力达霉素单药及联合吉非替尼抗非小细胞肺癌的分子机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肺癌是世界上死亡率最高的恶性肿瘤之一,其中超过80%的是非小细胞肺癌。虽然近年来外科手术、放疗和化疗方面的进展在一定程度上提高了肺癌患者的生存时间和生存质量,但肺癌的5年生存率仍然只有14%,而且患者确诊为肺癌时多已发生远端转移。早期诊断率低、肺癌细胞对常用化疗药物的固有或继发性耐药和高的肿瘤转移率是导致治疗失败的重要原因。因此,临床上迫切需要高效低毒的新药。
     力达霉素(Lidamycin,LDM)是本研究所从一株放线菌(Streptomycesglobisporus C-1027)代谢产物中获得的对多种肿瘤细胞有强烈杀伤作用的大分子肽类抗肿瘤抗生素。大量研究表明,LDM对多数肿瘤细胞及移植瘤具有极强的抗肿瘤活性,这都源于LDM对DNA的强烈地切割作用。最近研究显示LDM可引起肿瘤细胞染色体畸变及端粒功能异常。目前正在进行临床Ⅱ期试验研究。本课题选用3种人非小细胞肺癌A549,H460及H157细胞株,探讨LDM体外体内对人非小细胞肺癌的影响及其作用机制。此外,本课题还初步研究了LDM联合gefitinib对表达不同水平EGFR的A431细胞及H460细胞的影响,并比较了两药对H460移植瘤的抑制作用,从而为LDM联合gefitinib的临床应用提供依据。
     一、LDM作用于非小细胞肺癌的体外实验研究
     1、MTT结果显示LDM显著抑制人表皮样癌A431、人肺腺癌A549、人大细胞肺癌H460、人肺鳞癌H157、人巨细胞性肺癌801D及人高转移性巨细胞肺癌PG等肿瘤细胞的增殖。LDM对这些细胞的IC_(50)值分别为1.12×10~(-10)±1.10×10~(-10)M、3.65×10~(-12)±2.94×10~(-12)M、2.41×10~(-12)±1.15×10~(-12)M、1.24×10~(-10)±1.14×10~(-10)M、5.66×10~(-12)±1.13×10~(-12)M、2.40×10~(-11)±1.16×10~(-11)M,细胞增殖抑制作用显著强于常用抗肿瘤化疗药。
     2、Hoechst33342荧光染色法和Annexin V-FITC/PI染色法结合流式细胞仪检测LDM对H460、H157、A549细胞凋亡的诱导作用。结果显示不同浓度LDM作用细胞48 h后,细胞凋亡率剂量依赖性地增高。H460细胞对LDM的凋亡诱导作用最敏感,0.5 nM的LDM可诱导43.30±4.26%的H460细胞发生早期凋亡,2 nM剂量下可以产生69.87±3.29%的凋亡细胞。LDM也可显著诱导H157细胞及A549细胞发生早期凋亡,但凋亡程度较H460弱。荧光显微镜下可见1 nM、5 nM LDM组的细胞出现染色质凝集、细胞核固缩、形成凋亡小体等典型的凋亡细胞形态学改变。TUNEL法检测结果也显示,LDM可剂量依赖地诱导H460及H157细胞凋亡。
     3、PI单染结合流式细胞仪检测LDM对细胞周期的影响。结果显示,小于1 nM的LDM主要将细胞阻滞于G2/M期,1 nM及2 nM LDM可同时引起S期和G2/M期阻滞。同时检测的SubG1细胞剂量依赖地增加也证实了LDM对凋亡的诱导作用。在1 nM、2nM剂量下,LDM可分别引起H460细胞39.45±3.75%及52.55±4.45%的细胞产生Sub-G1峰,同样剂量的LDM也显著诱导H157及A549细胞的凋亡,但凋亡的程度不如H460细胞的显著。
     4、Western bloting法检测了LDM对细胞周期及凋亡相关蛋白的影响。结果显示LDM剂量依赖地诱导3种非小细胞肺癌细胞Caspase-3、Caspase-7的活化及PARP的切割,显著下调凋亡抑制蛋白Bcl-2及NF-κB的水平,诱导细胞产生caspase介导的凋亡。同时LDM还可上调p53及p21蛋白的表达及下调CyclinB1蛋白的表达,引起G2/M期阻滞。
     5、利用Transwell实验观察LDM对非小细胞肺癌细胞的迁移和侵袭能力的影响。实验结果显示,LDM对3种非小细胞肺癌细胞的迁移和侵袭能力均有显著的抑制作用,并呈明显的剂量依赖关系。
     6、利用明胶酶谱法观察LDM对3种非小细胞肺癌细胞基质金属蛋白酶的影响。结果显示,LDM可剂量依赖地显著抑制各细胞MMP-9的分泌,并显著抑制H157细胞MMP-2的分泌及活化,而对H460及A549细胞的MMP-2无显著影响,进一步证实了LDM的抗侵袭迁移的能力。
     7、Western bloting法测定了LDM对侵袭和迁移相关靶点分子的影响。结果显示LDM可剂量依赖地下调3种非小细胞肺癌细胞KDR,VEGF,COX-2,及MMP-9、MMP-2的表达及活性,但下调的程度不尽相同。
     8、Western bloting法结果显示LDM可通过影响3种非小细胞肺癌细胞EGFR信号通路各信号分子的磷酸化水平从而起到抑制细胞增殖、诱导细胞凋亡、周期阻滞及抗侵袭的作用。虽然LDM对于3种细胞EGFR通路上多数信号分子产生不同的效应(可能与细胞的类型不同有关),但经LDM处理后3种细胞最显著的相同之处为RAF/MEK/ERK通路的激活,即LDM剂量依赖地增强了MEK及ERK的磷酸化水平。
     9、Western bloting法及Annexin V-FITC/PI双染法结果显示MEK抑制剂U0126可部分消除LDM引起的ERK的活化,同时也可减轻LDM诱导凋亡的程度,说明ERK通路参与了LDM的凋亡诱导作用。
     二、LDM作用于非小细胞肺腺癌的体内实验研究
     利用人肺腺癌A549裸鼠移植瘤模型检测LDM的体内抗肿瘤作用。LDM剂量为0.02 mg/kg的抑瘤率为39.5%,0.04 mg/kg的抑瘤率为57.6%,与对照组相比有显著性差异。
     三、LDM与gefitinib联合作用的体外实验研究
     1、MTT法观察了gefitinib对A549、H460、H157及A431细胞的增殖抑制作用。Gefitinib对EGFR高表达A431细胞的IC_(50)值为0.28±0.03μM,远小于对EGFR表达适中的3株非小细胞肺癌细胞的IC_(50)值(16.04±2.96μM~19.57±6.6μM)。选择对gefitinib最不敏感的H460细胞及最敏感的A431细胞进行后续的联合作用的研究.
     2、MTT法比较了三种联合给药顺序对人H460细胞的联合抑制作用。结果显示先加LDM,8 h后加gefitinib联合效果较好。多数联合剂量有协同增殖抑制作用(CDI<1),其中0.1 nM LDM与5μM gefitinib联合作用时,对H460细胞协同增殖抑制作用非常显著(CDI<0.70)。同样经过这种给药方案处理后,一定的联合剂量下两药对A431细胞有协同增殖抑制作用,其中0.01 nM LDM与0.1μM gefitinib联合对A431细胞具显著地协同增殖抑制作用(CDI<0.70)。
     3、用Annexin V-FITC/PI双染结合流式细胞术检测LDM与gefitinib对H460及A431细胞的凋亡诱导作用。结果显示随着两药剂量的增加凋亡细胞的比率渐增。LDM显示了强大的凋亡诱导作用,2 nM的LDM可分别诱导69.87±3.29%(P<0.001)的H460细胞、63.2±1.39%(P<0.001)的A431细胞发生凋亡。而gefitinib对敏感细胞A431的凋亡诱导作用较强。1μM的gefitinib诱导30.70%±1.69%(P<0.01)的A431细胞发生凋亡;而对不敏感细胞H460,20μM gefitinib仅引起13.60±1.37%(P<0.05)的细胞发生凋亡。
     4、Annexin V-FITC/PI染色法观察两药联合对凋亡的诱导作用。结果显示在低剂量组合下,0.01 nM的LDM与0.1μM的gefitinib联合对A431的凋亡诱导率为31.87%,明显高于两药单独作用引起的凋亡率6.71%及12.79%;在高剂量组合下,0.1 nM的LDM与1μM的gefitinib联合对A431的凋亡诱导率为53.93%,明显高于两药单独作用引起的凋亡率21.45%及31.89%。Gefitinib单药对H460细胞的凋亡诱导作用较弱,但LDM可增强gefitinib对于凋亡的诱导作用。0.5 nM的LDM与20μM的gefitinib联合对H460细胞的凋亡诱导率为53.85%,高于两药单独作用引起的凋亡率42.88%及12.63%。以上结果说明联合用药对gefitinib敏感细胞的凋亡诱导率显著高于单独用药,不敏感细胞联合用药后显示略强于单独用药的凋亡诱导作用。
     5、Western bloting法测定单药及联合用药对PARP的切割作用及对凋亡抑制蛋白NF-κB的作用。在A431细胞中观察到gefitinib剂量依赖地增强了PARP的切割。两药联合引起PARP切割的显著增强。然而,在试验剂量下,gefitinib几乎不能引起H460细胞的PARP切割。两药联合作用后的效果与LDM单药相似,仅在10μMgefitinib与0.5 nM LDM联合作用时才显示略强于单药的作用。联合用药可显著降低两种细胞的NF-κB水平,从而增强了单药的凋亡诱导作用。
     6、Western bloting法检测了联合用药对H460及A431细胞EGFR通路信号分子的影响。结果显示0.01 nM的LDM与0.1μM、1μM gefitinib联合较单药显著地降低了A431细胞p-EGFR,p-ERK及p-Akt水平。对于H460细胞,在0.5 nM LDM与10μM gefitinib剂量组合下,联合作用较单药可略微降低p-EGFR的水平,但联合用药可显著抑制EGF引起的H460细胞EGFR及AKT磷酸化水平的增高。
     四、LDM与gefitinib对于大细胞肺癌H460裸鼠移植瘤的抑制作用
     利用人大细胞肺癌H460裸鼠移植瘤模型检测LDM的体内抗肿瘤作用。结果显示,LDM和gefitinib对H460移植瘤的生长均有抑制作用,并且LDM显示出更强的抑瘤效果。0.025 mg/kg、0.05 mg/kg的LDM对移植瘤的抑瘤率分别为52.8%及72.4%,与生理盐水对照组相比有显著性差异。50 mg/kg的gefitinib的抑瘤率为69.4%,与0.5%Tween 80溶剂对照组相比有显著性差异,与可耐受剂量0.05mg/kg LDM组抑制作用相当。
Lung cancer is the leading cause of cancer deaths worldwide. Non-small cell lung cancer (NSCLC) accounts for 80% of lung cancer patients. In spite of new treatments, the overall five-year survival rate remains about 14% and most patients present with advanced disease. Treatment outcomes for NSCLC patients still are considered disappointing because of chemo-resistance and dose-accumulated toxicity.
     LDM showed extremely potent cytotoxicity toward culture cancer cells and markedly inhibited the growth of transplantable tumors in mice and human cancer xenografts in nude mice. The potent efficacy of LDM was ascribing to its DNA strand-scission activity. Recent study displayed the chromosomal aberrations and telomere dysfunction induced by LDM. LDM is currently being evaluated in phase II clinical trials as a potential chemotherapeutic agent in China.
     Studies on the molecular mechanisms of LDM alone and in combination with gefitinib against NSCLC were investigated.
     1. Effects of LDM on NSCLC cells in vitro
     1.1. Antiproliferative activities were measured by MTT assays. Remarkable growth inhibition effects of LDM were found in all tested NSCLC cell lines. The IC50 values of LDM for all the cell lines tested were much lower than those of the other chemotherapeutic drugs.
     1.2. Flow cytometry combined with FITC-Annexin V/PI staining showed that LDM induced apoptosis of NSCLC cells dose-dependently. H460 cell line was the greatest sensitive cells which consisted of 43.30%±4.26% ( P<0.001) apoptotic cells after exposure to 0.5 nM LDM and the apoptotic cells induced by 2nM LDM reached 69.87±3.29% (P<0.001). LDM also induced significant apoptosis in H157 and A549 cells, but the extent of apoptosis was lower than that of H460 cells.
     The Hoechst 33342 staining was used to assess the change in nuclear morphology after the treatment of LDM. The nuclei of untreated cells and low concentration LDM treated cells were normal and exhibited diffused staining of the chromatin. After exposure to LDM for 48 h, most cells of the three cell lines treated with 1nM and 5nM LDM presented typical morphological changes of apoptosis such as chromatin condensation, nucleus shrink and the formation of apoptotic bodies.
     The ratios of apoptosis cells detected with TUNEL method were increased with the concentration of LDM increasing in H460 cells and H157 cells.
     1.3. The flow cytometric cell cycle analysis showed that LDM at the doses of below 1 nM induced G_2/M arrest, 1nM and 2nM LDM produced an S-phase block in addition to G2/M arrest.
     Sub 2N DNA formation was assessed for measuring apoptosis quantitatively. The peak effect was in dose dependent and achieve to the maximum percentage of 52.55±4.45 of apoptotic cells in H460 cells exposed to 2 nM of LDM. At 1 nM and 2 nM, LDM also induced significant apoptosis in H157 and A549 cells, but the extent of apoptosis was lower than that of H460 cells.
     1.4. Western blotting showed that LDM significantly increased caspase-3 and caspase-7 activities as well as PARP cleavage. The decreased Bcl-2 and NF-κB indicated that mitochondria-caspase cascade was responsible for LDM-induced apoptosis. The decreased CyclinB1 and the up-regulated of P53 and P21 were the potent evidence for G_2/M phase arrest.
     1.5. The effects of LDM on the migration and invasion of the NSCLC cells were examined with transwell chamber assay. A dose dependent reduction in migration or invasion of the three cell lines was found after exposure to various concentrations of LDM. Both of H157 and A549 cells have high invasion activities; however, H460 cells have the weakest migration and invasive activity.
     1.6. Zymography analysis showed that LDM strongly inhibited the secretion of MMP-9 in all the tested cells and the secretion and activation of MMP-2 in HT-1080 cells and H157 cells dose dependently. However, the MMP-2 levels in H460 cells and A549 cells were little affected by LDM.
     1.7. Western blot analysis showed that LDM downregulated the levels of KDR, VEGF, COX-2, MMP-9 and MMP-2 dose dependently with different extent in the three cell lines.
     1.8. Western blot analysis showed that LDM exhibited potent effects of antiproliferation, apoptosis induction, cell cycle arrest and anti-invasion by regulating the activities of EGFR signaling pathway targets, although to the various extents in different cell lines. The most significant coincidence was the activation of RAF/MEK/ERK signal pathway in the three cell lines.
     1.9. Western blot analysis and FITC-Annexin V/PI staining showed that the up-regulations of p-ERK1/2 levels in the three cells treated with LDM were ablated by U0126 (MEK1/2 inhibitor). Meanwhile, U0126 attenuated apoptosis induced by LDM. The results indicated a correlation between LDM-mediated apoptosis and ERK activation.
     2. In vivo antitumor activity of LDM on A549 xenografts
     Treatment with LDM at the doses of 0.02 mg/kg and 0.04 mg/kg inhibited the growth of human adenocarcinoma A549 xenografts by 39.5% and 57.6%, respectively. The body weights of animals showed no significant differences between control and treated groups.
     3. Effects on H460 cells and A431 cells by the combination of LDM with gefitinib
     3.1. MTT assay showed that LDM was much more potent than gefitinib since the IC_(50) values of LDM for cell lines tested were lower than those of gefitinib. The levels of EGFR were associated with the sensitivity to gefitinib, since potent inhibition (IC_(50): 0.28±0.03μM) was observed in highly EGFR-expressing A431 cell line whereas the moderate EGFR-expressing NSCLC cells were relatively resistant (16.04±2.96μM~19.57±6.6μM).
     3.2. To determine whether a potentiation of the antiproliferative activity could be obtained by the combination of LDM and gefitinib, a series of experiments were performed on H460 and A431 cell lines treated with different doses of each drug. Slight synergistic growth inhibitory effects at most combinations (CDK1) were found in the two cell lines. The CDI was<0.70 at the combination dose [gefitinib (μM)/LDM (nM):5/0.1] in H460 cells, [gefitinib (μM)/LDM (nM):0.1/0.01] in A431 cells. The synergistic effects were achieved at lower gefitinib concentration in A431 cells than in H460 cells.
     3.3. Induction of apoptosis by LDM and gefitinib in H460 and A431 cell lines were measured by flow cytometry combined with FITC-Annexin V/PI staining. The results showed that the percentage of Annexin V-positive cells increased dose dependently in the two cell lines after treated by the two drugs. LDM showed similar potent apoptosis induction effects on H460 cells and A431 cells. However, A431 cell line was more sensitive than H460 cell line to gefitinib; there occurred 30.70%±1.69% ( P<0.01) apoptotic cells as A431 cells exposed to 1μM gefitinib whereas only 13.60±1.37% (P<0.05) apoptotic cells induced by 20μM gefitinib in H460 cells.
     3.4. FITC-Annexin V/PI analysis showed that the combination treatment induced more intensive apoptosis when compared to that by each agent alone in A431 cells. The lower dose combination, 0.1μM gefitinib plus 0.01 nM LDM, induced apoptosis in 31.87% of cells, whereas the same doses of gefitinib and LDM given alone resulted in apoptosis in only 12.79% and 6.71% of cells, respectively. Likewise, at the higher dose level (1μM gefitinib plus 0.1 nM LDM) the apoptotic rate was 53.93%, clearly superior to the 31.89% and 21.45% of apoptosis with single-agent gefitinib and LDM, respectively. The percentage of apoptotic cells was much lower in H460 cells even in higher dose of gefitinib. However, LDM could slightly potentiate the apoptotic effect of gefitinib at certain doses. 20μM gefitinib plus 0.5 nM LDM induced apoptosis in 53.85% of cells, whereas the same dose of gefitinib and LDM given alone resulted in only 12.63% and 42.88% of apoptotic cells, respectively.
     3.5. Western blot analysis showed that a dose-dependent increase in PARP cleavage was observed in A431 cells exposed to gefitinib. More significant increase in PARP cleavage was observed after combined treatment. However, gefitinib barely increase the PARP cleavage in H460 cells at the doses tested. 10μM gefitinib plus 0.5 nM LDM introduced slight increase in PARP cleavage. Furthermore, greater down-regulating of the anti-apoptotic molecule NF-κB in the two cell lines also related to enhancement of apoptosis by combined treatment.
     3.6. Western blot analysis evaluated the effects of gefitinib and LDM on EGFR signaling pathway molecules in H460 and A431 cells. Phosphorylation of EGFR, ERK and Akt decreased in gefitinib-treated A431 cells and a more pronounced decrease in the levels of phosphorylation of each marker was observed after the combined treatment. 10μM gefitinib plus 0.5 nM LDM slightly decreased the level of p-EGFR but not of p-ERK and p-Akt as compared to each single agent in H460 cells. Pretreatment with gefitinib inhibited EGF-induced phosphorylation of EGFR and Akt in H460 cells. Combined treatment markedly inhibited the increment of EGFR and Akt phsphorylation induced by EGF. However, the inhibition of the activation of ERK by combination was similar to that of gefitinib alone.
     4. Comparison in vivo antitumor activity of LDM and gefitinib on H460 xenografts
     Treatment with LDM at the dose of 0.025 mg/kg and 0.05 mg/kg inhibited the growth of human large cell lung carcinoma H460 xenografts by 52.8% and 72.4%, respectively. Oral administration of gefitinib at the dose of 50 mg/kg inhibited the growth of H460 xenografts by 69.4%. The inhibitory effect was comparable to the tolerable dose of LDM of 0.05 mg/kg. The body weights of the animals showed no significant differences between the control and treated groups.
引文
1.Nicolaou KC,Smith AL,Yue EW.Chemistry and biology of natural and designed enediynes.Proc Natl Acad Sci USA,1993;90:5881-5888.
    2.Hu JL,Xue YC,Xie MY,et al.A new macromolecular antitumor antibiotic,C-1027.Ⅰ.Discovery,taxonomy of producing organism,fermentation and biological activity.J Antibiot,1988;41:1575-1579.
    3.Otani T,Minami Y,Marunaka T,et al.A new macromolecular antitumor antibiotic,C-1027.Ⅱ.Isolation and physico-chemical properties.J Antibiot,1988;41:1580-1585.
    4.Shi YK,Wu SY,Huang YH,Zhen YS.Chemosensitivity of mdr1 gene overexpressed multidrug resistant cancer cells to lidamycin.Yao Xue Xue Bao,2006;41:1146-1151.
    5.Zhen YS,Ming XY,Yu B,et al.A new macromolecular antitumor antibiotic,C-1027.Ⅲ.Antitumor activity.J Antibiot,1989;42:1294-1298.
    6.甄永苏,薛玉川,邵荣光.烯二炔类新抗生素C1027的抗肿瘤作用研究.中国抗生素杂志,1994;19:164-168.
    7.Xu YJ,Li DD,Zhen YS.Mode of action of C-1027,a new macromolecular antibiotic with highly potent cytotoxocity,on human hepatoma BEL-7402 cells.Cancer Chemoth Pharm,1990;27:41-46.
    8.甄红英,薛玉川,甄永苏.抗肿瘤抗生素C1027抑制肿瘤血管生成及其抗肿瘤转移作用.中华医学杂志,1997;77:657-660.
    9.李军智,江敏,薛玉川,甄永苏.抗癌抗生素C1027与单克隆抗体片段偶联物的抗肝癌作用.药学学报,1993;28:260-265.
    10.Mchugh MM,Woynarowski JM,Gawron LS,et al.Effects of the DNA-damaging enediyne C-1027 on intracellular SV40 and genomic DNA in green monkey kidney BSC-1 cells.Biochemistry,1995;34:1805-1814.
    11.Mchugh MM,Beerman TA.C-1027-induced alteration in Epstein-Barr viral DNA replication in latently infected cultured human Raji cells:relationship to DNA damage.Biochemistry,1999;38:6962-6970.
    12.Mchugh MM,Gawroo LS,Matsui S,et al.The antitumor enediyne C-1027 alters cell cycle progression and induces chromosomal aberrations and telomere dysfuction.Cancer Res,2005:65;5344-5351.
    13.Wakeling AE,Guy SP,Woodburn JR,et al.ZD1839(Iressa):an orally active inhibitor of EGF signaling with potential for cancer therapy.Cancer Res,2002;62:5749-5764.
    14.Woodburn JR.The epidermal growth factor receptor and its inhibition in cancer therapy.Pharmacol Ther,1999;82:241-250.
    15.Tebar F,Llado A.Role of calmodulin in the modulation of MAPK signaling pathway and the transactivation of epidermal growth factor receptor mediated by PKC.FEBS,2002;517:206-210.
    16.Hou JJ,Wei WK,Zhang H.Comparative study on cell adhesion and migration of different human lung carcinoma cell.Journal of Hubei Institute for Nationalities (Medical edition),2001;18:4-7.
    17.Janmaat ML,Kruyt FA,Rodriguez JA,et al.Response to epidermal growth factor receptor inhibitors in non-small cell lung cancer cells:limited antiproliferative effects and absence of apoptosis associated with persistent activity of extracellular signal-regulated kinase or Akt kinase pathways.Clin Cancer Res,2003;9:2316-2326.
    18.Xu YJ,Xi Z,Zhen YS,et al.A single binding mode of activated enediyne C1027generates two types of double-strand DNA lesions:deuterium isotope-induced shuttling between adjacent nucleotide target sites.Biochemistry,1995;34:12451-12460.
    19.Xu YJ,Zhen YS,Goldberg IH.C1027 chromolphore,a potent new enediyne antitumor antibiotic, induces sequence-specific double-strand DNA cleavage.Biochemistry, 1994; 33: 5947-5954.
    
    20. Kastan MB, Bartek J. Cell-cycle checkpoints and cancer. Nature, 2004; 432:316-323.
    
    21. Coleman TR, Dunphy WG Cdc2 regulatory factors. Curr Opin Cell Biol, 1994; 6:877-882.
    
    22. Morgan DO. Principles of CDK regulation. Nature, 1995; 374: 131-134.
    
    23. Krause K, Wasner M, Reinhard W, et al. The tumour suppressor protein p53 can repress transcription of cyclin B. Nucleic Acids Res, 2000; 28: 4410-4418.
    
    24. Flatt PM, Tang LJ, Scatena CD, et al. p53 regulation of G(2) checkpoint is retinoblastoma protein dependent. Mol Cell Biol, 2000; 20: 4210-4223.
    
    25. Giannakakou P, Robey R, Fojo T, et al. Low concentrations of paclitaxel induce cell type-dependent p53, p21 and G1/G2 arrest instead of mitotic arrest: molecular determinants of paclitaxel-induced cytotoxicity. Oncogene, 2001; 20: 3806-3813.
    
    26. Bunz F, Dutriaux A, Lengauer C, et al. Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science, 1998; 282: 1497-1501.
    
    27. Liang YX, Zhang W, Li DD, et al. Mitotic cell death in BEL-7402 cells induced by enediyne antibiotic lidamycin is associated with centrosome overduplication.World J Gastroenterol, 2004; 10: 2632-2636.
    
    28. Liu X, He H, Feng Y, et al. Difference of cell cycle arrests induced by lidamycin in human breast cancer cells. Anticancer Drugs 2006; 17: 173-179.
    
    29. He QY, Liang YY, Wang DS, et al. Characteristics of mitotic cell death induced by enediyne antibiotic lidamycin in human epithelial tumor cells. Int J Oncol, 2002;20:261-266.
    
    30. Stewart ZA, Pietenpol JA. P53 signaling and cell cycle checkpoints. Chem Res Toxicol,2001; 14: 243-263.
    31.Salvesen GS,Dixit VM.Caspases:intracellular signaling by proteolysis.Cell,1997;91:443-446.
    32.Thornberry NA,Lazebnik Y.Caspases:enemies within.Science,1998;281:1312-1316.
    33.Cryns V,Yuan J.Proteases to die for.Genes Dev,1998;12:1551-1570.
    34.Molina MA,Sitja-Arnau M,Lemoine MG,et al.Increased cyclooxygenase-2expression in human pancreatic carcinomas and cell lines:growth inhibition by nonsteroidal anti-inflammatory drugs.Cancer Res,1999;59:4356-4362.
    35.Alexander A,Jens V,Maike B,et al.Inhibition of NF-kB sensitizes human pancreatic carcinoma cells to apoptosis induced by etoposide(VP16) or doxorubicin.Oncogene,2001;20:859-868.
    36.Krajewski S,Tanaka S,Takayama S.Investigations of the subcellular distribution of the bcl-2 oncoprotein:residence in the nuclear envelope,endoplasmic reticulum,and outer mitochondria membranes.Cancer Res,1993;53:4701-4714.
    37.Fahy BN,Schlieman MG,Mortenson MM,et al.Targeting BCL-2 overexpression in various human malignancies through NF-_кB inhibition by the proteasome inhibitor bortezomib.Cancer Chemoth Pharm,2005;56:46-54.
    38.Mortenson MM,Schlieman MG,Virudachalam S,et al.Reduction in BCL-2 levels by 26S proteasome inhibition with bortezomib is associated with induction of apoptosis in small cell lung cancer.Lung Cancer,2005;49:163-170.
    39.Deeb D,Jiang H,Gao X,et al.Curcumin(Diferuloyl-methane) sensitizes human prostate cancer cells to TRAIL/Apo2L-induced apoptosis by suppressing NF-{kappa}B via inhibition of pro-survival Akt signaling pathway.J Pharmacol Exp Ther,2007;Feb 8(on line).
    40.Corbeil J,Richman DD,Wrasidlo W,et al.Antiproliferative effects of enediynes on AIDS-derived Kaposi's sarcoma cells.Cancer Res,1994;54:4270-4273.
    41.Nicolaou KC,Stabila P,Esmaeli-Azad B,et al.Cell-Specific Regulation of Apoptosis by Designed Enediynes.Proc Natl Acad Sci USA,1993;90:3142-3146.
    42.Jiang B,Li DD,Zhen YS.Induction of apoptosis by enediyne antitumor antibiotic C1027 in HL-60 human promyelocytic leukemia cells.Biochem Biophys Res Commun,1995;208:238-244.
    43.Wang Z,He QY,Liang YY,et al.Noncaspase- mediated apoptosis contributes to the potent cytotoxicity of the enediyne antibiotic lidamycin toward human tumor cells.Biochem Pharmacol,2003;65:1767-1775.
    44.Parsons SL,Watson SA,Brown PD,et al.Matrix metalloproteinases.Br J Surg,1997;84:160-166.
    45.Egeblad M,Werb Z.New function for the matrix metalloproteinases in cancer progression.Nature Rev Cancer,2002;2:161-174.
    46.Wang CY,Mayo MW,Korneluk RG,et al.NF-_κB antiapoptosis:Induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation.Science,1998;281:1680-1683.
    47.Beg AA,Baltimore D.An essential role for NF-_κB in preventing TNF-α-induced cell death.Science,1996;274:782-784.
    48.Wang CY,Mayo MW,Jr Baldwin AS.TNF- and cancer therapy-induced apoptosis:potentiation by inhibition of NF-_κB.Science,1996;274:784-787.
    49.Woodburn JR.The epidermal growth factor receptor and its inhibition in cancer therapy.Pharmacol Ther,1999;82:241-250.
    50.Wakeling AE,Guy SP,Woodburn JR,et al.ZD1839(Iressa):an orally active inhibitor of EGF signaling with potential for cancer therapy.Cancer Res,2002;62:5749-5764.
    51.Kauffmann-Zeh A,Rodriguez-Viciana P,Ulrich E,et al.Suppression of c-Myc -induced apoptosis by Ras signaling through PI(3)K and PKB.Nature,1997;385: 544-548.
    52.Persons DL,Yazlovitskaya EM,Peling JC.Effect of Extracellular Signal-regulated Kinase on p53 Accumulation in Response to Cisplatin.J Biol Chem,2000;275:35778-35785.
    53.Wang D,Lippard SJ.Cellular processing of platinum anticancer drugs.Nat Rev Drug Discov,2005;4:307-320.
    54.Tang DM,Wu DC,Hirao A,et al.ERK activation mediateds cell cycle arrest and apoptosis after DNA damage independently of p53.J Biol Chem,2002;277:12710-12717.
    55.Kennedy DR,Beerman TA:The radiomimetic enediyne C-1027 induces unusual DNA damage responses to double-strand breaks.Biochemistry,2006;45:3747-3754.
    56.Pearson G,Robinson F,Beers Gibson T,et al.Mitogen-activated protein(MAP)kinase pathways:regulation and physiological functions.Endocr Rev,2001;22:153-183.
    57.Leppa S,Bohmann D.Diverse functions of JNK signaling and c-Jun in stress response and apoptosis.Oncogene,1999;18:6158-6162.
    58.Segar R,Krebs EG.The MAPK signaling cascade.FASEB J,1995;9:726-735.
    59.Cross TG,Scheel-Toellner D,Henriquez NV,et al.Serine/threonine protein kinases and apoptosis.Exp Cell Res,2000;256:34-41.
    60.Ciardiello F,Tortora G.A novel approach in the treatment of cancer:targeting the epidermal growth factor receptor.Clin Cancer Res,2001;7:2958-2970.
    61.Ranson,M.ZD1839(Iressa):for more than just non-small cell lung cancer.Oncologist,2002;7:16-24.
    62.Ciardielo F,Caputo R,Bianco R,et al.Antitumor effect and potentiation of cytotoxic drugs activity in human cancer cells by ZD -1839(Iressa),an epidermal growth factor receptor-selective tyrosine kinase inhibitor.Clin Cancer Res,2000;6:2053-2063.
    63.Lynch T J,Bell DW,Sordella R,et al.Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib.N Engl J Med,2004;350:2129-2139.
    64.Paez JG.Janne PA,Lee JC,et al.EGFR mutations in lung cancer:correlation with clinical response to gefitinib therapy.Science,2004;304:1497-1500.
    65.Pao W,Miller V,Zakowski M,et al.EGF receptor gene mutations are common in lung cancers from "never smokers" and are associated with sensitivity of tumors to gefitinib and erlotinib.Proc Natl Acad Sci USA,2004;101:13306-13311.
    66.Wikstrand CJ,McLendon RE,Friedman AH,et al.Cell surface localization and density of the tumor-associated variant of the epidermal growth factor receptor,EGFRvⅢ.Cancer Res,1997;57:4130-4140.
    67.Merlino GT,Xu YH,Ishii S,et al.Amplification and enhanced expression of the epidermal growth factor receptor gene in A431 human carcinoma cells.Science,1984;224:417-419.
    68.Albanell J,Codony-Servat J,Rojo F,et al.Activated extracellular signal-regulated kinases:association with epidermal growth factor receptor/transforming growth factor α expression in head and neck squamous carcinoma and inhibition by anti-epidermal growth factor receptor treatments.Cancer Res,2001;61:6500-6510.
    69.Anderson NG,Ahmad T,Chan K,et al.ZD1839(Iressa),a novel epidermal growth factor receptor(EGFR) tyrosine kinase inhibitor,potently inhibits the growth of EGFR-positive cancer cell lines with or without erbB2 overexpression.Int J Cancer,2001;94:774-782.
    70.Moasser MM,Basso A,Averbuch SD,et al.The tyrosine kinase inhibitor ZD1839("Iressa") inhibits HER2-driven signaling and suppresses the growth of HER2-overexpressing tumor cells.Cancer Res,2001;61:7184-7188.
    71.Ciardiello F,Bianco R,Damiano V,et al.Antitumour activity sequential treatment with topotecan and anti-epidermal growth factor receptor monoclonal antibody C225.Clin Cancer Res,1999;5:909-916.
    72.Mendelsohn J,Fan Z.Epidermal growth factor receptor family and chemosensitivity.J Natl Cancer Inst,1997;89:341-343.
    73.Mattingly RR,Milstein M,Mirkin BL.Down-regulation of growth factor-stimulated MAP kinase signaling in cytotoxic drug-resistance human neuroblastoma cells.Cell Signal,2001;13:499-505.
    74.Naruse I,Ohmori T,Ao Y,et al.Antitumour activity of the selective epidermal growth factor receptor-tyrosine kinase inhibitor(EGFR-TKI) Iressa(ZD1839) in an EGFR-expressing multidrug-resistant cell line in vitro and in vivo.Int J Cancer,2002;98:310-315.
    75.Bunch RT,Eastman A.Enhancement of cisplatin-induced cytotoxicity by 7-hydroxystaurosporine(UCN-01),a new G2-check point inhibitor.Clin Cancer Res,1996;2:791-797.
    76.Fan S,Smith ML,Rivet DJ,et al.Disruption of P53 function sensitizes breast cancer MCF-7 cells to cisplatin and pentoxifylline.Cancer Res,1995;55:1649-1654.
    77.Ciardiello F,Caputo R,Bianco R,et al.Antitumor effect and potentiation of cytotoxic drugs activity in human cancer cells by ZD-1839(Iressa),an epidermal growth factor receptor-selective tyrosine kinase inhibitor.Clin Cancer Res,2000;6:2053-2063.
    78.Solomon B,Hagekyfiakou J,Trivett MK,et al.EGFR blockade with ZD1839("Iressa") potentiates the antitumor effects of single and multiple fractions of ionizing radiation in human A431 squamous cell carcinoma.Epidermal growth factor receptor.Int J Radiat Oncol Biol Phys,2003;55:713-723.
    79.Salomon DS,Brandt R,Ciardiello F,et al.Epidermal growth factor-related peptides and their receptors in human malignancies.Crit Rev Oncol Hematol,1995;19:183-232.
    1. Langer CJ. Emerging role of epidermal growth factor receptor inhibition in therapy for advanced maligrancy: Focus on NSCLC. Int J Radiat Oncol Biol Phys, 2004,58: 991-1002.
    
    2. Cullen M. Lung cancer 4: Chemotherapy for non-smal lung cancer: The end of the beginning. Thorax, 2003; 58: 352-356.
    
    3. Verweij J, van Oosterom A, Blay JY, et al. Imatinib mesylate (STI-571 Glivec,Gleevec) is an active agent for gastrointestinal stromal tumours, but does not yield responses in other soft-tissue sarcomas that are unselected for a molecular target.Results from an EORTC Soft Tissue and Bone Sarcoma Group phase II study. Eur J Cancer 2003; 39: 2006-2011.
    
    4. Wakeling AE, Guy SP, Woodbum JR, et al. ZD1839 (Iressa): an orally active inhibitor of EGF signaling with potential for cancer therapy. Cancer Res, 2002; 62:5749-5764.
    
    5. Woodbum JR. The epidermal growth factor receptor and its inhibition in cancer therapy. Pharmacol Ther, 1999; 82: 241-250.
    
    6. Hynes NE, Lane HA. ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer, 2005; 5: 341-354.
    
    7. Lei W, Mayotte JE, Levit MA. Enhancement of chemosensitivity and PCD by tyrosine kinase inhibitors correlates with EGER in NSCLC. Anticancer Res, 1999;19: 221-228.
    
    8. Joseph S .Cell signaling by receptor tyrosine kinases. Cell, 2000; 103: 211-225.
    
    9. Rodrigues GA, Falasca M, Zhang Z, et al. A novel positive feedback loop mediated by the docking protein Gabl and PI-3 kinase in EGF receptor signaling.Mol Cell Biol, 2000; 20:1448-1459.
    
    10. Tebar F, Llado A. Role of calmodulin in the modulation of MAPK signaling pathway and the transactivation of epidermal growth factor receptor mediated by PKC. FEBS, 2002; 517: 206-210.
    
    11. Yarden Y. The EGER family and its ligands in human cancer signaling mechanisms and therapeutic opportunities. Eur J Cancer, 2001; 37: S3-S8
    
    12. Wan YS, Wang ZQ, Voorhees J, et al. EGF receptor crosstalks with cytokine receptors leading to the activation of c-jun kinase in response to UV irradiation in human keratinocytes. Celular Signalling, 2001; 13: 139-144.
    
    13. Kristiansen G, Yu Y, Petersen S, et al. Over expression of c-erbB2 protein correlates with disease- stage and chromosomal gain at the c-erbB2 locus in non-small cell lung cancer. Eur J Cancer, 2001; 37: 1089 — 1095.
    
    14. Fuster LM, Sandier AB. Select clinical trials of erlotinib (OSI2774) in non-small-cell lung cancer with emphasis on phase III outcomes. Clin Lung Cancer, 2004; 6 Suppl1: S24-S29.
    
    15. Ohsaki Y, Tanno S, Fujita Y, et al. Epidermal growth factor receptor expression correlates with poor prongnosis in non-small cell lung cancer patients with p53 over expression. Oncol Rep, 2000; 7: 603 — 607.
    
    16. Tsai CM, Chang KT. Interrelationships between cellular nucleotide excision repair, cisplatin cytotoxicity and EGFR in NSCLC. Jpn J Cancer Res, 2000; 91:213 -222.
    
    17. Laskin JJ, Sandier AB. Epidermal growth factor receptor: a promising target in solid tumours. Cancer Treat Rev, 2004; 30: 1-17.
    
    18. Wiedmann MW, Caca K. Molecular targeted therapy for gastrointestinal cancer.Curr Cancer Drug Targets, 2005; 5:171-193.
    
    19. Baselga J, Arteaga CL. Critical update and emerging trends in epidermal growth factor receptor targeting in cancer. J Clin Oncol, 2005; 23:2445-2459.
    
    20. Baselga J. New technologies in epidermal growth factor receptor targeted cancer therapy. Signal, 2000; 1:12
    21. Ciardielo F, Caputo R, Bianco R, et al. Antitumor effect and potentiation of cytotoxic drugs activity in human cancer cells by ZD1839 (Iressa), an epidermal growth factor receptor-selective tyrosine kinase inhibitor. Clin Cancer Res, 2000; 6:2053-2063.
    
    22. Sirotnak FM, Zakowski MF, Miler VA, et al. Efficacy of cytotoxic agents against human tumor xenografts is markedly enhanced by coadministration of ZD-1839 (Iressa), an epidermal growth factor receptor-selective tyrosine kinase inhibitor.Clin Cancer Res, 2000; 6: 4885-4892.
    
    23. She Y, Lee F, Chen J, et al. The epidermal growth factor receptor tyrosine kinase inhibitor ZD1839 selectively potentiates radiation response of human tumors in nude mice, with a marked improvement in therapeutic index. Clin Cancer Res,2003; 9: 3773-3778.
    
    24. Huang SM, Li J, Armstong EA, et al. Modulation of radiation response and tumor induced angiogenesis after epidermal growth factor receptor inhibition by ZD1839 (0ressa).Cancer Res, 2002; 62: 4300-4306.
    
    25. Liu CY, Seen S. Gefitinib therapy for advanced non-smal-cell lung cancer. Ann Pharmacother, 2003; 37: 1644-1653.
    
    26. Miler VA, Johnson D, Heelan RT, et al. A pilot trial demonstrates the safety of ZD1839 (Iressa), an oral epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI), in combination with carboplatin ? and paclitaxel (P) in previously untreated advanced non-small cell lung cancer (NSCLC) (Abs 1301). Pro Am Soc Clin Oncol, 2001; 20:326A
    
    27. Rischin D, Burmeister B, Mitchel, et al. Phase I trial of gefitinib (ZD1839) in combination with concurrent carboplatin, paclitaxel and radiation therapy in patients with stage III non-small cell lung cancer. Proc Am Soc Clin Oncol, 2004;23:632(Abs 7077)
    
    28. Ready N, Herndon J, Vokes E, et al. Initial cohort toxicity evaluation for chemoradiotherapy(CRT) and ZD1839 in stage Ⅲ non -small cell lung cancer (NSCLC).Proc Am Soc Clin Oncol,2004;23:632(Abs7078)
    29.Ochs J,Grous J,Warner K.Final survival and safety results for 21,064non-small-cell lung cancer(NSCLC) patients who received compassionate use gefitinib in a U.S.expanded access program(EAP).J Clin Oncol 2004 ASCO Annual Meeting Proceedings(Post-Meeting Edition) 2004;22(14 Suppl.):7060.
    30.Mu XL,Li LY,Zhang XT,et al.Evaluation of safety and efficacy of gifitinib (Iressa,ZD1839) as monotherapy in a series of Chinese patients with advanced non-small-cell lung cancer:experience from a compassionate use program.BMC Cancer,2004;4:51 - 57.
    31.Wang MZ,Li LY,Wang SL,et al.Efficacy and safety of gefitinib as monotherapy for Chinese patients with advanced non-small cell lung cancer.Chin Med J(Engl),2006;119:63 - 68.
    32.Hotta K,Kiura K,Ueoka H,et al.Effect of gefitinib(Iressa,ZD1839) on brain metastases in patients with advanced non-small-cell lung cancer.Lung Cancer,2004;46:255 - 261.
    33.Ishida A,Kanoh K,Nishisaka T,et al.Gefitinib as a first line of therapy in non-small cell lung cancer with brain metastases.Intern Med,2004,43:718-720.
    34.Tamura K,Fukuoka M.Gefitinib in non-small cell lung cancer.Expert Opin Pharmacother,2005;6:985-993.
    35.West H,Franklin WA,Gumerlock PH,et al.Gefitinib(ZD1839) therapy for advanced bronchioloalveolar lung cancer(BAC):Southwest Oncology Group (SWOG) Study S0126.Proc Am Soc Clin Oncol,2004;23:618.
    36.Cufer T,Vrdoljak E.Results from a phase,open-label,randomized study(SIGN)comparing Gefitinib with docetaxel as second-line therapy in patients with advanced(stage Ⅲb or Ⅳ) non-small cell lung cancer.J Clin Oncol,2005;23:629s
    37. Scagliotti G, Rossi A, Novelo, et al. Gefitinib (ZD1839) combined with gemcitabine or vinorelbine as single-agent in elderly patients with advanced non-small cell lung cancer (NSCLC). Proc Am Soc Clin Oncol, 2004; 23: 633(Abs 7081).
    
    38. Belvedere O, Grossi F. Lung cancer highlights from ASCO 2005. Oncologist, 2006;11:39-50.
    
    39. Giaccone G, Herbst RS, Manegold C, et al. Gefitinib in combination with gemcitabine and cisplatin in: a phase III trial-INTACT1. J Clin Oncol, 2004; 22:777-784.
    
    40. Herbst RS, Giaccone G, Schiller JH, et al. Gefitinib in combination with paclitaxel and carboplatin in advanced non-small-cell lung cancer: a phase III trial-INTACT2.J Clin Oncol, 2004; 22: 785-794.
    
    41. Agelaki S, Georgoulias V. Epidermal growth factor receptor inhibitors in the treatment of non-small cell lung cancer. Expert Opin Emerg Drugs, 2005; 10:855-874.
    
    42. Kris MG, Sandier A, Miller V, et al. Cigarette smoking history predicts sensitivity to erlotinib: Results of a phase II trial in patients with bronchioloveolar carcinoma (BAC). J Clin Oncol 2004 ASCO Annual Meeting Proceedings (Post-Meeting Edition) 2004; 22 (14 Suppl.): 7062.
    
    43. TALENT Study. Results of a phase III trial of erlotinib (OSI-774) combined with cisplatin and gemcitabine (GC) chemotherapy in advanced non-small cell lung cancer (NSCLC). Proc Am Soc Clin Oncol, 2004; 23: 617 Abs.7010
    
    44. TRIBUTE Study. TRIBUTE — A phase III trial of erlotinib HC1 (OSI — 774) combined with carboplatin and paclitaxel (CP) chemotherapy in advanced non-small cell lung cancer (NSCLC). Proc Am Soc Clin Oncol, 2004; 23: 617 Abs.7011.
    
    45. Shepherd FA, Pereira J, Ciuleanu JE, et al. A randomized placebo- controlled trial of erlotinib in patients with advanced non -small cell lung cancer(NSCLC)following failure of 1~(st) line or 2~(nd) line chemotherapy.A National Cancer Institute of Canada Clinical Trials Group(NCIC CTG) trial.Proc Am Soc Clin Oncol,2004;23:Abs.7022
    46.Yoshida K,Yatabe Y,Park JY,et al.Prospective Validation for Prediction of Gefitinib Sensitivity by Epidermal Growth Factor Receptor Gene Mutation in Patients with Non-Small Cell Lung Cancer.J Thorac Oncol,2007 Jan;2:22-28.
    47.Herbst RS,Prager D,Hermann R,et al.TRIBUTE:a phase Ⅲ trial of erlotinib hydrochloride(OSI-774) combined with carboplatin and paclitaxel chemotherapy in advanced non-small-cell lung cancer.J Clin Oncol,2006;23:5892-5899.
    48.Gandara D,Narayan S,Lara PN,et al.Integration of novel therapeutics into combined modality therapy of locally advanced non-small cell lung cancer.Clin Cancer Res,2006;11(13 Pt 2):5057s-5062s.
    49.Solit DB,She Y,Lobo J,et al.Pulsatile administration of the epidermal growth factor receptor inhibitor gefitinib is significantly more effective than continuous dosing for sensitizing tumors to paclitaxel.Clin Cancer Res,2006;11:1983-1989.
    50.Fan Z,Lu Y,Wu X,et al.Antibody-induced epidermal growth factor receptor dimerization mediates inhibition of autocrine proliferation of A431 squamous carcinoma cells.J Biol Chem,1994;269:27595-27602.
    51.Prewett M,Rockwell P,Rockwell RF et al.The biologic effects of C225,a chimeric monoclonal antibody to the EGFR,on human prostate carcinoma.J Immuno ther Emphasis Tumor Immunol,1996;19:419-427.
    52.Aleh MN,et al.Combined modality therapy of A431 human epidermoid cancer using anti- EGFR antibody C225 and radiation.Cancer Biother Radiopharm,1999;14:451-463.
    53.Kelly K,Hanna N,Rosenberg A,et al.Multicentered Phase Ⅰ / Ⅱ study of cetuximab in combination with paclitaxel and carboplatin in untreated patients with stage Ⅳ non-small cell lung cancer.Proc Am Soc Clin Oncol,2003;22:644.
    54.Kim ES,Mauer AM,Tranet HT,et al.A phase Ⅱ study of cetuximab,an epidermal growth factor receptor(EGFR) blocking antibody,in combination with docetaxel in chemotherapy refractory / resistant patients with advanced non-small cell lung cancer.Proc Am Soc Clin Oncol,2003,22:642.
    55.Rosell R,Daniel C,Ramlau R,et al.Randomized phase Ⅱ study of cetuximab in combination with cisplatin(c),and vinorelbine(V) vs.CV alone in the first-line treatment of patients(pts) with epidermal growth factor receptor(EGFR),expressing advanced non-small-cell lung cancer(NSCLC).Proc Am Soc Clin Oncol,2004,23:618.Abs.7012.
    56.Gatzemeier U,Rosell R,Ramlau R,et al.Cetuximab(Erbitux)in combination with cispaltin/vinorelbine vs.cispaltin/vinorelbine alone in the first-line treatment of patinets with epidermal growth factor receptor expressing advanced non -small-cell lung cancer(NSCLC).Proc Am Soc Clin Oncol,2003,22:642.Abs.2582.
    57.Robert F,Blumenschein K,Dicke T,et al.Phase Ⅰb / Ⅱa study of anti-epidermal growth factor receptor(EGFR) antibody,cetuximab,in combination with gemcitabine/carboplatin in patients with advanced non-small cell lung cancer (NSCLC).Proc Am Soc Clin Oncol,2003,22:643.
    58.Lynch TJ,Lilenbaum R,Bonomi,et al.A phase 2 trail of cetuximab as therapy for recurrent non-small cell lung cancer(NSCLC).Proc Am Soc Clin Oncol,2004,23:634.Abs.7084.
    59.Rosell R,Daniel C,Ramlau R,et al.Randomized phase Ⅱ study of cetuximab in combination with cisplatin(?) and vinorelbine(V) vs.CV alone in the first-line treatment of patients(pts) with epidermal growth factor receptor (EGFR)-expressing advanced non-small-cell lung cancer(NSCLC).Presented at Amercian Society of Clinical Oncology,June 5-8,2004;New Orleans,LA.
    60.Belani CP,Wang W,Johnson DH,et al.Induction chemotherapy followed by standard thoracic radiotherapy vs hyperfractionated accelerated radiotherapy for patients with unresectable stage Ⅲ A & B non-small cell lung cancer:Phase Ⅲstudy of the Eastern Cooperative Ontology Group.Proc Am Soc Clin Oncol,2003;22:622
    61.Huang S,Armstrong EA,Benavente S,et al.Dual-agent molecular targeting of the epidermal growth factor receptor(EGFR):Combining anti-EGFR antibody with tyrosine kinase inhibitor.Canoe Res,2004;64:5355-5362.
    62.Ahmed SM,Salgia R.Epidermal growth factor receptor mutations and susceptibility to targeted therapy in lung cancer.Respirology,2006;11:687-692.
    63.Kato T,Nishio K.Clinical aspects of epidermal growth factor receptor inhibitors:Benefit and risk Respirology,2006;11:693-698.
    64.Lynch TJ,Bel DW,Sordella R,et al.Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small cell lung cancer to gefitinib.N Engl J Med,2004;350:2129-2139.
    65.Paez JG,Janne PA,Lee JC,et al.EGFR mutations in lung cancer:Correlation with clinical response to gefitinib therapy.Science,2004;304:1497-1500.
    66.Cappuzzo F,Hirsch FR,Rossi E et al.Epidermal growth factor receptor gene and protein and gefitinib sensitivity in non-small-cell lung cancer.J Natl Cancer Inst,2005;97:643-655.
    67.Hirsch FR,Varella-Garcia M,Mccoy J,et al.Increased epidermal growth factor receptor gene copy number detected by fluorescence in situ hybridization associates with increased sensitivity to gefitinib in patients with bronchioloalveolar carcinoma subtypes:a Southwest Ontology Group Study.J Clin Oncol,2005;23:6838-6845.
    68.Tsao MS,Sakurada A,Cutz JC,et al.Erlotinib in lung cancer-molecular and clinical predictors of outcome.N Engl J Med,2005;353:133-144.
    69.Cappuzzo F,Magrini E,Ceresoli GL,et al.Akt phosphorylation and gefitinib efficacy in patients with advanced non-small-cell lung cancer.J Natl Cancer Inst,2004;96:1133-1141.
    70.Pao W,Wang TY,Riely GJ,et al.KRAS mutations and primary resistance of lung adenocarcinomas to gefitinib or erlotinib.PLoS Med,2005;2:e17.
    71.Eberhard DA,Johnson BE,Amler LC,et al.Mutations in the epidermal growth factor receptor and in KRAS are predictive and prognostic indicators in patients with non-small-cell lung cancer treated with chemotherapy alone and in combination with erlotinib.J Clin Oncol,2005;23:5900-5909.
    72.Herbst RS,Manegold C,Fukuoka M,et al.Epidermal growth factor receptor mutations and gene amplification in non-small-cell lung cancer:molecular analysis of the IDEAL/INTACT gefitinib trials.J Clin Oncol,2005;23:8081-8092.
    73.Takano T,Ohe Y,Sakamoto H,et al.Epidermal growth factor receptor gene mutations and increased copy numbers predict gefitinib sensitivity in patients with recurrent non-small-cell lung cancer.J Clin Oncol,2005;23:6829-6837.
    74.Gumerlock PH,Holland WS,Chen H,et al.Mutational analysis of K-RAS and EGFR implicates K-RAS as a resistance marker in the Southwest Ontology Group (SWOG) trial S0126 of brondhioalveolar carcinoma(BAC) patients treated with gefitinib.Proc Am Soc Clin Oncolo,2005;23:623.
    75.Kakiuchi S,Daigo Y,Ishikawa N,et al.Prediction of sensitivity of advanced non-small cell lung cancers to gefitinib(Iressa,ZD1839).Hum Mol Genet,2004;13:3029-3043.
    76.Jimeno A,Kulesza P,Kincaid E,et al.C-fos assessment as a marker of anti-epidermal growth factor receptor effect.Cancer Res,2006;66:2385-2390.
    77.Kokubo Y,Gemma A,Noro R,et al.Reduction of PTEN protein and loss of epidermal growth factor receptor gene mutation in lung cancer with natural resistance to gefitinib(Iressa).Br J Cancer,2005;92:1711-1719.
    78. Christensen JG, Schreck RE, Chan E, et al. High levels of HER-2 expression alter the ability of epidermal growth factor receptor (EGFR) family tyrosine kinase inhibitors to inhibit EGFR phosphorylation in vivo. Clin Cancer Res, 2001; 7:4230-4238.
    
    79. Viloria-Petit A, Crombet T, Jothy S, et al. Acquired resistance to the antitumor effect of epidermal growth factor receptor-blocking antibodies in vivo: a role for altered tumor angiogenesis. Cancer Res, 2001; 61: 5090-5101.
    
    80. Kobayashi S, Boggon TJ, Dayaram T, et al. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N Engl J Med, 2005; 352:786-792.
    
    81. Pao W, Miler VA, Politi KA, et al. Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLOS Med, 2005; 2: e73.
    
    82. Choong NW, Dietrich S, Seiwert TY, et al. Gefitinib response of erlotinib-refractory lung cancer involving meninges-role of EGFR mutation. Nat Clin Pract Oncol, 2006; 3: 50-57.
    
    83. Thomson S, Buck E, Petti F, et al. Epithelial to mesenchymal transition is a determinant of sensitivity of non-small cell lung carcinoma cell lines and xenografts to epidermal growth factor receptor inhibition. Cancer Res, 2005; 65:9455-9462.
    
    84. Yauch RL, Januario T, Eberhard DA, et al. Epithelial versus mesenchymal phenotype determines in vitro sensitivity and predicts clinical activity of erlotinib in lung cancer patients. Clin Cancer Res, 2005; 11: 8686-8698.
    
    85. Fukuoka M, Yano S, Giaccone G, et al. Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced nons-mall- cell lung cancer (The IDEAL 1 Trial) [corrected]. J Clin Oncol, 2003; 21: 2237-2246.
    
    86. Kris MG, Natale RB, Herbst RS, et al. Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer: A randomized trial. JAMA, 2003; 290: 2149 -2158.
    
    87. Camp ER, Summy J, Bauer TW, et al. Molecular mechanisms of resistance to therapies targeting the epidermal growth factor receptor. Clin Cancer Res, 2005;11:397-405.
    
    88. Kwak EL, Sordella R, Bell DW, et al. Irreversible inhibitors of the EGF receptor may circumvent acquired resistance to gefitinib. Proc Natl Acad Sci USA, 2005;102:7665-7670.
    
    89. Rubin BP, Duensing A. Mechanisms of resistance to small molecule kinase inhibition in the treatment of solid tumors. Lab Invest, 2006; 86: 961-986.
    
    90. Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2001;2: 127-137.
    
    91. Shaheen RM, Ahmad SA, Liu W, et al. Inhibited growth of colon cancer carcinomatosis by antibodies to vascular endothelial and epidermal growth factor receptors. Br J Cancer, 2001; 85: 584 -589.
    
    92. Yokoi K, Thaker PH, Yazici S, et al. Dual inhibition of epidermal growth factor receptor and vascular endothelial growth factor receptor phosphorylation by AEE788 reduces growth and metastasis of human colon carcinoma in an orthotopic nude mouse model. Cancer Res, 2005; 65: 3716 -3725.
    
    93. Zhou Y, Li S, Hu YP, et al. Blockade of EGFR and ErbB2 by the novel dual EGFR and ErbB2 tyrosine kinase inhibitor GW572016 sensitizes human colon carcinoma GEO cells to apoptosis. Cancer Res, 2006; 66: 404—411.
    
    94. Zhou Y, Brattain MG. Synergy of epidermal growth factor receptor kinase inhibitor AG1478 and ErbB2 kinase inhibitor AG879 in human colon carcinoma cells is associated with induction of apoptosis. Cancer Res, 2005; 65: 5848 -5856.
    
    95. Erlichman C, Hidalgo M, Boni JP, et al. Phase I study of EKB-569, an irreversible inhibitor of the epidermal growth factor receptor, in patients with advanced solid tumors. J Clin Oncol, 2006; 24: 2252-2260.
    96.Yoshimura N,Kudoh S,Kimura T,et al.EKB-569,a new irreversible epidermal growth factor receptor tyrosine kinase inhibitor,with clinical activity in patients with non-small cell lung cancer with acquired resistance to gefitinib.Lung Cancer,2006;51:363-368.
    97.Rabindran SK,Discafani CM,Rosfjord EC,et al.Antitumor activity of HKI-272,an orally active,irreversible inhibitor of the HER-2 tyrosine kinase.Cancer Res,2004;64:3958-3965.
    98.Wong KK,Fracasso PM,Bukowski RM,et al.HKI-272,an irreversible pan ErbB receptor tyrosine kinase inhibitor:Preliminary phase 1 results in patients with solid tumors.J Clin Oncol,2006;24(18 suppl):3018.
    99.Minami Y,Shimamura T,Shah K,et al.The major lung cancer-derived mutants of ERBB2 are oncogenic and are associated with sensitivity to the irreversible EGFR/ERBB2 inhibitor HKI-272.Oncogene,2007;26:5023-5027.
    100.Shimamura T,Ji H,Minami Y,et al.Non-small-cell lung cancer and Ba/F3transformed cells harboring the ERBB2 G776insV_G/C mutation are sensitive to the dual-specific epidermal growth factor receptor and ERBB2 inhibitor HKI-272.Cancer Res,2006;66:6487-6491.
    101.Allen LF,Eiseman IA,Fry DW,et al.CI-1033,an irreversible pan-ErbB receptor inhibitor and its potential application for the treatment of breast cancer.Semin Oncol,2003;30:65-78.
    102.Garrison MA,Tolcher A,McCreery H,et al.A phase Ⅰ and pharmacokinetic study of CI-1033,a pan-ErbB tyrosine kinase inhibitor,given orally on days 1,8,and 15every 28 days to patients with solid tumors.Presented at the 2001 American Society of Clinical Ontology Annual Meeting,San Francisco,CA,May 12-15,2001.
    103.Simon GR,Garrett CR,Olson SC,et al.Increased bioavailability of intra-venous versus oral CI-1033,a pan ErbB tyrosine kinase inhibitor:Results of a phase Ⅰ pharmacokinetic study.Clin Cancer Res,2006;12:4645-4651.
    104.Wedge SR,Ogilvie DJ,Dukes M,et al.ZD6474 inhibits vascular endothelial growth factor signaling,angiogenesis,and tumor growth following oral administration.Cancer Res,2002;62:4645- 4655.
    105.Sandler A,Gray R,Perry MC,et al.Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer.N Engl J Med,2006;355:2542-2550.
    106.Herbst RS,Johnson DH,Mininberg E,et al.Phase Ⅰ/Ⅱ trial evaluating the anti-vascular endothelial growth factor monoclonal antibody bevacizumab in combination with the HER-1/epidermal growth factor receptor tyrosine kinase inhibitor edotinib for patients with recurrent non-small-cell lung cancer.J Clin Oncol,2005;23:2544-2555.
    107.Ciardiello F,Bianco R,Caputo R,et al.Antitumor activity of ZD6474,a vascular endothelial growth factor receptor tyrosine kinase inhibitor,in human cancer cells with acquired resistance to antiepidermal growth factor receptor therapy.Clin Cancer Res,2004;10:784-793.
    108.Casconea T,Gridellib C,Ciardielloa F.Combined targeted therapies in non-small cell lung cancer:a winner strategy? Current Opinion in Ontology,2007;19:98-102.
    109.Slamon DJ,Leyland-Jones B,Shak S,et al.Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2.N Engl J Med,2001;344:783-792.
    110.Cunningham D,Humblet Y,Siena S,et al.Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer.N Engl J Med,2004;351:337-345.
    111.Hurwitz H,Fehrenbacher L,Novotny W,et al.Bevacizumab plus irinotecan,fluorouracil,and leucovorin for metastatic colorectal cancer.N Engl J Med,2004; 350:2335-2342.
    112.Sandier A,Gray R,Brahrner J,et al.Randomized phase Ⅱ/Ⅲ trial of paclitaxel(P)plus carboplatin(?) with or without bevacizumab(NSC#704865) in patients with advanced non-squamous non-small cell lung cancer(NSCLC).An Eastern Cooperative Ontology Group(ECOG) Trial-E4599.Presented at Amercian Society of Clinical Ontology,May 13-17,2006;Orlando,FL.
    113.Sandier A.B,Blumenschein G.R,Henderson T,et al.Phase Ⅰ/Ⅱ trial evaluating the anti-VEGF MAb bevacizumab in combination with erlotinib,a HER1/EGFR-TK inhibitor,for patients with recurrent non-small cell lung cancer.J Clin Oncol 2004 ASCO Annual Meeting Proceedings(Post-Meeting Edition) 2004;22(14 Suppl.):2000.
    114.Milton DT,Kris MG,Azzoli CG,et al.Phase Ⅰ/Ⅱ trial gefitinib and RAD001(everolimus) in patients with advanced non-small cell lung cancer(NSCLC).Proc Am Soc Clin Oncol,2005;23:646s.
    115.Reckamp KL,Dubinett SM,Krysan K,et al.A phase Ⅰ trial of targeted COX-2 and EGFR TK inhibition in advanced NSCLC.Proc Am Soc Clin Oncol,2005;23:648s.
    116.van Cruijsen,Voest EE,van Harpen CM,et al.Phase Ⅰ clinical evaluation of AZD2171 in combination with gefitinib in patients with advanced tumors.Proc Am Soc Clin Oncol,2005;23:199s.
    117.Ramalingam S,Belani CP.Recent advances in targeted therapy for non-small cell lung cancer.Expert Opin Ther Targets,2007;11:245-257.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700