棉花腺体形成相关基因的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物次生代谢物质与其贮藏器官-腺体(或腺毛)关系密切相关。了解次生代谢物质贮藏器官发生与形成的基因网络及其调控机制,能为实践中有效的调控植物次生代谢提供理论依据。其中,棉属(gossypium)植物的棉酚与其贮藏器官腺体(gland)是研究次生代谢工程较理想的一个研究模式。
     棉酚(Gossypol)为锦葵科棉族(Gossypieae)植物特有,存在于色素腺体(pigment gland)中,是棉花自身重要的抗性物质,但由于棉酚对人类和单胃动物有毒,限制了丰富的棉籽蛋白及油脂资源的利用。为有效调控棉酚合成,极有必要对色素腺体形成的分子机制进行研究。
     因此本文从以下几个方面进行相关研究:
     首先选用川2802(种子、植株都有腺体),湘棉18(种子无腺体,植株有腺体,种子萌发过程中腺体逐渐增多。),无腺体棉-显无N5(种子、植株都无腺体)为材料,对腺体形成时期不同品种的棉花的腺体特点进行观察,并检测次生代谢产物棉酚的含量变化及相关抗氧化酶活性的变化规律。
     其次,利用三种不同材料的腺体差别,通过棉花基因芯片,对腺体形成时期的基因进行高通量筛选,筛选表达变化的基因。
     最后以“湘棉18”特殊腺体为材料,构建了其腺体形成时期的均一化全长cDNA文库。根据芯片结果,在所建cDNA文库中进行腺体形成时期相关基因的克隆,获得腺体形成时期相关候选基因后,结合生物信息学方法对所克隆的基因功能进行预测,并对其在不同部位的时空表达进行了研究,从而为揭示棉花腺体形成的分子机制提供了重要的理论依据。
     实验研究结果如下:
     1.棉花的腺体形成及相关生理指标研究
     湘l8种子在萌发48h前后,色素腺体开始形成,川2802在种子萌发36h前后,新的色素腺体逐渐形成。腺体形成前后直径逐渐由小变大,其后色素腺体数目有较大幅度的增长,色素腺体直径变化不大。川棉2802在种子萌发初期其棉酚含量逐渐降低,萌发5d后其棉酚含量缓慢升高;而湘棉18(色素延缓形成棉子)在种子萌发时期,其棉酚含量呈缓慢增长趋势,并逐渐接近有色素棉川棉2802的棉酚含量。
     在棉花种子在萌发初期,可溶性糖含量呈总体下降趋势,萌发一周后,可溶性糖含量逐渐呈上升趋势。可溶性蛋白含量在早期含量较高,随之逐渐含量减低,萌发一周后,含量逐渐升高。在棉花种子萌发进程中,过氧化物酶、过氧化氢酶、超氧化物歧化酶的活性呈上升趋势,其中川棉2802的活性相对最高,湘棉18次之,显无N5的活性较低。
     2.棉花腺体发育过程中的基因表达变化的高通量分析
     本研究利用高通量的方法分析了棉花腺体形成过程中的基因表达变化。采用包含大约23,977个基因探针的Affymetrix棉花基因芯片,以湘棉18突变体、野生棉(川2802)、无腺体棉(显无N5)为研究材料,对腺体形成过程中差异表达的基因进行了鉴定。结果显示,在腺体形成过程中,川棉(2802)、湘棉18腺体形成后、湘棉18腺体形成前三种材料中的共同有差异表达的基因311条,其中112条上调,191条下调;湘棉18腺体形成后、川棉(2802)、无腺体棉N5的共同差异表达的基因有549条,其中218条上调,331条下调。上述基因主要涉及蛋白质聚合、微管运动、脂类合成、氨基酸磷酸化、代谢途径调控的酶基因、受外界胁迫表达的抗逆相关基因、光合作用相关基因、转录调控因子等以及其它一些未知功能的基因。采用RT-PCR验证了其中6个基因,均与芯片结果一致。从中可以推测,腺体的形成是多因素多基因共同作用的结果,它们通过相互调节并形成调控网络,从而直接或间接地导致腺体的形成。
     3.湘棉18腺体形成时期均一化全长cDNA文库构建:
     构建了湘棉18腺体形成时期的均一化全长cDNA文库,主要采用SMART (Switching mechanism at 5 end of RNA transcript)技术与DSN技术(Duplex-specific nuclease )相结合的方法,即mRNA逆转录后合成cDNA,经均一化处理,Sfi I酶切,连接在质粒载体,电转化,最后获得5.86×105个独立克隆,重组率高达94% ,插入片段的平均长度约为1.4 kb,从而成功建立棉花腺体形成相关基因的cDNA文库。通过均一化文库的建立,使文库中高丰度基因拷贝数有了很大程度的降低,而低丰度基因的丰度得到相对提升,从而大大增加了从文库中克隆发现新基因的概率,为克隆腺体形成相关基因奠定基础。
     4.棉花腺体形成相关的候选基因GAP1的克隆和分析
     从基因芯片筛选的与腺体形成相关的基因中,选取DW513956设计引物,对均一化全长文库进行PCR筛选,获得全长序列,命名为GAP1(GeneBank收录号:EU3703012)。GAP1基因全长为1203 bp的cDNA序列,开放阅读框起始位点为25bp处,终止位点为771bp处,编码248个氨基酸。蛋白分子量为33.09 KD,理论等电点pI为8.99,亚细胞定位在胞质内,GAP1属于疏水分泌性蛋白质,有一个信号肽,具分泌型过氧化物酶的保守区域。与烟草的过氧化物酶,红豆的过氧化物酶,大戟等的相似度较高,分别为75%,75%,73%。
     对GAP1基因,进一步应用原位杂交的方法分析其表达的具体部位,发现其mRNA的表达主要集中在植株的纤维化程度高的部位,如导管、厚壁细胞等位置,在薄壁细胞处表达量少。
     5.腺体形成相关的候选基因GhZIF的克隆和分析
     从基因芯片筛选的与腺体形成相关的基因中,选取DT463838进行了深入分析。首先对均一化全长文库进行PCR筛选,获得全长序列,命名GhZIF(GeneBank收录号:EU3703033)。GhZIF基因全长为1989 bp的cDNA序列,起始位点为135bp处,终止位点为1598bp处,编码487个氨基酸。蛋白分子量为53.75KD,理论等电点pI为5.79,亚细胞定位在质膜上,为疏水性,跨膜锚定蛋白,具转运蛋白保守区域。
     对GhZIF基因,其mRNA的时空表达研究发现,在腺体形成前有表达,在腺体形成后表达信号弱,在成熟植株细胞中,其mRNA的表达广泛,在薄壁细胞与维管束细胞都有分布。
     通过本研究,为了解腺体形成的分子机制奠定了坚实的基础,为从分子水平上认识棉花腺体和棉酚的相互关系开辟新的途径,具有理论意义和实践应用价值。
The content of secondary metabolite is closely related to the quantity of storage organ. Study on the molecular mechanism under the development of the storage organ can provide the theoretical direction for the effective agricultural practice. As the result, it is meaningful to study the correlation between the secondary metabolites and storage organ. As is well known, Gossypol and gland of cotton have been a good model for the research of genetic engineering.
     Gossypol, a secondary metabolite stored in the glands of cotton, protecting cottonseed from consumption of human and monogastric animal. More interestingly, this ability is unique to the tribe Gossypieae. Although the relationship between gossypol and pigment gland has been studied for a long time, the development mechanism of pigment gland has not been investigated at molecular level.
     In this study, the material we used is Xiangmian18, a mutant which had the special property of delayed pigment gland morphogenesis, i.e., the glands in the leave appeared to be normal in the plant, but the seeds have low gossypol level. Firstly,we studyed on the characteristics of gland development and detected the changes of the gossypol content and antioxidant enzyme activity. Secondly, differentially expressed genes were screened by high throughput screening technology based on difference in gland of cotton. Furthermore,we established a normalized and full-length cDNA library of its pigment formation phase and cloned candidate genes related gland formation followed by bioinformatics analysis of the selected genes. The results may pave the way for the further investigation the molecular mechanism of gland formation and the identification of genes directly related to gland formation.
     The main results of this research are as follows:
     1.The observation to gland formation and study on the resistance-related physiological parameters in cotton.
     The glands were formated after 48h germination in xiangmian18. In chuanmian2802 new gland grew after 36h germination. The diameter became bigger during the gland foramtion.The content of gossypol decreased during the early germination and rised slowly after 5d gernmination in chuanmian2802. The content showed a slow body growth tend in xiangmian18, consistent with chuanmian2802.
     The content of soluble suger and the content of soluble proteins tended to decrease in general during early germination of cotton and rise gradually after a weekly germination.
     The activity of POD,CAT and SOD increased during germination of cotton. The activities of antioxidant enzyme were highest in chuanmian2802, xiangmian18 was in second place, and xianwuN5 showed low activites.
     2. High through-out analysis of pigment gland formation related genes
     To reveal features of cotton gland development, the transcriptomes on several mutantants during the gland development have been compared. We studied gene expression profiles of Xiangmian18, chuanmian2802, XianwuN5 during cotton gland development using Affymetrix cotton GeneChip array that contains probes for about 23,977 genes. Comparative analysis among the post-gland formation, the undevelopment gland of Xiangmian 18 and chuan2802, the samples showed that 112 genes were up and 191 were down-regulated. Comparative analysis among chuanmian 2802, the post-gland formation, Xiangwu N5, the samples showed that 218 genes were up and 331 were down-regulated. These genes were classified into six major GO categories relevant to such biological processes as protein polymerization, microtubule-based, lipid biosynthetic process movement, response to oxidative stress, photosynthesis gene. Among them, 6 genes have been further confirmed with RT-PCR and the results were in accordance with the Genechip’s data. These genes were regulated by each other, playing roles directly or indirectly in the gland formation of cotton.
     3. Establishment of a normalized and full-length cDNA library at the stage of pigment gland formation
     A normalized cDNA library was constructed from upland cotton during its pigments gland forming age with SMART (Switching mechanism at 5 end of RNA transcript) technique and DSN technique (Duplex-specific nuclease). mRNAs were isolated from upland cotton;Then double-stranded cDNAs were synthesized from mRNAs and processed by normalization; digested with SfiI; and then the cDNAs were ligated to pDNR-LIB vector. The ligation mixture was transformed into E.coli JM109 by electroporation. Tittering results revealed that approximately 5.86×105 independent clones were included in this library. Electrophoresis gel results fragments ranged from 800 bp to 2 kb, with an average size of 1400 bp. Random picking clones showed that the recombination rate was 94%. Our successfully constructed cDNA library is a full-length library with high efficiency, and can be used to identify the forming genes related to development of pigments gland cottons.After normalizing, abundant classes of different genes tended to equalize, which can increase the chance to discover new genes.
     4 Cloning and analysis on the representative pigment development related gene GAP1.
     Based on the result of screening cotton microarray, the primers were designed according to DW513956. Using PCR to screen the constructed library, we got full length cDNA, named GAP1 (gland related protein1, GenBank number: EU3703012) The complete nucleotide sequence of GAP1 cDNA has 1203 bp and contains a long open reading frame of 747 bp. The predicted protein sequence derived from the open reading frame produces a 248-amino acid polypeptide, with a calculated molecular mass of 33.09 KD and a theoretical iso-electric point of 8.99; Protein subcellular location was predicted in the cytoplasm; the protein is hydrophobic property with a signal peptide, a peroxidase domain. There were 75%, 75%,73% homologic comparison with Nicotiana tabacum, Vigna angularis, Euphorbia pekinensis respectively.
     In situ hybridization was performed to analyze the expression pattern of GAP1 gene during the xiangmian18 different organs. The results showed that at the stage of gland formation in the seed germination, GAP1 gene expression at the gland development was stronger than gland no-development. The experiment showed that this gene was tissue specific. This gene was highly expressed in the vessel of stem cotton and phylogenetic of the leaves.
     5. Cloning and analysis on the representative pigment development related gene GhZIF.
     Based on the result of screening cotton microarray, the primers were designed according to DT463838. Using PCR to screen the constructed library, we got full length cDNA, named GhZIF (gland related protein 2, GenBank number: EU3703033) respectively.
     The complete nucleotide sequence of GhZIF cDNA has 1989 bp and contains a long open reading frame of 1464bp.The predicted protein sequence derived from the open reading frame produces a 487-amino acid polypeptide, with a calculated molecular mass of 53.75kD and a theoretical iso-electric point of 5.79; Protein subcellular location was predicted in the plasma membrane. The protein is hydrophobic property, which anchors membrane, containing a transporter domain.
     In situ hybridization was performed to analyze the expression pattern of GhZIF gene during the xiangmian18 different organs. The results showed that at the stage of gland formation in the seed germination, GhZIF gene expression at the gland no-development was stronger than gland development. This gene was highly expressed in the vessel of stem cotton,phylogenetic of the leaves and parenchyma cells.
     Therefore, the solid foundation had been laid for finding relevant genes and investigating their functions of cotton gland formation. It is significant to control the gland and the regulation and biosysthsis of gossypol at molecular level.
引文
[1]王莉,史玲玲,张艳霞,刘玉军.植物次生代谢物途径及其研究进展[J],武汉植物学研究,2007,25(5):500-508.
    [2]段传人,王伯初,徐世荣.环境应力对植物次生代谢产物形成的作用[J],重庆大学学报(自然科学版),2003,26(10):69-71.
    [3] Toni M, Kutchan. Ecological arsenal and developmental dispatcher:the paradigm of secondary metabolism[J],Plant Physl,2001,125(1):58-60.
    [4]陈晓亚,刘培.植物次生代谢的分子生物学及基因工程[J],生命科学,1996,8(2):8-11.
    [5]许智宏,陈晓亚.植物生物技术原理-植物次生代谢途径及其调控[M],北京:科学出版社,1998,37-45.
    [6]何水林,郑金贵,王晓峰,王燕华,许明,李斌莲,林明.植物次生代谢:功能、调控及其基因工程[J],应用与环境生物学报,2002,8(5):558-563.
    [7]周桂飞,徐茂军.植物次生代谢物质生物合成的研究[J],生物学通报,2005,40(12):12-14.
    [8]陈晓亚.植物次生代谢研究[J],世界科技研究与发展,2006 ,28(5):1-4.
    [9]陈大华,叶和春.植物类异戊二烯代谢途径的分子生物学研究进展[J],植物学报,2000,42(6):551-558.
    [10]赵玉军,叶和春,李国风,陈大华,刘彦.优系青蒿法呢基焦磷酸合酶基因的克隆和酶学分析[J],科学通报,2003,48(2):162- 166.
    [11]祝水金,季道藩,汪若海.澳洲野生棉种的子叶棉酚动态及与色素腺体形态的关系[J],棉花学报,1999,11(4):36-41.
    [12]杨涛,曾英.植物萜类合酶研究进展[J],云南植物研究,2005,27(1):110.
    [13] Ferreira J F S, Janick J. Floral morphology of Artemisia annua[J], Int.J.Plant Sci,1995,156(6):807-815.
    [14] Duke M V et al. Location of artemisinin and artemisitene in foliar tissures of glanded and glandless biotypes of Artemisia annua L[J], Int.J.plant Sci,1994,155:365-372.
    [15] Weather P J, Cheetham R D, Follansbee E et al. Artemisinin Production of Transduction roots of Artemisia annua[J],Biotechnology Letters,1994,16(2):1281-1286.
    [16] Tri J, Raharjoab, Ivy Widjajac, Sittiruk Roytrakulb, Robert Verpoorte. Comparative Proteomics of Cannabis sativa Plant Tissues[J], Journal of Biomolecular Techniques, 2004,15:97-106.
    [17] Turner JC, Hemphill JK, Mahlberg PG. Interrelationships of glandular trichomes and cannabinoid content: Developing pistillate bracts of Cannabis sativa L(Cannabaceae) [J], BullNarc, 1981, 33(2):59-69.
    [18] Kim ES, Mahlberg PG. Immunochemical localization of tetrahydrocannabinol (THC) in cryofixed glandular trichomes of Cannabis (Cannabaceae) [J], Am. J. Botany, 1997, 84:336.
    [19] Satoshi Morimoto, Yumi Tanaka, Kaori Sasaki, Hiroyuki Tanaka, Tomohide Fukamizu, Yoshinari Shoyama, Yukihiro Shoyama, Futoshi Taura. Identification and characterization of Cannabinoids that induce cell death through mitochondrial permeability transition in Cannabis leaf cells[J], J.Biol.Chem, 2007,282(28):20739-20751.
    [20] Kim ES, Mahlberg PG. Secretory vesicle formation in the secretory cavity of glandular trichomes of Cannabis sativa L (Cannabaceae) [J], Mol Cells, 2003, 15(3):387-395.
    [21] Kim ES, Mahlberg PG. Plastid development in disc cells of glandular trichomes of Cannabis (Cannabaceae) [J], Mol Cells, 1997,7(3):352-359.
    [22] Kim ES, Mahlberg PG. Early development of the secretory cavity of peltate glands in Humulus lupulus L (Cannabaceae) [J], Mol Cells, 2000,10(5):487-492.
    [23] Skadhauge E, Warui CN, Kamau JM, Maloiy GM. Function of the lower intestine and osmoregulation in the ostrich: preliminary anatomical and physiological observations[J],Q J Exp Physiol, 1984, 69(4):809-818.
    [24] Glenn W, Turner , Rodney Croteau. Organization of Monoterpene Biosynthesis in Mentha. Immunocytochemical Localizations of Geranyl Diphosphate Synthase, Limonene-6 -Hydroxylase, Isopiperitenol Dehydrogenase, and Pulegone Reductase [J], Plant Physiology, 2004, 136(12):4215-4227.
    [25] Jonathan Gershenzon, Massimo Maffei, Rodney Croteau. Biochemical and histochemical localization of monoterpene biosynthesis in the glandular trichomes of spearmint (Mentha spicata) [J], Plant Physiology, 1989,89(4):1351-1357.
    [26]王贤荣,向其柏.樱属植物叶腺体形态研究及其在分类中的意义[J],南京林业大学学报(自然科学版),1997,21(4):63-67.
    [27]桂明珠,王学东,李桂琴,胡宝忠,吴秀菊.黑穗醋栗腺体的研究[J],东北农业大学学报,1996,27(3):287-293.
    [28] Stuart F. Baum, Yuval Eshed, John L. Bowman. The Arabidopsis nectary is an ABC-independent floral structure[J], Development, 2001,128(22):4657-4667.
    [29] Yong-fang Xie, Baochu Wang, Yingfan Cai etal. Construction of cDNA library of cotton mutant (Xiangmian-18) library during gland forming stage, Colloids and Surfaces B[J], Biointerfaces,2007,34(3):189-195.
    [30] Shidiafat F Kulp Sk Kulp Sk. Gossypol arrests human benign prostatic hyperplastic cell growth at G0/G1 phase of the cell cycle [J], Anticancer Research, 1997, 17:1003-1009.
    [31] Ganesan Sunilkumar, LeAnne M, Campbell, Lorraine Puckhaber, Robert D. Stipanovic, Keerti S. Rathore. Engineering cottonseed for use in human nutrition by tissue-specific reduction of toxic gossypol[J], PNAS, 2006,103(48):18054-18059.
    [32]乔国平,王兴国.棉酚的制取及其用途[J],中国油脂,2002,27(3):58-59.
    [33]李志强,唐金泉,顾东.棉籽的营养价值与加工利用[J],中国畜牧杂志,2005,41(2):47-48.
    [34]乔国平,王兴国.棉酚的制取及其用途[J],中国油脂,2002,27(3):58-59.
    [35]邱新棉.试论低酚棉资源及其利用前景[J],中国棉花,2000,27(2):7-9.
    [36]朱乾浩.棉族色素腺体的利用[J],植物杂志,1992,19(1):36-37.
    [37]李琼芳,蔡应繁,谭永久.棉花抗黄萎病多菌系新抗源种质的研究[J],中国农业科学,1996,29(4):47-52.
    [38]张雪林,金林,张天真.种子低酚、植株有酚的棉花新品种[J],中国农业科学,2001,34(5):564-567.
    [39] Smith FH. Determination of gossypol in leaves and flower buds of Gossypium[J],Amer Oil Chem Soc,1971,44:267-269.
    [40] Smith FH. Biosynthesis of gossypol by excised cotton roots[J], Nature,1961,192:888-889.
    [41]梁婉琪,陈晓亚,Hashi T.亚洲棉(+)-δ-杜松烯合成酶基因CAD1-A的分离及其在幼苗中的表达特征分析[J],中国科学(C辑)2000,30(2):145-152.
    [42]王延琴,杨伟华,许江霞.棉子萌发过程中营养物质和棉酚的变化动态[J],中国棉花,2003,30(4):11-13.
    [43] Singh I. D, Weaver J. B. Studies on the heritability of gossypol in leaves and flower buds of gossypium[J], Crop Sci ,12(7):294-297.
    [44]项时康,杨伟华.棉属植物种子棉酚及其旋光体的研究[J],中国农业科学,1993,26(6):31-35.
    [45]祝水金.五个澳洲野生棉种色素腺体和棉酚性状研究[J],棉花学报, 1997,9(2):84-89.
    [46]丁亮,祝水金,胡丹艳,季道藩.比克氏棉和司笃克氏棉色素腺体形态建成的组织结构观察[J],棉花学报, 2003,15(1):17-22.
    [47]丁亮,祝水金,胡丹艳,季道藩.司笃克氏棉(G.stocki)色素腺体的形态建成与棉酚动态研究[J],作物学报, 2004,30(2):100-104.
    [48]祝水金,汪若海.陆地棉不同色素腺体基因对比克氏棉子叶色素腺体延缓形成性状的遗传效应[J],作物学报,1999,25(5):585-590.
    [49]祝水金,王红梅,宋小轩.亚洲棉×比克氏棉异源四倍体子叶腺体延缓发生特性的研究[J],棉花学报,1993,5(1):31-36.
    [50]祝水金,季道藩.澳洲野生棉种子叶色素腺体延缓形成性状的遗传研究[J],科学通报, 2001,45(2):132-137.
    [51] Zhu SJ, N Reddy , YR Jiang. Study on the introgression method for the delayed pigmentgland morphogenesis gene from Gossypium bickii into Upland cotton (G. hirsutum)[J], Plant Breeding,2005,124:590-594.
    [52]童旭宏,祝水金,季道藩.陆地棉子叶色素腺体延缓形成性状的表现与组织结构观察[J],棉花学报, 2005,17(3):137-140.
    [53] Wang GD, Li QJ, Luo B, Chen XY. Ex planta phytoremediation of trichlorophenol and phenolic allelochemicals via an engineered secretory laccase[J], Nature Biotechnology , 2004,22(7):893-897.
    [54] Wang S, Wang JW, Yu N, Li CH, Luo B, Gou JY, Wang LJ, Chen XY. Control of plant trichome development by a cotton fiber MYB gene[J], Plant Cell, 2004,16(9): 2323-2334.
    [55] Xu YH, Wang JW, Wang S, Wang JY, Chen XY. Characterization of GaWRKY1, a cotton transcription factor that regulates the sesquiterpene synthase gene (+)-?-Cadinene synthase-A[J], Plant Physiology,2004, 135(1):507-515.
    [56] Liu CJ, Heinstein P, Chen XY. Expression pattern of genes encoding farnesyl diphosphate synthase and sesquiterpene cyclase in cotton suspension cultured cells treated with fungal elicitors[J], Molecular Plant-Microbe Interactions,1999,12(12): 1095-1104.
    [57] Lu S, Xu R, Jia JW, Peng J, Matsuda SPT, Chen XY. Cloning and functional characterization of a-δ-pinene synthase from Artemisia annua L. That shows a circadian pattern of expression[J], Plant Physiology, 2002, 130(1):477-486.
    [58] Luo P, Wang YH, Wang GD, Essenberg M, Chen XY. Molecular cloning and functional identification of (+)-δ-cadinene-8-hydroxylase, a cytochrome P450 monooxygenase (CYP706B1) of cotton sesquiterpene biosynthesis[J],Plant Journal ,2001,28(1):95-104.
    [59] Tan XP, Liang WQ, Liu CJ, Luo P, Heinstein P, Chen XY. Expression pattern of (+)-δ-cadinene synthase genes and biosynthesis of sesquiterpene aldehydes in plants of Gossypium arboreum L[J], Planta ,2000,210(4): 644-651.
    [60] Jia, J.W., Crock, J., Lu, S., Croteau, R. and Chen*, X.Y.. (3 R )-Linalool Synthase from Artemisia annua L.: cDNA Isolation, Characterization and Wound-Induction. Arch. Biochem. Biophy. 1999, 372(1): 143-149.
    [61] Chen X Y, Chen Y, Heinstein P, et al. Cloning, expression, and characterzation of (+)-δ-cadinene synthase: a catalyst for cotton phytoalexin biosynthesis[J], Arch Biochem Biophys, 1995,324:255-266.
    [62] Townsend BJ, Poole A, Blake CJ, Llewellyn DJ. Antisense suppression of a (+)-delta-cadinene synthase gene in cotton prevents the induction of this defense response gene during bacterial blight infection but not its constitutive expression[J], Plant Physiol, 2005,138 (1):516-528.
    [63] Benedict CR, Martin GS, Liu J, Puckhaber L, Magill CW. Terpenoid aldehyde formation and lysigenous gland storage sites in cotton: variant with mature glands but suppressed levels of terpenoid aldehydes[J], Phytochemistry,2004,65 (10):1351-1359.
    [64] Martin GS, Liu J, Benedict CR, Stipanovic RD, Magill CW. Reduced levels of cadinane sesquiterpenoids in cotton plants expressing antisense (+)-delta-cadinene synthase[J], Phytochemistry,2003,62 (1):31-38.
    [65] Liu JingGao, Benedict C.R, Stipanovic R.D, Bell A.A. Purification and characterization of S-adenosyl-L-methionine: desoxyhemigossypol-6-O-methyltransferase from cotton plants. An enzyme capable of methylating the defense terpenoids of cotton[J], Plant Physiology, 1999,121(3):1017-1024.
    [66]邓德旺.陆地棉植株色素腺体空间分布模式的多样性及其选择[J],华北农学报,1990,5(4):61-66.
    [67]张雪林,曾潜,何淑军.优质杂交棉选育初报[J],湖南农业科学, 2000,86(2):19-20.
    [68]张雪林,金林,曾昭云,张天真.湘棉18号的选育初报[J],中国棉花,2000,27(10):18-19.
    [69]芮菊生,杜懋芩,陈海明,等.组织切片技术[M].第1版.北京:人民卫生出版社,1980.
    [70] GB13086-91饲料中游离棉酚的测定方法[M],中国标准出版社,1991.
    [71]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社, 2000.
    [72]张志良.植物生理学实验指导(第二版)[M].北京:高等教育出版社,1990.
    [73]荆家海,丁钟荣译.植物生物化学分析方法[M].科学出版社,1981.
    [74]王爱国.大豆种子SOD研究.植物生理学报, 1983, 9: 77-84
    [75] Hiraga, S., Sasaki, K., Ito, H., Ohashi, Y., Matsui, H., A large family of class III plant peroxidases [J]. Plant Cell. Physiol. 2001,42, 462-468.
    [76] CX Li, SL Feng, Y Shao, LN Jiang, XY Lu, XL Hou. Effects of arsenic on seed germination and physiological activities of wheat seedlings.J Environ Sci, 2007, 19(6): 725-32.
    [77] Foyer CH,Descourvleres P,Kunert KJ.Prolection against oxygen radlcals:an important defence mechanism study in transgenc plants. [J].Plant Cell Enviorn,1994,17(3):507-523.
    [78]朱美霞,李永起,戴小枫.棉酚腺体与棉酚生物合成及低酚棉育种[J],分子植物育种,2004,2(3):307-312.
    [79]马立人,蒋中华.生物芯片(第二版)[M],北京:化学工业出版社,2000.
    [80] Schena M, Shalon D , Davis R W, et al. Quantitative monitoring of gene expression patterns with a complementary DNA microarray[J], Science,1995,270:467-470.
    [81] Lemieux B , Aharoni A , Schena M. Overview of DNA chip technology[J], Mol Breeding , 1998,4:277-289.
    [82] Nordin K,Vakala, Palva E T. Differential expression of two related low-temperature-inducedgenes in Arabidopsis thaliana(L) [J], Plant Molecular Biology,1993, 21: 641-653.
    [83] Gilmour S J, Zarka D G, Stockinger E J, Salazar M P, Houghton J M, Thomashow M F. Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression[J], The Plant Journal, 1998,16(4): 433-442.
    [84] Shinozaki K,Yamaguchi-Shinozaki K. Molecular Responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways[J], Current Opinion in plant Biology, 2000,3: 217-223.
    [85] Jaglo-Ottosen K R, Gilmour S J, Zarka D G, Schabenberger O, Thomashow M F. Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance[J],Science, 1998, 280: 104-106.
    [86]蔡应繁,莫剑川,曾宇,任薇薇,苗琛,徐莺,王胜华,陈放.抑制性消减杂交方法克隆棉突变材料腺体发育相关的cDNAs[J],北京林业大学学报,2003,25(3):6-10.
    [87]马立人,蒋中华.生物芯片(第二版)[M],北京:化学工业出版社,2000.
    [88] Doris Wagner, Frank Wellmer, Kieran Dilks, Dilusha William, Michael R. Smith, Prakash P. Kumar, JoséLuis Riechmann, Andrew J. Greenland, Elliot M. Meyerowitz Floral induction in tissue culture: a system for the analysis of LEAFY-dependent gene regulation [J],The Plant Journal, 2004,39(2):273-282.
    [89] Siobhan M. Brady, Shuang Song Kanwarpal S. Dhugga, J. Antoni Rafalski , Philip N. Benfey. Combining Expression and Comparative Evolutionary Analysis[J], Plant Physiology, 2007,143:172-187.
    [90] Li X.B, Cai L, Cheng N.H, Liu J.W. Molecular characterization of the cotton GhTUB1 gene that is preferentially expressed in fiber[J], Plant Physiol,2002,130:666-674.
    [91] J I S.J, Lu Y.C, Feng J.X, Wei G, Li J, Shi Y.H, Fu Q, Liu D, Luo J.C,Zhu Y.X. Isolation and analyses of genes preferentially expressed during early cotton fiber development by subtractive PCR and cDNA array[J], Nucleic Acids Res, 2003,31:2534-2543.
    [92] Yong Woo, Jason Affourtit, Sandra Daigle, Agnes Viale, Kevin Johnson, Jurgen Naggert, Gary Churchill. Affymetrix GeneChip Gene Expression Microarray Platforms[J], J. Biomol. Tech, 2004,15(12):276-284.
    [93] Jinwook Seo, Marina Bakay, Yi-Wen Chen, Sara Hilmer, Ben Shneiderman, Eric P, Hoffman. Interactively optimizing signal-to-noise ratios in expression profiling: project-specific algorithm selection and detection p-value weighting in Affymetrix microarrays[J], Bioinformatics, 2004, 20(11):2534-2544.
    [94] Agrawal A.A., and Karban R., Specificity of constitutive and induced resistance: pigment glands influence mite and caterpillars on cotton plants[J], Entomologia ExperimentalisetApplicata, 2000,96: 39-49.
    [95] Hedin P.A,Parrott WD.,and Jerkins J.N., Effects of cotton plant allelochemicals and nutrients on behavior and development of tobacco budworm[J], Journal of Chemical Ecology, 1991, 17:1107-1122.
    [96]朱美霞,李永起,戴小枫.棉酚腺体与棉酚生物合成及低酚棉育种[J],分子植物育种,2004,2(3):307-312.
    [97] Loake G. J. , Choudhary, A. D. Harrison, M. J. Mavandad M. Lamb, C. J. Dixon R. A. Phenylpropanoid Pathway Intermediates Regulate Transient Expression of a Chalcone Synthase Gene Promoter[J],Plant cell, 1991, 3(8): 829-833.
    [98] Melinda J. Mayer, Arjan Narbad, Adrian J. Parr, Mary L. Parker, Nicholas J. Walton, Fred A. Mellon, Anthony J. Michael, Rerouting the Plant Phenylpropanoid Pathway by Expression of a Novel Bacterial Enoyl-CoA Hydratase/Lyase Enzyme Function[J], Plant cell, 2001, 13(7): 1669-1671.
    [99] Cui K M, Zhang Z M, Li J H. Changes of peroxidase, esterase isozyme activities and some cell inclusions in regenerated vascular tissues after girding in Broussonetia papyrifera (L.) [J], Vent Trees,1995, 9:165-170.
    [100]魏建华,宋艳如.木质素生物合成途径及调控的研究进展[J],植物学报,2001,43:771-779.
    [101] Sederoff R R, Mackay J J, Ralph J. Unexpected variationin lignin[J],Current Opin Plant Biol,1999,2:145-152.
    [102] Nose M,et al. Evidence for sequential biosynthetic steps during lignin polymerization[J]. Phytochemistry,1995,39:71-79.
    [103] pelel Z, Ogras T, Altinkut A. Reduced leaf peroxidase activity is associated with reduced lignin content in transgenic poplar[J], Plant Biotech,1999,16:381-387.
    [104] Chang G, Roth C B. Structure of MsbA from E. coli: a homolog of the multidrug resistance ATP binding cassette (ABC) transporters[J],Science, 2001, 293: 1793-1800.
    [105] Locher K P, Lee A T, Rees D C. The E. coli BtuCD structure: a framework for ABC transporter architecture and mechanism[J], Science,2002, 296: 1091-1098.
    [106] Jasinski M, Stukkens Y, Degand H, et al.. A plant plasma membrane ATP binding cassette-type transporter is involved in antifungal terpenoid secretion[J], Plant Cell, 2001, 13: 1095-1107.
    [107] Bao W, O′Malley D M, Whetten R, Sedero R R. A laccase associated with lifgnification in loblolly pine xylem[J],Science, 1993,260: 672-674.
    [108] Wang G.D., Chen X.Y. Laccase: properties, catalytic mechanism,and applicability[J],Chinese Bulletin of Botany,2003,20(4):469-475.
    [109] Sterjiades R, Dean JFD, Eriksson KE,. Laccase fromsycamoremaple (Acerpseudoplatanus) polymerizesmonolignols[J],Plant Physiol, 1992,99: 1162-1168.
    [110] Wang GD, Li QJ, Luo B, Chen XY, Ex planta phytoremediation of trichlorophenol and phenolic allelochemicals via an engineered secretory laccase[J], Nat Biotechnol , 2004 ,22 (7): 893-897.
    [111]沈倍奋.分子文库[M].北京:科学出版社,2001.
    [112] Zhu Y Y, Machleder E M, Chenchik A, Li R , Siebert P D.Reverse transcriptase template switching,a SMART approach for full-length cDNA library construction[J], Biotechniques, 2001,30:892-897.
    [113]王强,刘秋云,李宝健.发法现新基因的高效方法cDNA文库的复性式均一化技术[J],遗传,2002,24(3):325-328.
    [114] Pavel A. Zhulidov , Ekaterina A, Bogdanova, Alex S. et al. Simple cDNA normalization using kamchatka crab duplex-specic nuclease[J], Nucleic Acids Research, 2004, 32( 3):37-38.
    [115] Shagin, Rebrikov, Kozhemyako et al. A novelmethodfor SNP detection using a new duplex-specific nuclease from crab hepatopancreas[J],Genome Research,2002,12:1935-1942.
    [116] Patanjali S R, Parimoo S , Weissman S M. Construction of a Uniform-abundance (normalized) cDNA library[J], Proceedings of the National Academy of Sciences ofthe USA, 1991,88:1943-1947.
    [117] Caminci P, Shibata Y, Hayatsu N, Sugahara Y, Shibata K, Itoh M, Konno H, Okazaki Y, Mummatsu M, Hayashizaki Y. Normalization and subtraction of captrapper-selected cDNAs to prepare full-length cDNA libraries for rapid discovery of new genes[J],Genome Research,2000,10:1617-1630.
    [118] Bonaldo MF, Lennon G, soares M B. Normalization and subtraction: Two approaches to facilitate gene discovery[J],Genome Res, 1996, 6:791-806.
    [119] Soares M B, Bonaldo M F, Su L. Construction of a normalized cDNA Library[J], Proc Natl Sci USA, 1994,91:9228-9232.
    [120] Sambrook J , Russell D W. Molecular Cloning : A laboratory Manual[M], New York : Cold Spring Harbor Laboratory Press , 2001.
    [121] Sambrook J, Fritsch E F, Maniatis T. Molecular Cloning a Laboratory manual[M], New York:Cold Spring H arbor Laboratory Press,1989.
    [122]张庆华,茅矛,陈竺.基因组研究中全长cDNA克隆的策略[J],生物工程进展,2000, 20(4):3-5.
    [123] Manjula DAS, Isabelle Harvey,Lee lee chu,Jerry Pelletitr .Full-length cDNAs: more than just reaching the ends[J],Physiol Genomics, 2001, 6(7): 57.
    [124] Soares MB, Bonaldo MDF, Jelene P, Su L, Lawton L, Efstratiadis A. Construction andCharacterization of a Normalized cDNA Library[J],PNAS, 1994, 91(9): 9228- 9232.
    [125] Ruijter Jan M, H. C.Antoine, Van Kampen, Frank Baas. Statistical evaluation of SAGE libraries: consequences for experimental design[J], Physiol Genomics, 2002, 11(10): 37.
    [126] Carninci P ,Nishiyama Y, Nishiyama Y. High-efficiency full-length cDNA coning by biotinylated CAP trapper[J], Genomies, 1996, 37(1):327-336.
    [127] Maruyama K,Sugano S. Oligo-capping:A simple method to replace the cap structure of eucaryotic mRNA with oligoribonucletides[J],Gene, 1994,138(12):171-174
    [128] Suzuki Y,Sugano S.The oligo- capping method[J],Methods Mol Biol,2001,175:143- 153.
    [129] Carninci P,Kvam C,Kitamura A,et al.High efficiency selection of full- length cDNA by improved biotinylated cap trapper[J],DNA Res,1997,4(1):61- 66.
    [130] Efimov V A,Chakhmakhcheva O G,Archdeacon J,Fernandez J M.Detection of the 5'-cap structure of messenger RNAs with the use of the cap-jumping approach[J], Nucleic Acids Res, 2001,29(22): 4751– 4759.
    [131]储昭晖,彭开蔓,张利达,等.水稻全生育期均一化cDNA文库的构建和鉴定[J],科学通报,2002,47(21):1656-1662.
    [132] Xu J W,Zhu Z,Li X G. Isolation and identification of starch synthase cDNA using a simple procedure based on PCR [J]. High Techn Inform,2001, 8:1-6.
    [133] Green ED, Olson MV,Chromosomal region of the cystic fibrosis gene in yeast artificial chromosomes: a model for human genome mapping[J], Science, 1990, 250:94-98.
    [134] Delannoy E, Marmey P, Jalloul A. Molecular analysis of class III peroxidases from cotton[J], J Cotton Sci , 2006,10:53-60.
    [135]田国忠,李怀方.植物过氧化物酶研究进展[J],武汉植物学研究,2001,19(4):332-344.
    [136] Susumu Hiraga, Katsutomo Sasaki, Hiroyuki Ito, Yuko Ohashi, Hirokazu Matsui. A Large Family of Class III Plant Peroxidases[J], Plant Cell Physiol, 2001,42 (5):462-468.
    [137]郭瑛,郭旺珍,张天真.两个陆地棉过氧化物酶cDNA的克隆和鉴定[J],作物学报2007,33(6):87-89.
    [138] Prasad T. K, Anderson M. D, Stewart C. R. Localization and haracterization of Peroxidases in the Mitochondria of Chilling-Acclimated Maize Seedlings[J], Plant Physiology,1995, 108(8): 1597.
    [139]张永,唐英春.病原菌质子驱动型外排泵分子机制研究进展[J],国外医药.抗生素分册,2004,25(1)6-7.
    [140] Li L, He Z, Pandey GK, Tsuchiya T, Luan S.Functional cloning and characterization of a plant efflux carrier for multidrug and heavy metal detoxification..J Biol Chem. 2002,277(7):5360-5368.
    [141]孙其飞,刘细保,孙启鸿,王松灵.Sialin (SLC17A5)在腮腺、颌下腺及颌下腺细胞系HSG表达的初步分析[J],北京口腔医学,2006,14(1):14-16.
    [142] Blix F G, Gottscharlk A, Klenk E. Proposed nomenclature in the field of neuraminic and sialic acid[J], Nature,1957,179:1088.
    [143] Roseman S. The synthesis of carbohydrates by multiglycosyltrans ferase systems and their potential function in intercellular adhesion [J], Chem Phys Lip ids,1970,5:270-297.
    [144] Shen G J, Datta A K, IzumiM, et al. Expression ofα-9 /α-2 polysialyltransferase from Escherichia coli K92 [J], J Biol Chem, 1999,274(49):35139-35146.
    [145] Matthias Eckhardt, Martina Mühlenhoff, Andrea Bethe, Rita Gerardy-Schahn, Expression cloning of the Golgi CMP-sialic acid transporter[J],PNAS,1996, 93(6):572-7576.
    [146] Kazuhisa Aoki, Nobuhiro Ishida, Masao Kawakita. Different sets of transmembrane helices are utilized for the recognition of UDP-galactose and CMP-sialic acid[J], J.Biol.Chem, 2001,276(6):21555-21561.
    [147] R Misaki, K Fujiyama, T Seki. Expression of human CMP-N-acetylneuraminic acid synthetase and CMP-sialic acid transporter in tobacco suspension-cultured cell[J], Biochem Biophys Res Commun, 2006, 339(4):1184-1189.
    [148] Patricia Berninsone, Matthias Eckhardt, Rita Gerardy-Schahn, Carlos B. Hirschberg. Functional Expression of the Murine Golgi CMP-Sialic Acid Transporter in Saccharomyces cerevisiae[J], J. Biol. Chem, 1997, 272(5): 12616-12619 .

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700