不锈钢粉末选择性激光烧结/等静压复合成形技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
选择性激光烧结(Selective Laser Sintering, SLS)技术是快速成形(Rapid Prototyping,RP)领域发展较成熟与应用较广泛的技术之一,一直受到国内外重视。但是通过SLS技术制造金属零件,存在致密度低与力学性能差等缺陷,严重限制了其发展与应用。尽管近年来国内外研究通过熔渗金属等方法提高SLS零件的致密度,但是其力学性能依然难以满足使用要求。针对上述问题,为了制造高致密高性能复杂不锈钢零件,本论文将等静压(Isostatic Pressure, IP)技术引入SLS领域,形成SLS/IP复合成形技术。采用SLS/IP技术制造AISI304与AISI316L不锈钢零件,通过TG热分析、X射线衍射(XRD)、SEM以及力学性能检测等手段研究AISI304与AISI316L SLS/IP零件致密化机理、金相组织与力学性能;在脱脂后续处理阶段零件各向收缩相同条件下,建立各环节尺寸精度数学物理模型,为进一步研究其尺寸精度奠定理论基础。主要研究内容与结论如下:
     (1)研究了AISI304与AISI316L不锈钢粉末SLS成形与热脱脂机理及其工艺。针对本论文非晶态高聚物环氧树脂E12与晶态高聚物尼龙PA12两种粘结剂,采取混合法与覆膜法制取了上述两种SLS不锈钢复合材料,确定了相应最佳SLS成形工艺参数(预热温度、激光功率、扫描速度、扫描间距与单层层厚)分别为50-55℃、19-20W、1900-2000mm/s、0.1-0.12mm/s、0.1-0.12mm与150-165℃、15-17W、1800-2000mm/s、0.1-0.15mm、0.1-0.15mm;根据热脱脂机理以及E12和PA12的TG曲线,制定了合理的热脱脂工艺。
     (2)研究了SLS/冷等静压(Cold Isostatic Pressure, CIP)包套材料(天然橡胶胶乳与硅橡胶),提出将天然橡胶胶乳运用到SLS/CIP工艺。相对于硅橡胶,天然橡胶胶乳成膜性较好,并且能够随形密封复杂SLS零件,适用于SLS/CIP包套制作。
     (3)研究了AISI304与AISI316L SLS零件的热脱脂后续处理机理与工艺,以及相应工艺参数对其致密度与性能的影响规律,并提出其SLS/CIP致密化机理与最小SLS/CIP阀值思想。其中,根据CIP理论与SLS脱脂多孔材料特性,上述不锈钢SLS/CIP致密化机理为烧结颈破碎、金属颗粒重排与塑性变形综合作用;针对AISI304不锈钢脱脂试样,最小SLS/CIP阀值为400MPa;在经过650MPa CIP、1350℃高温烧结与1200℃/120MPa热等静压(Hold Isostatic Pressure, HIP)处理后,其致密度分别
     达到86%、95%与98%;并且,其SLS/HIP试样的弹性模量、屈服强度、拉伸强度与延伸率分别达到93.15GPa、306MPa、577.5MPa与32.05%,力学性能与固溶处理AISI304致密材料相当;针对AISI316L不锈钢脱脂试样,最小SLS/CIP阀值为300MPa;在1320℃高温烧结与1250℃/120MPa HIP处理后,其致密度超过95%;同时,其弹性模量、屈服强度、拉伸强度与延伸率分别达到142.5GPa、277MPa、649.49MPa与45.7%。
     (4)在高温烧结与HIP环节,研究了微量Cu与FeB对AISI304试样致密度、弹性模量、屈服强度、拉伸强度与延伸率的影响规律,以及微量Si与FeMn对AISI316L试样致密度、弹性模量、屈服强度、拉伸强度与延伸率的影响规律。根据液相烧结理论与XRD检测方法,微量Cu与FeB均能提高AISI304 SLS/IP试样致密度,并且,当Cu含量从1%增加到3%时,在奥氏体基体上析出NixCuy固溶体,致使其力学性能逐渐改善,当FeB含量从0.5%增加到5%,Fe-B与Ni-B低熔共晶物沿晶界析出,致使其力学性能逐渐降低;微量Si与FeMn可提高AISI316L SLS/IP试样致密度,但在SLS/CIP后续处理中,Si容易导致碳化铬沿晶界析出,致使其力学性能降低,但是微量FeMn可改善其力学性能。
     (5)研究了SLS/IP制件在各环节上尺寸精度变化规律与控制措施以及脱脂后续处理尺寸精度数学物理模型。主要提出了SLS/CIP环节尺寸精度数学物理模型高温烧结环节尺寸精度数学物理模型HIP环节尺寸精度数学物理模型
     综上所述,通过SLS/IP技术解决了SLS零件致密度低与力学性能差等缺陷,完善了SLS技术,拓宽了其应用领域,为制造高致密高性能高精度复杂金属零件奠定了技术基础。
At present, Selective Laser Sintering (SLS) is a more developed and widely applied technology of Rapid Prototyping (RP), so it has been paid attention to by researchers all along in the world. But relative density of SLS parts is often lower and their mechanical performance is worse so as to hinder its development and application strongly. Although relative density of SLS parts was improved by infiltrating lower melting point metal in the past, their mechanical didn’t still meet requirements. In order to manufacture high relative density, better mechanical performance and complicated parts, Isostatic pressure (IP) technology is introduced into SLS which is named as SLS/IP technology. Complicated AISI304 and AISI316L metal parts are manufactured by SLS/IP, then densification mechanism, metallurgical structure and mechanical performances of AISI304 and AISI316L SLS/IP metal parts are analyzed by TG, XRD, SEM and tension test etc. Their mathematic physics models of dimensional precision are derived under SLS parts evenly shrinking in degreasing process, CIP, high sintering and HIP, so the theory is established for analyzing the dimensional precisions of SLS samples further. Main research contents and conclusions are below.
     (1) Mechanisms of SLS forming and thermal degreasing about AISI304 and AISI316L powders are investigated with their technology parameters. Mixed and coated composites of SLS are manufactured by resin E12 and nylon PA12, and optimized SLS technology parameters are determined, which include preheat temperature, laser power, scan speed, can interval and layer thickness. They are respectively 50-55℃,19-20W, 1900-2000mm/s, 0.1-0.12mm,0.1-0.12mm and 150-165℃, 15-17W, 1800-2000mm/s, 0.1-0.15mm, 0.1-0.15mm/s.According to thermal degreasing mechanism and TG curves of E12 and PA12, their thermal degreasing technologies of SLS prototype are set up.
     (2) Canning materials used in SLS/Cold Isostatic Pressing (CIP) are investigated, which include natural rubber latex and silicon rubber, and natural rubber latex is firstly introduced into SLS/CIP. Compared with silicon rubber, complicated SLS parts could be sealed by natural rubber latex, which films more easily and is suitable for SLS/CIP canning material.
     (3) Mechanisms and technologies of AISI304 and AISI316L parts after thermal degreasing are investigated with effects of their technology parameters on them, and their densification mechanics of SLS/CIP and minimal SLS/CIP threshold are brought forward. Thereinto, according to CIP theory and property of SLS degreasing part, densification mechanics of above stainless steel SLS/CIP parts is sintering neck crushing, metal rearranging and its plastic deformation. The threshold of SLS/CIP pressure is 400MPa when AISI304 degreasing part is CIPped. After CIP of 650MPa, high sintering of 1350℃and HIP of 1200℃/120MPa, relative density of AISI304 part is 86%, 95% and 98% respectively, and its mechanical performance is Young’s modulus of 93.15GPa, yield strength of 306MPa, tension strength of 577.5MPa and elongation percentage of 32.05%, which are close to solution treatment AISI304 dense material. The threshold of SLS/CIP pressure is 300MPa when AISI316L degreasing part is CIPped. After subsequent high sintering of 1320℃and HIP of 1250℃/120MPa, its relative density Its relative density is over 95%, and its mechanical performance is Young’s modulus of 142.5GPa, yield strength of 277MPa, tension strength of 649.49MPa and elongation percentage of 45.7%.
     (4) Effects of Cu and FeB on relative density, Young’s modulus, yield strength, tension strength and elongation percentage of AISI304 parts are investigated in high sintering and HIP with effects of Si and FeMn on relative density, Young’s modulus, yield strength, tension strength and elongation percentage of AISI316L parts. According to liquid sintering and XRD, relative density of SLS/IP AISI304 parts could be improved. NixCuy solid solution is precipitated in austenite with mechanical performances improving when content of of Cu increases from 1% to 3%, and eutectics of Fe-B and Ni-B are precipitated along grain boundary so that their mechanical performances worsen gradually when content of of FeB increases from 0.5% to 5%. In addition, relative density of AISI316L SLS/IP parts could be improved gradually with addition of Si and FeMn, but Cr23C6 is precipitated along grain boundary with addition of Si so as to worsen their mechanical performances, but their mechanical performances could be improved with addition of FeMn in high sintering and HIP.
     (5) Dimensional precision of SLS part in each process in SLS/IP are investigated, corresponding solved methods being introduced, and mathematic physics models of dimensional precision are brought forward after degreasing. Mathematic physics models of dimensional precision in SLS/CIP, high sintering and HIP are maily brought forward, which are respectively and
     hi eonelusion,lower relative density and worse meehanieal Performanee of SLS Partshave been avoided by SLS/I P,whleh imProves SLS,俪dens aPPlieation domain of SLSand establishes foundation for manufaeturing dense,high Performanee,high definition andeomPlieated metal Parts.
引文
[1]孙世杰.新千年粉末冶金技术的发展.粉末冶金工业,2003,13(4):23-26.
    [2]刘飞.21世纪制造业的绿色变革与创新.机械工程学报,2000,36(1):7-10.
    [3]中国机械工程协会.绿色制造_十一五制造业发展大趋势.中国制造业信息化,2006,8:34-45.
    [4]韩凤麟.世界粉末冶金趋势.粉末冶金技术, 2006,20(6)369-370.
    [5] Engstroem U, Johansson B, Rutz H, et al. High density P/M materials for future applications. Powder Metallurgy, 1994(1): 57-64.
    [6] Rutz H. G., Hanejko F.G. High density processing of high performance ferrous materials. International Journal of Powder Metallurgy, 1995, 31(1):9-15.
    [7] Jones P., Golder K.B., Lawcock R., et al. Densification strategies for high endurance P/M components. Internation Journal of Powder Metallurgy, 1997, 33(3):37-43.
    [8] Johson P.K. Innovative P/M Parts Recognized. The International Journal of Powder Metallurgy, 2002, 38(5):25-29.
    [9] Rosy W., CHEN D. A system methodology of material selection with environmental considerations. IEEE,1994, 252-257.
    [10] Melngk S. A., Smith R. T. Green Manufacturing. Dearborn, Society of Mmanufacturing Eengineers, 1996:2-5
    [11]李元元,肖志瑜,陈维平等.粉末冶金高致密化成形技术的新进展.粉末冶金材料科学与工程,2005,10(1):1-9.
    [12]黄伯云,易健宏.现代粉末冶金材料和技术发展现状(二).上海金属,2007, 29(3):1-7.
    [13]黄伯云,易健宏.现代粉末冶金材料和技术发展现状(二).上海金属,2007, 29(4):1-5.
    [14] Gay D. Slot heater your short-cut to warm compact. Powder Metellurgy, 1996,39(1):13-17.
    [15] LI Yuan-yuan, XIAO Zhi-yu, Ngai Tungwai Leo. Warm compacted NbC particulate reinforced iron-base composite.Trans Nonferrous Met Soc China, 2002, 12(4): 659-663.
    [16] Prummer R. New compaction approaches to higher density PM: warm or cold. Powder Metallurgy, 1998, 41(4): 250-252
    [17] David Abbott, Frank Arcella. Laser forming titanium components. Advanced Materials & Process, 1998, 153(3):29-31.
    [18] Xue Yan, Gu P. A review of rapid prototyping technologies and systems. Computer-Aided Design, 1996, 28(4): 307-318.
    [19] Labudovic M., HU D., Kovacevic R. A three dimensional model for direct laser metal powder deposition and rapid prototyping. Journal of Materials Science, 2003,38:35-49.
    [20] http://www.mcp-group.com/rpt/rpttslm.html.
    [21] www.trumpf.com.
    [22] Mumtaz Kamran Aamir, Erasenthiran Poonjolai, Hopkinson Neil. High density selective laser melting of Waspaloy. Journal of Materials Processing Technology, 2008, 195(1-3):77-87.
    [23] Abe F., E Costa Santors, Kitamura Y. Influence of forming conditions on the titanium model in rapid prototyping with the selective laser melting process. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2004, 218(7): 711-719.
    [24] Sun Manlong, Lu Li, Fuh Jerry Y. H. Microstructure and properties of Fe-base alloy fabricated using selective laser melting. Proceedings of SPIE - The International Society for Optical Engineering, 2002, 4426: 139-142.
    [25] Kruth J.P., Froyen L., Van Vaerenbergh J., et al. Selective laser melting ofiron-based powder. Journal of Materials Processing Technology, 2004, 149(1-3): 616-622.
    [26] Lu L., Fuh , J.Y. H., Chen Z.D., et al. In situ formation of TiC composite using selective laser melting. Materials Research Bulletin, 2000, 35( 9): 1555-1561.
    [27] Santos E.C., Osakada K., Shiomi M., et al. Microstructure and mechanical properties of pure titanium models fabricated by selective laser melting. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2004, 218(7):711-719.
    [28] Shiomi M., Osakada K., Nakamura K., et al. Residual stress within metallic model made by selective laser melting process. CIRP Annals - Manufacturing Technology, 2004, 53(1):195-198.
    [29] Abe F., Osakada K., Shiomi M., et al. The manufacturing of hard tools from metallic powders by selective laser melting. Journal of Materials Processing Technology, 2001, 111(1-3): 210-213.
    [30] Kruth J.P., Mercelis P., Van Vaerenbergh J., et al. Binding mechanisms in selective laser sintering and selective laser melting. Rapid Prototyping Journal, 2005, 11(1): 26-36.
    [31] Childs T.H.C., Hauser C. Raster scan selective laser melting of the surface layer of a tool steel powder bed. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2005, 219(4): 379-384.
    [32] Childs T.H.C., Hauser C., Badrossamay M. Mapping and modelling single scan track formation in direct metal selective laser melting. CIRP Annals - Manufacturing Technology, 2004, 53(1): 191-194.
    [33] Van Elsen Maarten, Al-Bender Farid, Kruth Jean-Pierre. Application of dimensional analysis to selective laser melting. Rapid Prototyping Journal, 2008, 14, (1): 15-22.
    [34]黄树槐,史玉升,陈国清等.一种直接制造金属零件的快速成形系统.中国,专利号:CN200410061364.7, 2004, 1-7.
    [35] Murty Y. V., Robert F. D.Technology Trends in Near Net Shape Manufacturing, Advanced Materials &Processes,1998, 153(1): 47-54.
    [36] Mudge Robert P., Wald, Nicholas R. Laser engineered net shaping advances additive manufacturing and repair. Welding Journal, 2007, 86(1):44-48.
    [37] Hofmeister W. Investigating Solidification with the Laser-Engineered Net Shaping ( LENS) Process. JOM, 1999, 51(7):241-24.
    [38] Abbott D. H., Arcella F. G. Laser Forming Titanium Components. Advanced Materials & Processed, 1998,153(5):29-30.
    [39] Griffith M. L. Freeform fabrication of metallic components using laser engineered net shaping (LENS). Solid Fabrication Symposium Proceedings, University of Texas at Austin, 1996:121-12.
    [40] Nickel A. H., Barnett D. M., Prinz F. B.Thermal stresses and deposition patterns in layered manufacturing. Materials Science and Engineering, 2001. A317:59-64.
    [41] Labudovic M., HU D., Kovacevic R. A three dimensional model for direct laser metal powder deposition and rapid prototyping. Journal of Materials Science, 2003.38:35-49.
    [42] Mazumder J., Choi J., Nagarathnam K.,et al. Direct metal deposition(DMD) of H13 tool steel for 3-D components: microstructure and mechanical properties. J Metals, 1997, 49(5):55-61.
    [43] Nelson,James Christian. Selective laser sintering: A definition of the process and an empirical sintering model: Ph.D. dissertation, The University of Texas at Austin, 1993.
    [44] Kruth J.K., Leu M.C., T.Nakagawa. Progress in Additive Manufacturing and Rapid Prototyping. Annals of the CIRP, 1998,47(2): 525-540
    [45] Chua C. K., Leong K. F. Rapid prototyping in Singapore: 1988 to 1997. Rapid Prototyping Journal, 1997,3(3):116-11.
    [46] Ashley, Steven. Rapid Prototyping Systems. Mechanical Engineering,1991,113(4):34-43.
    [47]汪艳.选择性激光烧结高分子材料及其制件性能研究.博士学为论文.武汉:华中科技大学材料科学与工程学院,2005.
    [48]刘锦辉.选择性激光烧结间接制造金属零件研究.博士学位论文.武汉:华中科技大学材料科学与工程学院,2006.
    [49] Vail N.K.,Swain L.D., Fox W.C., et al. Materials for Biomedical Applications. Materials and Design (UK), 1999, 20(2-3): 123-132
    [50] Ashley, Steven. Prototyping with advanced tools. Mechanical Engineering,1994, 116( 6): 48-55
    [51] B.K.Paul, S.Baskaran. Issues in fabricating manufacturing tooling using powder-based additive freeform fabrication. Journal of Materials Processing Technology,1996, 61: 168-172.
    [52] Steven A. Prototyping with advanced tools. Mechanical Engineering, 1993, 116(6):48-55
    [53] Lamikiz A., Sanchez J.A., Lopez de Lacalle L.N., Arana J.L. Laser polishing of parts built up by selective laser sintering. International Journal of Machine Tools and Manufacture, 2007, 47(12-13):2040-2050.
    [54] N.P.Karapatis, Van Griethuysen J.P.S., Glardon, R. Direct Rapid Tooling:A Review of Current Research. Rapid Prototyping Journal. Rapid Prototyping Journal, 1998, 4(2):77-89.
    [55] J.P. Kruth, X. Wang, T. Laoui, L. Froyen. Progress in Selective Laser Sintering. Annals of the CIPP, 2001, 21-3.
    [56]顾冬冬,沈以赴.青铜镍粉末直接选择性激光烧结的研究.国外金属热处理,2003,24(5):34-37.
    [57] Shen P., Hu J., Guo Z., et al. A study on laser sintering of Fe-Cu Powder Compacts. Metallurgical and Materials Transactions, 1999, 30(8): 2229-2235.
    [58] Meiners W., Wissenbach K., Poprawe R. Direct generation of metal parts and tools by selective laser powder remelting (SLPR). Proceedings of the Laser Materials Processing Conference ICALEO'98, 1998, 2:31-37.
    [59] Childs T.H.G., Hauser G., Badrossamay M. Selective laser sintering (melting) of stainless and tool steel powders: Experiments and modeling. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2005, 219( 4):339-357.
    [60] Tang Y., Loh H.T., Wong Y.S.. et al. Direct laser sintering of a copper-based alloy for creating three-dimensional metal parts. Journal of Materials Processing Technology, 2003, 140:368-372.
    [61] Kruth J.P., Froyen L., Van Vaerenbergh J. Selective laser melting of iron-based powder. Journal of Materials Processing Technology,2004,149:616-622.
    [62] David cohn. This week in RP. Rapid Prototyping Report, CAD/CAM Publishing, 2005, 5.
    [63] Sanjay Kumar. Selective Laser Sintering:A Qualitative and Objective Approach. JOM,2003,55(10):43-47.
    [64] http://www.eos.info/.
    [65] DirectSteel50-V1. Rapid Prototyping Report, CAD/CAM Publishing, 1998, 12: 7.
    [66] EOS DirectSteel. Rapid Prototyping Report, CAD/CAM Publishing, 2000, 12: 6-7.
    [67] Schmidt M. , Pohle D., Rechtenwald T. Selective Laser Sintering of PEEK. CIRP Annals - Manufacturing Technology, 2007, 56(1): 205-208.
    [68] Bourell D.L., Marcus H.L., Barlow J.W., et al. Selective Laser Sintering of Metals and Ceramics. International Journal of Powder Metallurgy, 1992, 28(4):369-381.
    [69] Mukesh Agarwala, Klosterman. Direct selective sintering of metals. Rapid Prototyping Journal, 1995(1):205-208.
    [70] Freim J., Griffin C., Kruth P. Sintering of nanocrystalline powders. Nano-structured Materials, 1994(4):371-385.
    [71] Kruth J.P., Wang X., Laoui T., et al. Progress in Selective Laser Sintering. Annals of the CIPP, 2001, 21-38.
    [72] Khaing M.W., Fuh J.Y.H., Lu L. Direct metal laser sintering for rapid tooling:processing and characterization of EOS parts. Journal of materials processing technology,2001,113:269-272.
    [73] Tay F.E.H. and Haider E.A. Laser Sintered Rapid Tools with Improved Surface Finish and Strength Using Plating Technology. Journal of Materials Processing Technology, 2002,121:318-322.
    [74] Childs T.H.C., Hauser C., Badrossamay M. Mapping and modelling single scan track formation in direct metal selective laser melting. CIRP Annals - Manufacturing Technology, 2004, 53(1):191-194.
    [75] Durr H., Pilz R., Eleser N.S. Rapid Tooling of EDM Electrodes by Means of Selective Laser Sintering. Computers in Industry, 1999, 39:35-45.
    [76] Lind J. E., Kotila J., Syvaenen T., et al. Dimensionally accurate mold inserts and metal components by direct metal laser sintering. Materials Research Society, 2000, 625:45~501.
    [77]潘琰峰,沈以赴,顾冬冬等.选择性激光烧结技术的发展现状.工具技术,2004,38(6)3-7.
    [78] Bertrand Ph., Bayle F., Combe C., Goeuriot P., Smurov I. Ceramic components manufacturing by selective laser sintering. Applied Surface Science, 2007, 254(4): 989-992.
    [79] Tolochko N.K., Mozzharov S.E., Sobolenko N.V. , et al. Laser selective layer-by-layer sintering of powders: problems and vistas. Powder metallurgy, 1995, 3-4:32-37.
    [80] Shishkovskii, L.V. and Kupriyanov, N.L. Thermal fields in metal-polymer powder compositions during laser treatment. High Temperature, 1997, 35 (5):722-726.
    [81] Ivanova A.M., Kotova S.P., Kupriyanov N.L., et al. Physical characteristics ofselective laser sintering of metal-polymer powder composites. Quantum Electronics, 1998, 28(5):420-425.
    [82] Petrov A.L., Snarev A.I., Shishkovsky I.V., et al. Laser synthesis of metal-polymer filtering elements with predetermined properties. Proceedings of SPIE - The International Society for Optical Engineering, 2002, 4644, 441-445.
    [83] Tolochko N.K., Sobolenko N.V., Mozzharov S.E., et al. Features of laser selective sintering of loose powder metal-polymer layers, Physics and Chemistry of Materials Treatment. 1996,5:13-17.
    [84] Shishkovskii I.V., Kupriyanov N.L.,Petrov, A.L. Conditions of layer selective sintering at the contour of the metal-polymer composites under the effect of laser radiation. Physics and Chemistry of Materials Treatment, 1995,29 (3):88-93.
    [85] http://www.3dsystems.com/products/solidimaging/lasersintering/datasheets.asp
    [86] Deckard C. R.Method and apparatus for producing parts by selective laser sintering. U. S.A. Patent No. 4863538, 1989.
    [87] Steve Upcraft and Richard Fletcher. The rapid prototyping technologies。Assembly Automation, 2003, 23(4) :318-330.
    [88] Lin Liulan, Shi Yusheng, Zeng Fandi, et al. Microstructure of selective laser sintered polyamide. Journal of Wuhan University of Technology, 2003, 18(3): 60-63.
    [89] Hua Guoran, Zhao Jianfang, Zhang Jianhua, et al. Rapid manufacturing of metal parts. Journal of Southeast University, 2002, 18(2): 123-127.
    [90]白培康,高建峰.用于激光烧结快速成型金属模具的覆膜金属粉末材料.中国,发明专利,专利号:01122273.5,2002.
    [91]许超,杨家林,王洋.尼龙材料的选区激光烧结性能试验研究.新技术新工艺,2005(1): 41-44
    [92]李湘生.选区激光烧结若干关键技术研究: [博士学位论文].武汉华中科技大学, 2001
    [93] Liu J.H., Shi Y.S., Chen K.H., et al: Research on manufacturing Cu matrix Fe-Cu-Ni-C alloy composite parts by indirect selective laser sintering. International Journal of Advanced Manufacturing Technology, 2007, 33, 693-697.
    [94] Jinhui Liu, Yusheng Shi, Zhongliang Lu, et al. Rapid manufacturing metal parts by laser sintering admixture of epoxy resin/iron powders. Advanced Engineering Materials, 2006, 8(10), 988-994.
    [95] Mukesh Agarwala, David Bourell, Joseph Beaman, Harris Marcus and Joel Barlow. Post-processing of selective laser sintered metal parts. Rapid Prototyping Journal, 1995, 1(2), 36-44.
    [96] Suman Das, Martin Wohlert, Joseph J. Beaman, et al. Processing of titanium net shapes by SLS/HIP. Materials and Design, 1999, 20, 115-121.
    [97] Suman Das, Joseph J. Beama, Martin Wohlert, et al. Direct laser freeform fabrication of high performance metal components. Rapid Prototyping Journal, 1998, 4(3), 112-117.
    [98] Tang Huiping, Huang Baiyun, Liu Yong, et al. Progress in the densification of powder metallurgical titanium alloys. Rare Metal Materials and Engineering, 2003, 32(9), 672-680.
    [99]李光亮。有机硅高分子化学。科学出版社,1998,122-124.
    [100]幸松民,王一璐。有机硅合成工艺与产品应用(第一版).北京:化学工业出版社,2000, 615-634.
    [101]胡又牧,魏邦柱。乳胶应用技术(第一版).北京:化学工业出版社,1990,9-26.
    [102]王德中主编.环氧树脂生产与应用.第二版.北京:北京化学工业出版社. 2001.267-274
    [103] Hobbs S. Y., Dekkers M. E. J., Watkins V. H. Effect of interfacial forces on polymer blend morphologies. Polymer, 1988, 29: 1598-1602.
    [104]白培康,刘斌,程军.覆膜金属粉末激光烧结成型机理实验研究.仪器仪表学报,2003,24(4):479-480.
    [105]白培康,李明照,方明伦等.覆膜不锈钢粉末选择性激光烧结成型机理研究.材料工程,2005,8:28-31
    [106]李益民,李云平.金属注射成形原理与应用(第一版).长沙:中南大学出版社.2004,118-147.
    [107] R.M.German.粉末注射成形(第一版) .曲选辉译.长沙:中南大学出版社.2001,229-257.
    [108]周继承,黄伯云.新成形剂热脱脂动力学.粉末冶金材料科学与技术.2001,6(1):6-10.
    [109] Lin Hua, Xunpeng Qin, Huajie Mao. Plastic deformation and yield criterion for compressible sintered powder materials. Journal of Materials Processing Technology, 2006, 180, 174-178.
    [110] Qin X.P., Hua L. Plastic deformation and strengthening of sintered ferrous material. Journal of Materials Processing Technology, 2007, 187-188, 694-697.
    [111] Narayanasarny R., Ponalagusamy R., Subranmanian K.R. Generalized yield criteria of porous sintered powder metallurgy metals. Journal of Materials Processing Technology, 2001, 110, 182-185.
    [112] Huang P.Y., Jin Z.P., Chen Z.H..‘Basic theory and new technology of powder metallurgy’, 2nd edtion, 46; 1995, ChangSha (in China), Publishing Inc. of ZhongNan Industry University.
    [113]詹美燕,匡勇,周明等.多孔金属及合金成形过程中的致密化与变形理论研究.稀有金属与硬质合金.2002,30(4):42-47.
    [114]果世驹.粉末烧结理论.北京:冶金工业出版社,2002,11-19.
    [115]黄培云.粉末冶金原理(第二版).北京:冶金工业出版社,1995;267-307.
    [116]杨勋烈.热等静压.北京:冶金工业出版社,1983.
    [117]马富康.等静压技术(第一版.北京:冶金工业出版社.1992.
    [118]张树高,吴义成,方勋华等. ITO靶材等静压致密化工艺研究。粉末冶金材料科学与工程。1999,4(2):132-136.
    [119]张麦仓,丰建朋,罗子健,曾凡昌.热等静压过程中粉末高温合金坯料几何尺寸及相对密度的演化规律.粉末冶金技术.1999,17(1):19-23.
    [120] Morris L. A., Peckner D., Bernstein I. M. Handbook of Stainless Steels.New York:McGraw-Hill Book Co., 1977.
    [121]张圣弼,李道子.相图:原理、计算及在合金中的应用(第一版).北京:冶金工业出版社, 1986. 85.
    [122]马艳红,黄元伟.硅含量对不锈钢耐蚀性能的影响.上海金属,1999(5):52-57.
    [123] Gibson Ian, Shi Dongping.Material properties and fabrication parameters in selective laser sintering process. Rapid Prototyping Journal,1997,3(4):129 -135.
    [124] Yang H.J., Hwang P.J. , Lee S.H. A study on shrinkage compensation of the SLS process by using the Taguchi method. International Journal of MachineTools & Manufacture, 2002, 42:1203–1212.
    [125] S.Kolossov E. Boillat R.G.3D FE simulation for temperature evolution in the selective laser sintering process. International journal of Machine Tools & manufacturing, 2004,44:117-123。
    [126] Li Xiangsheng, Shi Yusheng, Mo Jianhua et.al., Shrinkage and curl distortion model of parts fabricated with SLS. Proceedings of the Eighth International conference on Rapid Prototyping. 2000, 83-98.
    [127]吴传保,刘承美,史玉升等.高分子材料选区烧结翘曲的研究.华中科技大学学报,2002,30(8):107-109.
    [128]陈鸿,张志钢,程军. SLS快速成型工艺激光扫描路径策略研究.应用基础与工程科学学报, 2001, 9(2-3):202-207.
    [129]冯文仙,史玉升,黄树槐.选择性激光烧结(SLS)温度的模糊控制.机械科学与技术,2004,23(2):234-237.
    [130]白俊生,唐亚新,余承业.激光烧结粉末快速成形铺粉辊筒运动参数的分析研究.航空精密制造技术,1997,33(4):15-17.
    [131]百俊生,余承业.激光烧结快速成型铺粉辊筒运动分析.机械制造,1997,9:15-19.
    [132]赵剑峰,余承业.液相SLS零件精度的几个因素.电加工,1998,(6):34-37.
    [133] Engel B., Bourell D.L. Titanium Alloy powder preparation for selective laser sintering. Rapid Prototyping Journal, 2000,6(2):97-106.
    [134]王运赣.快速成型技术.华中理工大学出版社,1999:1-7.
    [135]黄伯云,刘咏,贺跃辉.基于连续介质力学的粉末烧结理论.粉末冶金材料科学与工程.1998,3(4):255-262.
    [136] Kishor K.M. Dimensional precision of MIM parts under production conditions. The international journal of powder meteallurgy.1997, 3(4):29-40.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700