促性腺激素释放激素及其受体在糖尿病大鼠肠道、胰腺中表达的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有研究表明药理剂量的促性腺激素释放激素(GnRH)类似物即可导致糖代谢紊乱,而在与葡萄糖代谢密切相关的消化系统又广泛存在GnRH及其受体。肠道和胰腺合成分泌的GnRH是否与葡萄糖代谢有关,其是否会以自分泌或旁分泌的方式作用于肠道和胰腺GnRH受体(GnRH-R),并通过影响肠道吸收、运动功能或调节其他肠道激素如:胰高血糖素、胰高血糖素样多肽-1(GLP-1)等的分泌而对葡萄糖代谢产生影响,这些问题尚有待探讨。
     目的:
     探讨肠道和胰腺的GnRH及其受体、胰高血糖素原(PG)和GLP-1受体在糖尿病病理状态下的变化,肠道、胰腺GnRH及其受体、胰高血糖素原和GLP-1受体的表达之间的相关性,为进一步研究GnRH类似物在临床应用中出现的葡萄糖代谢紊乱的机制以及糖尿病的病理生理过程奠定基础。
     方法:
     采用免疫组织化学方法观察了自发性2型糖尿病GK大鼠肠道和胰腺GnRH及其受体蛋白的表达及分布特点,并采用实时荧光定量PCR方法,研究了GK大鼠及正常Wistar大鼠GnRH及其受体、胰高血糖素原和GLP-1受体的mRNA在不同肠段和胰腺在灌服葡萄糖(2 g/kg)后3 h时的表达差异。
     结果:
     1、免疫组织化学染色显示糖尿病GK大鼠空肠、回肠、结肠和胰腺均有GnRH及GnRH-R表达,且其分布特点与正常大鼠相一致。
     2、糖尿病大鼠空肠GnRH、GnRH-R、胰高血糖素原和GLP-1受体的mRNA相对表达量均低于正常大鼠(P<0.05)。
     3、糖尿病大鼠回肠GnRH mRNA表达量低于正常大鼠(P<0.05),回肠GnRH-R、胰高血糖素原和GLP-1受体的mRNA表达量在两组间差异无统计学意义。
     4、糖尿病大鼠结肠GLP-1受体mRNA相对表达量显著低于正常大鼠(P<0.05),而结肠GnRH及其受体和胰高血糖素原的mRNA表达量在两组间差异无统计学意义。
     5、糖尿病大鼠胰腺胰高血糖素原和GLP-1受体mRNA相对表达量显著低于正常大鼠(P<0.05),而胰腺GnRH和GnRH-R mRNA表达量在两组间差异无统计学意义。
     6、大鼠空肠GnRH mRNA表达量与胰高血糖素原mRNA的表达量呈正相关(r=0.883,P<0.05),大鼠空肠GnRH mRNA相对表达量与其空腹血糖、OGTT 3h血糖值均呈负相关(r=-0.72和r=-0.82,P<0.05),大鼠回肠GnRH mRNA相对表达量与其OGTT 3h血糖值呈负相关(r=-0.9,P<0.05),大鼠空肠GnRH-R与GLP-1受体mRNA相对表达量呈正相关(r=0.91,P<0.05)。
     结论:
     糖尿病大鼠肠道和胰腺GnRH及其受体免疫阳性物质分布与正常大鼠相一致。糖尿病大鼠部分肠道GnRH及其受体mRNA在灌服葡萄糖(2 g/kg)后3 h时下调,大鼠空肠GnRH与胰高血糖素原mRNA的表达量,以及空肠、回肠的GnRH mRNA水平与OGTT 3 h血糖值均呈现较好的相关性,提示空肠和回肠的GnRH可能与葡萄糖代谢关系密切,其相关机制有待进一步研究。
Some studies showed that the treatment dosage of GnRH analogues can lead to disorders of glucoregulation. GnRH and its receptor showed widespread expression in digestive system, which is highly related to glucoregulation. Whether GnRH secreted by intestine and pancreas were related to glucoregulation, and whether they could influence glucoregulation by acting on GnRH receptor in intestine and pancreas through effecting intestinal absorption and motor function, or regulating secretion of other gastro-intestinal hormones, such as glucagon, glucagon-like peptid-1, all these issues need to investigate.
     Objective:
     The objectives of this study were to study the change of the expression of GnRH, GnRH receptor, proglucagon and GLP-1 receptor in intestine and pancreas in diabetic rat, and to seek the relationships among the expression of GnRH, GnRH receptor, proglucagon and GLP-1 receptor in intestine and pancreas. The results of it will lay foundation for further study of the mechanism of glucoregulation disorders caused by GnRH analogues in clinical application and of the pathophysiology of diabetes.
     Methods:
     Immunohistochemical method was used to show the protein expression and the distribution of GnRH and its receptor in GK rats. Real-time quantitative PCR was used to detect the change of the mRNA expression of GnRH, GnRH receptor, proglucagon and GLP-1 receptor at the time of 3 h after intragastrical administration of glucose (2 g/kg) between spontaneous type 2 diabetic GK rats and normal Wistar rats.
     Results:
     1. Immunohistochemical staining showed GnRH and GnRH receptor expression in diabetic GK rats has the same distribution characteristics as in normal rats.
     2. The relative mRNA levels of GnRH, GnRH receptor, proglucagon and the GLP-1 receptor in jejunum were lower in diabetic rats than those in normal rats (P<0.05).
     3. The relative level of GnRH mRNA in ileum was lower in diabetic rats than this in normal rats (P<0.05), while there were no significant difference of the relative mRNA levels of GnRH receptor, proglucagon and the GLP-1 receptor in ileum between diabetic rats and normal rats.
     4. The relative mRNA levels of GLP-1 receptor in colon were lower in diabetic rats than those in normal rats (P<0.05), when there were no significant difference of the relative mRNA levels of GnRH, GnRH receptor and proglucagon in colon between diabetic rats and normal rats.
     5. The relative mRNA levels of proglucagon and the GLP-1 receptor in pancreas were lower in diabetic rats than those in normal rats (P<0.05), while there were no significant difference of the relative mRNA levels of GnRH and GnRH receptor in pancreas between diabetic rats and normal rats.
     6. A significant positive correlation between the expression of GnRH mRNA and proglucagaon mRNA was observed in rat’s jejunum (r=0.883, P<0.05). A significant negative correlation between the expression of GnRH mRNA in jejunum and blood glucose level was observed in fasting and OGTT 3 h rats (r=-0.72 and r=-0.82,P<0.05). A significant negative correlation between the expression of GnRH mRNA in ileum and blood glucose level was observed in OGTT 3 h rats (r=-0.9, P<0.05), while the level of GnRH-R mRNA was significant positive correlation with GLP-1R mRNA level in rat’s jejunum (r=0.91, P<0.05).
     Conclusion:
     Immunohistochemical staining showed GnRH and GnRH-R expression in diabetic GK rats have same distribution characteristics as normal rats. The expressions of GnRH and GnRH-R at the time of 3 h after intragastrical administration of glucose (2 g/kg) were downregulated in parts of intestine in diabetic rats. A positive correlation between the GnRH mRNA and proglucagaon mRNA level was observed in rat’s jejunum, while a significant negative correlation between GnRH mRNA level and blood glucose level in OGTT 3 h rats was observed in jejunum, ileum. These suggested GnRH secreted by jejunum and ileum may be related to glucoregulation and the mechanism will be explored further.
引文
1.黄威权,张崇理. GnRH免疫活性细胞和神经在大鼠胃肠胰系统的初步研究.解剖学报, 1990, 21(3):20-30
    2.黄威权,向正华. GnRH mRNA阳性细胞在大鼠胃肠胰系统的分布.解剖学报, 1996, 27(2):189-191
    3.姚兵,黄威权,孙岚.大鼠消化道促性腺激素释放激素受体的免疫组织化学研究.解剖学报, 1999, 2(30):152-154
    4. Inaba M, Otani Y, Nishimura K, Takaha N, Okuyama A, Koga M, Azuma J, Kawase I, Kasayama S. Marked hyperglycemia after androgen-deprivation therapy for prostate cancer and usefulness of pioglitazone for its treatment. Metabolism, 2005, 54(1):55-59.
    5. Haidar A, Yassin A, Saad F, Shabsigh R. Effects of androgen deprivation on glycaemic control and on cardiovascular biochemical risk factors in men with advanced prostate cancer with diabetes. Aging Male, 2007, 10(4):189-196
    6. LinksMayer A, Lunenfeld E, Wiznitzer A, Har-Vardi I, Bentov Y, LevitasE. Increased prevalence of gestational diabetes mellitus in in vitro fertilization pregnancies inadvertently conceived during treatment with long-acting triptorelin acetate.Fertil Steril, 2005, 84(3):789-792
    7. Matsuo H, Baba Y, Schally AV. Structure of the porcine LH-and FSH- releasing hormone. Biochem Biophys Res Commun, 1971, 43(6):1334-1339
    8. Burgus R, Butcher M, Guillemin R. Primary structure of ovine hypothalamic luteinizing hormone-releasing factor (LRF). Proc Natl Acad Sci, 1972, 69 (1):278-282
    9. Seeburg PH, Adelman JP. Characterization of cDNA for precursor of human
    luteinizing hormone releasing hormone. Nature, 1984, 311(5987):666-668
    10.王建辰.家畜生殖内分泌学.北京:农业出版社, 1991, 150~182
    11.金晓航,黄威权.促性腺激素释放激素免疫调节作用的研究进展.生理科学进展, 2000,2(31):169-172
    12. Peng C, Fan NC, Vaananen J, Leung PC. Expression and Regulation of Gonadotropin-Releasing Hormone (GnRH) and GnRH Receptor Messenger Ribonucleic Acids in Human Granulosa-Luteal Cells. Endocrinology, 1994, 135(5):1740-1746
    13. Chen HF, Jcung EB, Stephenson M. Human peripheral blood mononuclear cells express gonadotropin-releasing hormone (GnRH), GnRH receptor, and interleukin-2 receptorγ-chain messenger ribonucleic acids that are regulated by GnRH in Vitro. J Clin Endocrinol Metab, 1999, 84(2):743-750
    14. Eidne KA, Flanagan CA, Harris NS, Millar RP. Gonadotropin-releasing hormone (GnRH)-binding sites in human breast cancer cell lines and inhibitory effects of GnRH antagonists. Journal of Clinical Endocrinology & Metabolism, 1987, 64(3): 425-432
    15. Huang WQ, Zhang CL. Preliminary study of the distribution of GnRH immunoreactive cells and nerves in gastro-entero-pancreatic system of rats. Acta anatomica Sinica, 1990, 21(3):299-301
    16. Huang WQ, Yao B, Sun L, Pu RL, Lei W, Zhang RB. Immunohistochemical and in situ hybridization studies of gonadotropin releasing hormone(GnRH) and its receptor in rat digestive tract. Life Sci, 2001, 68(15):1727-1734
    17.金花淑,黄威权,张金山,文永植,张崇理.大鼠颌下腺促性腺激素释放激素及其mRNA的免疫组织化学与原位杂交研究.动物学报, 1998, 44(2):186~189
    18.金花淑,黄威权,张金山,文永植,张崇理.大鼠颌下腺GnRH及其受体的免疫组织化学双标记和年龄变化.解剖学报, 1998, 1(29):94-97
    19.朱晓东,姚兵,陈蕾,黄威权. GnRH类似物对大鼠胃酸分泌的影响.第四军医大学学报, 2000, 21(10):1222-1231
    20.朱晓东,王玉珍,刘晓宁,黄威权.促性腺激素释放激素类似物对大鼠胃肠道5-羟色胺分泌的影响.解剖学报, 2003, 13(05):518-521
    21.陈蕾,黄威权,孙绪德,赵晶,吕葆真,蒲若蕾. GnRH类似物对培养的大鼠胃平滑肌细胞增殖的影响.解剖学报, 2002, 33(5):505-511
    22.高彬,姬秋和,刘晓宁,黄威权.GnRH类似物对大鼠回肠组织胰高血糖素释放的影响.解剖学杂志,2004,27 (05):476-478
    23.刘晓宁,朱晓东,赵洁,黄威权.胃腔内促性腺激素释放激素类似物对大鼠消化道胃泌素细胞功能的影响.解剖学报, 2004, 4(27):441-442
    24.刘晓宁,黄威权,高彬.胃腔内促性腺激素释放激素类似物对大鼠胃和十二指肠生长抑素细胞功能的影响.解剖学报, 2004, 3(35):293-297
    25. Conn PM, Crowley W J. Gonadotropin-releasing hormone and its analogues. N Engl J Med, 1991, 324(2):93-103
    26. Palomba S, Russo T, Orio F Jr, Sammartino A, Sbano FM, Nappi C, Colao A, Mastrantonio P, Lombardi G, Zullo F. Lipid, glucose and homocysteine metabolism in women treated with a GnRH agonist with or without raloxifene. Hum Reprod, 2004, 19(2):415-421
    27. Klier M, Schusdziarra V, Pfeiffer EF. Effect of luteinizing hormone-releasing hormone upon insulin release from rat islets in vitro, 1980, 121(2):363-364
    28. Dobson H, Smith RF. What is stress, and how does it affect reproduction? Anim Reprod Sci, 2000, 60-61: 743-752
    29. Tanaka T, Nagatani S, Bucholtz DC, Ohkura S, Tsukamura H, Maeda K, Foster DL. Central action of insulin regulates pulsatile luteinizing hormone secretion in the diabetic sheep model. Biol Reprod, 2000, 62(5): 1256-1261 -47-
    30. Ansari MA, Dhar M, Spieker S. Modulation of diabetes with gonadotropin- releasing hormone antagonists in the nonobese mouse model of autoimmune diabetes. Endocrinology, 2004, 145(1):337-42.
    31. Kakar SS, Musgrove LC, Devor DC, Sellers JC. Cloning, sequencing, and expression of human gonadotropin releasing hormone (GnRH) receptor. Biochem Biophys Res Commun, 1992, 189(1):289-295
    32. Blomenrohr M, ogerd J, Leurs R. Differences in structure-function relations between nonmammalian and mammalian gonadotropin-releasing hormone receptors. Biochem Biophys Res Commun, 1997, 238(2):517-522.
    33. Campion CE, Turzillo AM, Clay CM. The gene encoding the ovine gonadotropin-releasing hormone (GnRH) receptor: cloning and initial characterization. Gene, 1996, 170(2):277-280
    34. Ramakrishnappa N, Rajamahendran R, Lin YM, Leung PC. GnRH in non-hypothalamic reproductive tissues. Anim Reprod Sci, 2005, 88(1-2):95-113
    35. Kang SK, Chio KC, Cheng KW, Nathwani PS, Auersperg N. Role of gonadotropin-releasing hormone as an autocrine growth factor in human ovarian surface epithelium. Endocriology, 2000, 141(1):72-80.
    36. Nathwani PS, Kang SK, Cheng KW. Regulation of gonadotropin-releasing hormone and its receptor gene expression by 17β-estradiol in cultured human granulosa-luteal cells. Endocrinology, 2000, 141(5):1754-1763
    37. Yamamoto H, Sato H, Shibata S, Murata M, Fukuda J. Involvement of annexin V in the antiproliferation effect of GnRH agonist on cultured human uterine leimyoma cells. Mol Hum Reprod, 2001, 7(2):169-173.
    38. Casan EM, Raga F, Bonilla-Musoles F, Polan ML. Human oviductal gonadotropin-releasing hormone: possible implications in fertilization, earlyembryonic development, and implantation. J Clin Endocrinol Metab, 2000, 85(4): 1377-1381
    39. Tieva A, Stattin P, Wikstrom P, Bergh A. Gonadotropin-releasing hormone receptor expression in the human prostate. Prostate, 2001, 47(4):276-284.
    40. Mangia A, Tommasi S, Reshkin SJ, Simone G, Stea B, Schittulli F, Paradiso A. Gonadotropin releasing hormone receptor expression in primary breast cancer: comparison of immunohistochemical, radioligand and Western blot analyses. Oncol Rep, 2002, 9(5):1127-1132
    41. Bono AV, Salvadore M, Celato N. Gonadotropin-releasing hormone receptors in prostate tissue. Anal Quant Cytol Histol, 2002, 24(4):221-227
    42. Yin H, Cheng KW, Hwa HL, Peng C, Auersperg N. Expression of the messenger RNA for gonadotropin-releasing hormone and its receptor in human cancer cell lines. Life Sciences, 1998, 62(22): 2015-2023
    43. Engel JB, Schally AV. Drug Insight: clinical use of agonists and antagonists of luteinizing-hormone-releasing hormone. Nat Clin Pract Endocrinol Metab, 2007, 3(2):157-167
    44.姬秋和,黄威权,孙岚.豚鼠胰腺的胰高血糖素、促性腺释放激素和促性腺释放激素受体的免疫组织化学双标记研究.第四军医大学学报, 1998, 19(1): 34-36
    45.姚兵,黄威权,张荣庆,王雷.大鼠颌下腺GnRH受体基因的体外扩增及基因序列分析.解剖学报, 2001, 2(132):80-83
    46.陈蕾,黄威权,孙绪德,吕宝真,蒲若蕾.大鼠胃壁细胞GnRH受体的定位及GnRH类似物对壁细胞内钙的影响.解剖学报, 2003, 1(34):79-84
    47. Tsutsumi M, Laws SC, Sealfon SC. Translational regulation of the gonadotropin-releasing hormone receptor in alpha T3-1cells. Endocrinology, 1995, 136(3):1361-1366.
    48. Kakar SS, Nath S, Jennes L. The inhibition of growth and down-regulation of gonadotropin-releasing hormone (GnRH) receptor in alpha T3-1 cells by GnRH agonist. Anticancer Drugs, 1997, 8(4):360-375
    49. Sakakibara H, Taga M, Ikeda M, Kurogi K, Minaguchi H. Continuous stimulation of gonadotropin-releasing hormone (GnRH) receptor by GnRH agonist decreases pituitary GnRH receptor messenger ribonucleic acid concentration in immature femalerats. Endocrino J, 1996, 43(1):115-118.
    50. Quinones-Jenab V, Jenab S, Ogawa S, Funabashi T, Pfaff DW.Estrogen regulation of gonadotropin-releasing hormone receptor messenger RNA in female rat pituitary tissue. Brain ResMol Brain Res, 1996, 38(2):243-250.
    51. Sakurai H, Adama BM, Adams TE. Concentration of GnRH receptor and GnRH receptor mRNA in pituitary tissue of orchidectomized sheep: effect of oestradiol, progesterone, and progestrone withdrawal. J Endocrinol, 1997, 152(1):91-98
    52. Ghosh BR, Wu JC, Strahl BD, Childs GV, Miller WL. Inhibin and estradiol alter gonadotropes differentially in ovine pituitary cultures: changing gonadotrope numbers and calcium responses to gonadotropin-releasing hormone. Endocrinology, 1996, 137(11):5144-5154.
    53. Tsutsumi M, Laws SC, Sealfon SC.Translational regulation of the gonadotropin-releasing hormone receptor in alpha T3-1 cells. Endocrinology, 1995, 136(3):1361-1366.
    54. HolZ GG, Kuhltreiber WM, Habener JF. Pancreatic beta-cells are rendered glucose competent by the insulinotropic hormone glucagons-like peptide-1(7-37). Nature, 1993, 361(6410):362-365
    55. Nauck MA, Heimesaat MM, Behle K. Effects of glucagon-like peptide 1 on counterregulatory hormone responses, cognitive functions, and insulinsecretion during hyperinsulinemic, stepped hypoglycemic clamp experiments in healthy volunteers. J Clin Endocrinol Metab, 2002, 87(3):1239-1246
    56. Flint A, Raben A, Ersb?ll AK, Holst JJ, Astrup A. The effect of physiological levels of glucagon-like peptide-1 on appetite, gastric emptying, energy and substrate metabolism in obesity. Int J Obes Relat Metab Disord, 2001, 25(6):781-7922
    57. Mojsov S, Heinrich G, W ilson IB, Ravazzola M, Orci L, Habener JF. Preproglucagon gene expression in pancreas and intestine diversifies at the level of post transcriptional processing. J Bio l Chem, 1986, 25(261): 11880-11889
    58. Schirra J, Katschinski M, Weidmann C, Schafer T. Gastric emptying and release of incretin hormones after glucose ingestion in humans. J Clin Invest, 1996, 97(1):92-103
    59. Deacon CF, Nauck MA, Nielsen M T, Pridal L, Willms B, Holst JJ. Both subcutaneously and intravenously administered glucagon-like peptide I are rapidly degraded from the NH2-terminus in type II diabetic patients and in healthy subjects. Diabetes, 1995, 44(9):1126-1131
    60. Hupe-Sodmann K, McGregor GP, Bridenbaugh R, Goke B, Thole H, Zimmermann B, Voigt K. Characterisation of the processing by human neutral endopeptidase 24.11 of GLP-1 (7-36) amide and comparison of the substrate specificity of the enzyme for other glucagon-like peptides. Regul Pept, 1995, 58(3):149-156
    61. Lawrence MC, Bhatt HS, Easom RA. NFAT regulates insulin gene promoter activity in response to synergistic pathways induced by glucose and glucagon-like peptide-1. Diabetes, 2002, 51(3):691-698
    62. Ahren B. Sensory nerves contribute to insulin secretion by glucagon-likepeptide-1 in mice. Am J Physiol Regul Integr Comp Physiol, 2004, 286(2): R269-272
    63. Drucker DJ. Glucagon-like peptide-1 and the islet beta-cell: augmentation of cell proliferation and inhibition of apoptosis. Endocrinology, 2003, 144(12): 5145-5148
    64. Abraham EJ, Leech CA, Lin JC, Zulewski H, Habener JF. Insulinotropic hormone glucagon-like peptide-1 differentiation of human pancreatic islet-derived progenitor cells into insulin-producing cells. Endocrinology, 2002, 143(8): 3152-3161
    65. Suzuki A, Nakauchi H, Taniguchi H. Glucagon-like peptide 1(1-37) converts intestinal epithelial cells into insulin-producing cells. Proc Natl Acad Sci U S A, 2003, 100(9):5034-5039
    66. Komatsu R, Matsuyama T, Nanba M, Watanabe N, Itoh H, Kona N, Tauri S. Glucagonostatic and insulinotropic action of glucagonslike peptide-1(7-36) amide. Diabetes, 1989, 38(7):902-905
    67. Naslund E, Gutniak M, Skogar S, Rossner S, Hellstrom PM. Glucagon-like peptide 1 increases the period of postprandial satiety and slows gastric emptying in obese men. Am J Clin Nutr, 1998, 68(3):525-530
    68. Schick RR, Zimmermann JP, vorm Walde T, Schusdziarra V. Peptides that regulate food intake:glucagon-like peptide 1-(7-36)amide acts at lateral and medial hypothalamic sites to suppress feeding in rats. Am J Physiol Regul Integr Comp Physiol, 2003, 284(6):1427-1435
    69. Gutniak M, Orskov C, Holst JJ, Ahren B, Efendic S. Antidiabetogenic effect of glucagon-like peptide-1 (7-36) amide in normal subjects and patients with diabetes mellitus. N Engl J Med, 1992, 326(20): 1316-1322
    70. DardevetD, MooreMC, Neal D. Insulin independent effects of GLP21 oncanine liver glucose metabolism: duration of infusion and involvement of hepatoportal region. Am J Physiol EndocrinolMetab, 2004, 287(1): E75-E81
    71. Sandhu H, Wiesenthal SR, MacDonald PE, McCall RH, Tchipashvili V, Rashid S, Satkunarajah M, Irwin DM, Shi ZQ, Brubaker PL, Wheeler MB, Vranic M, Efendic S, Giacca A. Glucagon-like peptide 1 increases insulin sensitivity in depancreatized dogs. Diabetes, 1999, 48(5):1045-1053
    72. Yamamoto H, Lee CE, Marcus JN, Williams TD, Overton JM, Lopez ME, Hollenberg AN, Baggio L, Saper CB, Drucker DJ, Elmquist JK. Glucagon-like peptide-1 receptor stimulation increases blood pressure and heart rate and activates autonomic regulatory neurons. J Clin Invest, 2002 , 110(1):43-52
    73. Nystrom T, GutniakMK, Zhang Q, Zhang F,Holst JJ, Ahren B. Effects of glucagon-like peptide-1 on endothelial function in type 2 diabetes patients with stable coronary artery disease. Am J Physiol EndocrinolMetab, 2004, 287(6): 1209-1215
    74. ThorensB. Expression cloning of the pancreatic betacell receptor for the gluco-incretin hormone glucagon-like peptide1. Proc Natl Acad Sci, 1992, 89(18): 8641-8645
    75. MStoffel M, Espinosa III R, LeBeau MM, Bell BI. Human glucagon-like peptide-1 receptor gene. Localization to chromosome band 6p21 by fluorescence in situ hybridization and linkage of a highly polymorphic simple tandem repeat DNA polymorphism to other markers on chromosome 6. Diabetes, 1993, 42(8): 1215-1218
    76. Thorens B, Porret A, Buhler L, Deng SP, Morel P and Widmann C. Cloning and functional expression of the human islet GLP-1 receptor, Demonstration that exendin-4 is an agonist and exendin-(9-39) an antagonist of the receptor.Diabetes, 1993, 42(11):1678-1682
    77. Harmar AJ. Family-B G-protein-coupled receptors. Genome Biol. 2001, 3013(2):1-10
    78. Tibaduiza EC, Chen C, Beinborn MA. Small molecule ligand of the glucagon-like peptide1 receptor targetsits amino-terminal hormone binding domain. J Biol Chem, 2001,276(41):37787-37793
    79. Satoh F, Beak SA, Small CJ. Characterization of human and rat glucagon-like peptide-1 receptors in the neuro intermediate lobe: lack of coupling to either stimulation or inhibition of adenylyl cyclase. Endocrinology, 2000,141(4): 1301-1309
    80. Unger RH, Eisentraut AM, McCall MS, Madison LL. Measurements of endogenous glucagon in plasma and the influence of blood glucose concentration upon its secretion. J Clin Invest, 1962,41:682–689
    81. Cherrington AD. Control of glucose production in vivo by insulin and glucagon. In: Jefferson LS, Cherrington AD, Goodman HM, eds. Handbook of physiology: a critical, comprehensive presentation of physiological knowledge and concepts. American Physiological Society. New York: Oxford University Press:2001, 759–785
    82. Xiao Q, Boushey R P, Drucker D J, Brubaker PL. Secretion of the intestinotrophic hormone glucagon- like peptide 2 is diferentially regulated by nutrients in humans. Gastroenterology, 1999, 117(1): 99-105
    83. Burrin D G, Petersen Y, Stoll B, Sangild P. Glucagon - like peptide 2: a Nutrient- responsive gut growth factor. J Nutr, 2001, 131(3):709-712
    84. Brubaker P L, Crivici A, lzzo A, Ehrlich, Tsai CH, Drucker DJ. Circulating and tissue forms of the intestinal growth factor, glucagons- like peptide 2. Endocrinology, 1997, 138(11):4837-4 843
    85. Tsai CH, Hill M, Asa SL, Brubaker PL, Drucker DJ. Intestinal growth- promoting properties of glucagon- like peptide 2 in mice. Am J Physiol, 1997, 273(1):77-84
    86. Cheeseman CI, Tasang R. The effect of gastric inhibitory polypeptide and glucagons like peptide on intestinal hexose trans2 port. Am J Physiol, 1996, 3(271):477-482.
    87. Benjamin M A, McKay D M, Yang P C. Glucagon- like peptide-2 enhances intestinal epithelial barrier function of both transcellular and paracellular pathways in the mouse. British Medical Journal, 2000, 47(1):112-119

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700