初探.重庆环境科学.1996,18(4):41-43
    305.郑兴灿,李亚新编著.污水除磷脱氮技术.北京:中国建筑工业出版社.1996
    306.钟振洋,周启祥.垃圾卫生填埋技术.城市环境与城市生态.1999,12(2):45-49
    307.周红军,吴全贵.垃圾填埋场气体的回收利用.综合利用.2001,8:44-46
    308.周启星.填埋场垃圾体稳定的机理与方法.浙江大学图书馆.1999
    309.周群英,高廷耀.环境工程微生物学.北京:高等教育出版社.2000
    310.庄伟强编.固体废物处理与利用.北京:化学工业出版社.2001
    311.张发闯.垃圾填埋场沼气导排设计施工及沼气回收利用.环境卫生工程.1998,6(1):16-23
    312.张瑞明,张水雨,俞凯觎等.污水回喷法处理垃圾填埋渗滤液.环境污染与防治,1998,20(4)23-25.
    313.张振营,吴世民,陈云敏.天子岭垃圾填埋场有机物降解规律研究.岩土力学.2002.2,23(1):60-62

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700